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Preface 

I NTENDED AU DIENCE 

LEVEL 

This book originally grew out of our lecture notes for an "Applied Multivariate Analy
sis" course offered jointly by the Statistics Department and the School of Business at 
the University of Wisconsin-Madison. Applied Multivariate Statistical Analysis, Fifth 
Edition, is concerned with statistical methods for describing and analyzing multi
variate data. Data analysis, while interesting with one variable, becomes truly fasci
nating and challenging when several variables are involved .  Researchers in the 
biological, physical, and social sciences frequently collect measurements on several 
variables. Modern computer packages readily provide the numerical results to rather 
complex statistical analyses. We have tried to provide readers with the supporting 
knowledge necessary for making proper interpretations, selecting appropriate tech
niques, and understanding their strengths and weaknesses. We hope our discussions 
will meet the needs of experimental scientists, in a wide variety of subject matter 
areas, as a readable introduction to the statistical analysis of multivariate observations. 

Our aim is to present the concepts and methods of multivariate analysis at a level 
that is readily understandable by readers who have taken two or more statistics cours
es. We emphasize the applications of multivariate methods and, consequently, have 
attempted to make the mathematics as palatable as possible. We avoid the use of cal
culus. On the other hand, the concepts of a matrix and of matrix manipulations are 
important. We do not assume the reader is familiar with matrix algebra. Rather, we 
introduce matrices as they appear naturally in our discussions, and we then show how 
they simplify the presentation of multivariate models and techniques. 

The introductory account of matrix algebra, in Chapter 2, highlights the more 
important matrix algebra results as they apply to multivariate analysis. The Chapter 
2 supplement provides a summary of matrix algebra results for those with little or no 
previous exposure to the subject. This supplementary material helps make the book 
self-contained and is used to complete proofs. The proofs may be ignored on the first 
reading. In this way we hope to make the book accessible to a wide audience. 

In our attempt to make the study of multivariate analysis appealing to a large 
audience of both practitioners and theoreticians, we have had to sacrifice a consistency 

XV 
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of level. Some sections are harder than others. In particular, we have summarized a 
voluminous amount of material on regression in Chapter 7 .  The resulting presenta
tion is rather succinct and difficult the first time through. We hope instructors will be 
able to compensate for the unevenness in level by judiciously choosing those sec
tions, and subsections, appropriate for their students and by toning them down if 
necessary. 

ORGAN IZATION AN D APPROACH 

The methodological "tools" of multivariate analysis are contained in Chapters 5 
through 12. These chapters represent the heart of the book, but they cannot be as
similated without much of the material in the introductory Chapters 1 through 4. 
Even those readers with a good knowledge of matrix algebra or those willing to ac
cept the mathematical results on faith should, at the very least, peruse Chapter 3 ,  
"Sample Geometry," and Chapter 4, "Multivariate Normal Distribution." 

Our approach in the methodological chapters is to keep the discussion direct and 
uncluttered. Typically, we start with a formulation of the population models, delineate 
the corresponding sample results, and liberally illustrate everything with examples. The 
examples are of two types: those that are simple and whose calculations can be eas
ily done by hand, and those that rely on real-world data and computer software. These 
will provide an opportunity to (1) duplicate our analyses, (2) carry out the analyses 
dictated by exercises, or (3) analyze the data using methods other than the ones we 
have used or suggested. 

The division of the methodological chapters (5 through 12) into three units al
lows instructors some flexibility in tailoring a course to their needs. Possible sequences 
for a one-semester (two quarter) course are indicated schematically. 

Each instructor will undoubtedly omit certain sections from some chapters to 
cover a broader collection of topics than is indicated by these two choices. 

Getting Started 

Chapters 1-4 

� � 
Inference About Means Classification and Grouping 

Chapters 5-7 Chapters 11 and 12 

I I 
Analysis of Covariance Analysis of Covariance 

Structure Structure 

Chapters 8-10 Chapters 8-10 

For most students, we would suggest a quick pass through the first four chap
ters (concentrating primarily on the material in Chapter 1 ;  Sections 2.1 ,  2 .2, 2.3, 2.5 ,  
2 .6 , and 3 .6 ;  and the "assessing normality" material in Chapter 4) followed by a se
lection of methodological topics. For example, one might discuss the comparison of 
mean vectors, principal components, factor analysis, discriminant analysis and clus
tering. The discussions could feature the many "worked out" examples included in 
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these sections of the text. Instructors may rely on diagrams and verbal descriptions 
to teach the corresponding theoretical developments. If the students have uniform
ly strong mathematical backgrounds, much of the book can successfully be covered 
in one term. 

We have found individual data-analysis proj ects useful for integrating materi
al from several of the methods chapters. Here, our rather complete treatments of 
multivariate analysis of variance (MANOVA), regression analysis, factor analysis, 
canonical correlation, discriminant analysis, and so forth are helpful, even though 
they may not be specifically covered in lectures. 

CHANGES TO TH E FI FTH ED ITION 

New materia l .  Users of the previous editions will notice that we have added 
several exercises and data sets, some new graphics, and have expanded the discus
sion of the dimensionality of multivariate data, growth curves and classification and 
regression trees (CART). In addition, the algebraic development of correspondence 
analysis has been redone and a new section on data mining has been added to Chap
ter 12. We put the data mining material in Chapter 12 since much of data mining, as 
it is now applied in business, has a classification and/or grouping objective. As always, 
we have tried to improve the exposition in several places. 

Data CD. Recognizing the importance of modern statistical packages in the 
analysis of multivariate data, we have added numerous real-data sets. The full data sets 
used in the book are saved as ASCII files on the CD-ROM that is packaged with 
each copy of the book. This format will allow easy interface with existing statistical 
software packages and provide more convenient hands-on data analysis opportunities. 

Instructors Sol utions Manual .  An Instructors Solutions Manual (ISBN 0-13-
092555-1) containing complete solutions to most of the exercises in the book is avail
able free upon adoption from Prentice Hall. 

For information on additional for sale supplements that may be used with the 
book or additional titles of interest, please visit the Prentice Hall Web site at 
www.prenhall.com. 
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CHAPTER 

1 
Aspects of Multivariate Analysis 

1 . 1 INTRODUCTION 

Scientific inquiry i s  an iterative learning process. Objectives pertaining to  the ex
planation of a social or physical phenomenon must be specified and then tested by 
gathering and analyzing data. In turn, an analysis of the data gathered by experi
mentation or observation will usually suggest a modified explanation of the phe
nomenon. Throughout this iterative learning process, variables are often added or 
deleted from the study. Thus, the complexities of most phenomena require an in
vestigator to collect observations on many different variables. This book is concerned 
with statistical methods designed to elicit information from these kinds of data sets. 
Because the data include simultaneous measurements on many variables, this body 
of methodology is called multivariate analysis. 

The need to understand the relationships between many variables makes mul
tivariate analysis an inherently difficult subject. Often, the human mind is over
whelmed by the sheer bulk of the data. Additionally, more mathematics is required 
to derive multivariate statistical techniques for making inferences than in a univari
ate setting. We have chosen to provide explanations based upon algebraic concepts 
and to avoid the derivations of statistical results that require the calculus of many 
variables. Our objective is to introduce several useful multivariate techniques in a 
clear manner, making heavy use of illustrative examples and a minimum of mathe
matics. Nonetheless, some mathematical sophistication and a desire to think quan
titatively will be required. 

Most of our emphasis will be on the analysis of measurements obtained with
out actively controlling or manipulating any of the variables on which the mea
surements are made. Only in Chapters 6 and 7 shall we treat a few experimental 
plans (designs) for generating data that prescribe the active manipulation of im
portant variables. Although the experimental design is ordinarily the most impor
tant part of a scientific investigation, it is frequently impossible to control the 
generation of appropriate data in certain disciplines. (This is true, for example, in 
business, economics, ecology, geology, and sociology.) You should consult [7] and 
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[8] for detailed accounts of design principles that, fortunately, also apply to multi
variate situations. 

It will become increasingly clear that many multivariate methods are based 
upon an underlying probability model known as the multivariate normal distribu
tion. Other methods are ad hoc in nature and are justified by logical or commonsense 
arguments. Regardless of their origin, multivariate techniques must, invariably, be im
plemented on a computer. Recent advances in computer technology have been ac
companied by the development of rather sophisticated statistical software packages, 
making the implementation step easier. 

Multivariate analysis is a "mixed bag." It is difficult to establish a classification 
scheme for multivariate techniques that both is widely accepted and indicates the 
appropriateness of the techniques. One classification distinguishes techniques de
signed to study interdependent relationships from those designed to study depen
dent relationships. Another classifies techniques according to the number of 
populations and the number of sets of variables being studied. Chapters in this text 
are divided into sections according to inference about treatment means, inference 
about covariance structure, and techniques for sorting or grouping. This should not, 
however, be considered an attempt to place each method into a slot. Rather, the 
choice of methods and the types of analyses employed are largely determined by 
the objectives of the investigation. In Section 1.2, we list a smaller number of practical 
problems designed to illustrate the connection between the choice of a statistical 
method and the objectives of the study. These problems, plus the examples in the 
text, should provide you with an appreciation for the applicability of multivariate 
techniques across different fields. 

The objectives of scientific investigations to which multivariate methods most 
naturally lend themselves include the following: 

1. Data reduction or structural simplification. The phenomenon being studied is 
represented as simply as possible without sacrificing valuable information. It 
is hoped that this will make interpretation easier. 

2. Sorting and grouping. Groups of " similar" obj ects or variables are created, 
based upon measured characteristics. Alternatively, rules for classifying objects 
into well-defined groups may be required. 

3. Investigation of the dependence among variables. The nature of the relation
ships among variables is of interest. Are all the variables mutually indepen
dent or are one or more variables dependent on the others? If so, how? 

4. Prediction. Relationships between variables must be determined for the pur
pose of predicting the values of one or more variables on the basis of observa
tions on the other variables. 

5. Hypothesis construction and testing. Specific statistical hypotheses, formulated 
in terms of the parameters of multivariate populations, are tested.  This may be 
done to validate assumptions or to reinforce prior convictions. 

We conclude this brief overview of multivariate analysis with a quotation from 
F. H. C. Marriott [19], page 89. The statement was made in a discussion of cluster 
analysis, but we feel it is appropriate for a broader range of methods. You should 
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keep it in mind whenever you attempt or read about a data analysis. It allows one to 
maintain a proper perspective and not be overwhelmed by the elegance of some of 
the theory: 

If the results disagree with informed opinion, do not admit a simple logical interpreta
tion, and do not show up clearly in a graphical presentation, they are probably wrong. 
There is no magic about numerical methods, and many ways in which they can break 
down. They are a valuable aid to the interpretation of data, not sausage machines au
tomatically transforming bodies of numbers into packets of scientific fact. 

1 .2 APPLICATIONS OF M U LTIVARIATE TECH N IQUES  

The published applications of multivariate methods have increased tremendously in 
recent years. It is now difficult to cover the variety of real-world applications of these 
methods with brief discussions, as we did in earlier editions of this book. However, 
in order to give some indication of the usefulness of multivariate techniques, we offer 
the following short descriptions of the results of studies from several disciplines. 
These descriptions are organized according to the categories of objectives given in the 
previous section. Of course, many of our examples are multifaceted and could be 
placed in more than one category. 

Data reduction or simplification 

• Using data on several variables related to cancer patient responses to radio
therapy, a simple measure of patient response to radiotherapy was constructed. 
(See Exercise 1 . 15 . )  

• Track records from many nations were used to develop an index of performance 
for both male and female athletes. (See [10] and [22].) 

• Multispectral image data collected by a high-altitude scanner were reduced to 
a form that could be viewed as images (pictures) of a shoreline in two dimen
sions. (See [23].) 

• Data on several variables relating to yield and protein content were used to 
create an index to select parents of subsequent generations of improved bean 
plants. (See [14].) 

• A matrix of tactic similarities was developed from aggregate data derived from 
professional mediators. From this matrix the number of dimensions by which 
professional mediators judge the tactics they use in resolving disputes was de
termined. (See [21 ].) 

Sorting and grouping 

• Data on several variables related to computer use were employed to create 
clusters of categories of computer jobs that allow a better determination of ex
isting (or planned) computer utilization. (See [2].) 

• Measurements of several physiological variables were used to develop a screen
ing procedure that discriminates alcoholics from nonalcoholics. (See [26].) 
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• Data related to responses to visual stimuli were used to develop a rule for sep
arating people suffering from a multiple-sclerosis-caused visual pathology from 
those not suffering from the disease. (See Exercise 1 . 14.) 

• The U.S. Internal Revenue Service uses data collected from tax returns to sort 
taxpayers into two groups: those that will be audited and those that will not. 
(See [31 ] . )  

Investigation of the dependence among variables 

• Data on several variables were used to identify factors that were responsible for 
client success in hiring external consultants. (See [13] . ) 

• Measurements of variables related to innovation, on the one hand, and vari
ables related to the business environment and business organization, on the 
other hand, were used to discover why some firms are product innovators and 
some firms are not. (See [5] . ) 

' Data on variables representing the outcomes of the 10 decathlon events in the 
Olympics were used to determine the physical factors responsible for success in 
the decathlon. (See [17] . ) 

• The associations between measures of risk-taking propensity and measures of 
socioeconomic characteristics for top-level business executives were used to as
sess the relation between risk-taking behavior and performance. (See [18] . )  

Prediction 

• The associations between test scores and several high school performance vari
ables and several college performance variables were used to develop predic
tors of success in college. (See [ 11 ] . )  

• Data on several variables related to the size distribution of  sediments were 
used to develop rules for predicting different depositional environments. (See 
[9] and [20] . ) 

• Measurements on several accounting and financial variables were used to de
velop a method for identifying potentially insolvent property-liability insurers. 
(See [28] . )  

• Data on several variables for chickweed plants were used to develop a method 
for predicting the species of a new plant. (See [4] .) 

Hypotheses testing 

• Several pollution-related variables were measured to determine whether levels 
for a large metropolitan area were roughly constant throughout the week, or 
whether there was a noticeable difference between weekdays and weekends. 
(See Exercise 1 .6 .) 

• Experimental data on several variables were used to see whether the nature of 
the instructions makes any difference in perceived risks, as quantified by test 
scores. (See [27] . ) 

• Data on many variables were used to investigate the differences in structure of 
American occupations to determine the support for one of two competing so
ciological theories. (See [16] and [25] . ) 
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• Data on several variables were used to determine whether different types of 
firms in newly industrialized countries exhibited different patterns of innova
tion. (See [15].) 

The preceding descriptions offer glimpses into the use of multivariate methods 
in widely diverse fields. 

1 .3 TH E ORGANIZATION OF DATA 

Throughout this text, we are going to be concerned with analyzing measurements 
made on several variables or characteristics. These measurements (commonly called 
data) must frequently be arranged and displayed in various ways. For example, graphs 
and tabular arrangements are important aids in data analysis. Summary numbers, 
which quantitatively portray certain features of the data, are also necessary to any 
description. 

We now introduce the preliminary concepts underlying these first steps of data 
organization. 

Arrays 

Multivariate data arise whenever an investigator, seeking to understand a social or 
physical phenomenon, selects a number p > 1 of variables or characters to record. 
The values of these variables are all recorded for each distinct item, individual, or 
experimental unit. 

We will use the notation xjk to indicate the particular value of the kth variable 
that is observed on the jth item, or trial. That is, 

xjk = measurement of the kth variable on the jth item 

Consequently, n measurements on p variables can be displayed as follows: 

Variable 1 Variable 2 Variable k Variable p 

Item 1 :  X11 X12 xl k Xl p 
Item 2: X21 X2 2  X2 k X2p 

Item j: Xj l  Xj2 Xj k Xjp 

Item n: Xnl Xn2 Xnk Xnp 

Or we can display these data as a rectangular array, called X, of n rows and p columns: 

X1 1  X12 X1 k Xl p 
X2 1  X22  X2k X2p 

X =  
xj l xj2 Xj k Xjp 

Xnl Xn2 Xnk Xnp 
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The array X, then, contains the data consisting of all of the observations on all of the 
variables. 

Example 1 . 1 (A data a rray) 

A selection of four receipts from a university bookstore was obtained in order 
to investigate the nature of book sales. Each receipt provided, among other 
things, the number of books sold and the total amount of each sale. Let the 
first variable be total dollar sales and the second variable be number of books 
sold. Then we can regard the corresponding numbers on the receipts as four 
measurements on two variables. Suppose the data, in tabular form, are 

Variable 1 ( dollar sales) :  42 52 48 58 
Variable 2 (number of books) :  4 5 4 3 

Using the notation just introduced, we have 

x1 1 = 42 x2 1 = 52 x3 1 = 48 x4 1 = 58 
x1 2 = 4 x2 2 = 5 x3 2 = 4 x42 = 3 

and the data array X is 

X =  

with four rows and two columns. 

42 4 
52 5 
48 4 
58 3 

• 

Considering data in the form of arrays facilitates the exposition of the subject 
matter and allows numerical calculations to be performed in an orderly and efficient 
manner: The efficiency is twofold, as gains are attained in both (1) describing nu
merical calculations as operations on arrays and (2) the implementation of the cal
culations on computers, which now use many languages and statistical packages to 
perform array operations. We consider the manipulation of arrays of numbers in 
Chapter 2. At this point, we are concerned only with their value as devices for dis
playing data. 

Descriptive Statistics 

A large data set is bulky, and its very mass poses a serious obstacle to any attempt to 
visually extract pertinent information. Much of the information contained in the 
data can be assessed by calculating certain summary numbers, known as descriptive 
statistics . For example, the arithmetic average, or sample mean, is a descriptive sta
tistic that provides a measure of location-that is, a "central value" for a set of num
bers. And the average of the squares of the distances of all of the numbers from the 
mean provides a measure of the spread, or variation, in the numbers. 

We shall rely most heavily on descriptive statistics that measure location, vari
ation, and linear association. The formal definitions of these quantities follow. 
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Let x1 1 , x2 1 , . . .  , xn 1  be n measurements on the first variable. Then the arith
metic average of these measurements is 

If the n measurements represent a subset of the full set of measurements that 
might have been observed, then x1 is also called the sample mean for the first vari
able. We adopt this terminology because the bulk of this book is devoted to proce
dures designed for analyzing samples of measurements from larger collections. 

The sample mean can be computed from the n measurements on each of the 
p variables, so that, in general, there will be p sample means: 

k = 1 ,  2, . . .  ' p (1-1) 

A measure of spread is  provided by the sample variance, defined for n mea
surements on the first variable as 

2 - 1 � ( - )2 s l - - £.J xj l - xl n j=l 

where x1 is the sample mean of the xj 1 's. In general, for p variables, we have 

k = 1 ,  2, . . .  ' p (1 -2) 

Two comments are in order. First, many authors define the sample variance with a 
divisor of n - 1 rather than n. Later we shall see that there are theoretical reasons 
for doing this, and it is particularly appropriate if the number of measurements, n, is 
small. The two versions of the sample variance will always be differentiated by dis
playing the appropriate expression. 

Second, although the s2 notation is traditionally used to indicate the sample 
variance, we shall eventually consider an array of quantities in which the sample vari
ances lie along the main diagonal. In this situation, it is convenient to use double 
subscripts on the variances in order to indicate their positions in the array. Therefore, 
we introduce the notation skk  to denote the same variance computed from measure
ments on the ith variable, and we have the notational identities 

k = 1, 2, .. .  ' p (1-3) 

The square root of the sample variance, �' is known as the sample standard 
deviation. This measure of variation is in the same units as the observations. 

Consider n pairs of measurements on each of variables 1 and 2: 
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That is, xj 1 and xj2 are observed on the jth experimental item (j = 1 ,  2, . . .  , n ) . A 
measure of linear association between the measurements of variables 1 and 2 is pro
vided by the sample covariance 

1 n 
s1 2 = - :L (xj l - xl ) (xj 2  - x2) n j= l  

or the average product of the deviations from their respective means. If large values for 
one variable are observed in conjunction with large values for the other variable, and the 
small values also occur together, s1 2 will be positive. If large values from one variable 
occur with small values for the other variable, s1 2 will be negative. If there is no partic
ular association between the values for the two variables, s1 2 will be approximately zero. 

The sample covariance 

1 n 
s; k  = 

n � ( xi ; - X; ) ( xik - Xk ) i = 1 , 2 , . . .  , p, k = 1 , 2 , . . . , p  (1 -4) 

measures the association between the ith and kth variables. We note that the covari
ance reduces to the sample variance when i = k. Moreover, si k  = sk i  for all i and k. 

The final descriptive statistic considered here is the sample correlation coefficient 
(or Pearson 's product-moment correlation coefficient; see [3] ) .  This measure of the lin
ear association between two variables does not depend on the units of measurement. 
The sample correlation coefficient for the ith and kth variables is defined as 

n 
:L ( xj i - xJ (xjk - xk) 
j= l  � � ( xi ;  - X; )

2 � � ( xi k  - Xk)
2 

for i = 1 ,  2, . . .  , p and k = 1 ,  2, . . . , p. Note ri k  = rk i  for all i and k. 

(1 -5) 

The sample correlation coefficient is a standardized version of the sample co
variance, where the product of the square roots of the sample variances provides the 
standardization. Notice that ri k  has the same value whether n or n - 1 is chosen as 
the common divisor for si i '  sk k '  and si k · 

The sample correlation coefficient ri k  can also be viewed as a sample covariance. 
Suppose the original values xj i and xjk are replaced by standardized values ( xj i - xi )/� 
and ( xjk - xk )j�. The standardized values are commensurable because both sets 
are centered at zero and expressed in standard deviation units. The sample correlation co
efficient is just the sample covariance of the standardized observations. 

Although the signs of the sample correlation and the sample covariance are the 
same, the correlation is ordinarily easier to interpret because its magnitude is bound
ed. To summarize, the sample correlation r has the following properties: 

1. The value of r must be between -1 and + 1 .  
2. Here r measures the strength of the linear association. If r = 0 ,  this implies a 

lack of linear association between the components. Otherwise, the sign of r in
dicates the direction of the association: r < 0 implies a tendency for one value 
in the pair to be larger than its average when the other is smaller than its aver
age; and r > 0 implies a tendency for one value of the pair to be large when the 
other value is large and also for both values to be small together. 
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3. The value of rik remains unchanged if the measurements of the ith variable are 
changed to yj l  = axj i + b, j = 1 ,  2, . . .  , n, and the values of the kth variable 
are changed to Yjk = cxj k + d, j = 1, 2, . . .  , n, provided that the constants a 
and c have the same sign. 

The quantities sik and rik do not, in general, convey all there is to know about 
the association between two variables. Nonlinear associations can exist that are not 
revealed by these descriptive statistics. Covariance and correlation provide mea
sures of linear association, or association along a line. Their values are less informa
tive for other kinds of association. On the other hand, these quantities can be very 
sensitive to "wild" observations ("outliers") and may indicate association when, in fact, 
little exists. In spite of these shortcomings, covariance and correlation coefficients are 
routinely calculated and analyzed. They provide cogent numerical summaries of as
sociation when the data do not exhibit obvious nonlinear patterns of association and 
when wild observations are not present. 

Suspect observations must be accounted for by correcting obvious recording 
mistakes and by taking actions consistent with the identified causes. The values of sik 
and rik should be quoted both with and without these observations. 

The sum of squares of the deviations from the mean and the sum of cross
product deviations are often of interest themselves. These quantities are 

and 
n 

n 

wkk = 2: (xjk - xk )2 
j = l  

k = 1 ,  2, . . .  ' p (1-6) 

wik = 2: (xj i - xi ) (xj k - xk) i = 1 , 2, . . .  , p, k = 1 , 2, . . . , p  (1 -7) 
j= l  

The descriptive statistics computed from n measurements on p variables can also 
be organized into arrays. 
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The sample mean array is denoted by x, the sample variance and covariance 
array by the capital letter Sn , and the sample correlation array by R. The subscript 
n on the array Sn is a mnemonic device used to remind you that n is employed as a 
divisor for the elements sik . The size of all of the arrays is determined by the num
ber of variables, p. 

The arrays Sn and R consist of prows and p columns. The array x is a single col
umn with p rows. The first subscript on an entry in arrays Sn and R indicates the row; 
the second subscript indicates the column. Since si k  = sk i  and rik = rk i  for all i and k, 
the entries in symmetric positions about the main northwest-southeast diagonals in 
arrays Sn and R are the same, and the arrays are said to be symmetric. 

Example 1 .2 (The arrays x, Sn, and R for bivariate data) 

Consider the data introduced in Example 1 . 1 .  Each receipt yields a pair of 
measurements, total dollar sales, and number of books sold. Find the ar
rays x, Sn , and R. 

Since there are four receipts, we have a total of four measurements ( ob
servations) on each variable. 

and 

The sample means are 

4 
x1 = � � xj l = � ( 42 + 52 + 48 + 58 ) = 50 

j= l 
4 

x2 = � � xj2 = � ( 4 + 5 + 4 + 3 ) = 4 
j= l  

The sample variances and covariances are 

4 
sl l  = � � (xj l - x1 )

2 
j= l  

= � ( (42 - 50)2 + (52 - 50)2 + (48 - 50 )2 + (58 - 50 ) 2 ) = 34 
4 

s22 = � � ( xj2 - x2)
2 

j= l  
= � ( ( 4 - 4)2 + (5 - 4)2 + (4 - 4)2 + ( 3 - 4)2) = .5 

4 
s1 2 = � � ( xj l - xl ) (xj2 - x2) 

j= l  
= � ( ( 42 - 50) ( 4 - 4) + ( 52 - 50) ( 5 - 4) 

+ (48 - 50) ( 4 - 4) + ( 58 - 50) (3 - 4) )  = -1 .5 

sn = [ 34 - 1 .5] -1 .5 .5 
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The sample correlation is 

r1 2 = = �Vs; 
r2 1 = r1 2 

- 1 .5 
= - 36 v'34v3 . 

R = [- .3� - .3� J • 

Graphica l  Techniques 

Plots are important , but frequently neglected, aids in data analysis. Although it is 
impossible to simultaneously plot all the measurements made on several variables and 
study the configurations, plots of individual variables and plots of pairs of variables 
can still be very informative. Sophisticated computer programs and display equipment 
allow one the luxury of visually examining data in one, two, or three dimensions with 
relative ease. On the other hand, many valuable insights can be obtained from the 
data by constructing plots with paper and pencil. Simple, yet elegant and effective, 
methods for displaying data are available in [29] . It is good statistical practice to plot 
pairs of variables and visually inspect the pattern of association. Consider, then, the 
following seven pairs of measurements on two variables : 

Variable 1 ( x1 ) : 

Variable 2 ( x2 ) : 

3 4 

5 5.5 

2 

4 

6 

7 

8 

10 

2 5 

5 7.5 

These data are plotted as seven points in two dimensions (each axis represent
ing a variable) in Figure 1 . 1 .  The coordinates of the points are determined by the 
paired measurements: ( 3 ,  5 ) ,  ( 4, 5 .5 ) ,  . . .  , ( 5 ,  7 .5 ) .  The resulting two-dimensional plot 
is known as a scatter diagram or scatter plot. 

x2 x2 

• 10  10  • 

• 8 8 • 
• • 

• 6 6 • 
0 •• • • 
Q • • 4 4 

2 2 

0 2 4 6 8 10  
xl 

• ' • ' • ' ' I ..,. xl 2 4 6 8 10 Figure 1 . 1  A scatter plot a n d  
Dot diagram marg i na l  dot d i ag rams.  
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x2 

• 

• 
• 

• 
• • 

• 

x2 

1 0  1 0  • 

8 8 • 
• 

6 6 • 
• • 

4 4 • 

2 2 

0 2 4 6 8 1 0  
xl 

• 

! • ! • ! ! I Figure 1 .2 Scatter p lot and  dot 
2 4 6 8 1 0  

� 
xl d iagrams for rea rranged data . 

Also shown in Figure 1 . 1  are separate plots of the observed values of variable 
1 and the observed values of variable 2, respectively. These plots are called (marginal) 
dot diagrams. They can be obtained from the original observations or by projecting 
the points in the scatter diagram onto each coordinate axis. 

The information contained in the single-variable dot diagrams can be used to 
calculate the sample means .X1 and .X2 and the sample variances s1 1  and s22 . (See Ex
ercise 1 . 1 . )  The scatter diagram indicates the orientation of the points, and their co
ordinates can be used to calculate the sample covariance s1 2 . In the scatter diagram 
of Figure 1 . 1 ,  large values of x1 occur with large values of x2 and small values of x1 
with small values of x2 • Hence, s1 2 will be positive. 

Dot diagrams and scatter plots contain different kinds of information. The in
formation in the marginal dot diagrams is not sufficient for constructing the scatter 
plot. As an illustration, suppose the data preceding Figure 1 . 1  had been paired dif
ferently, so that the measurements on the variables x1 and x2 were as follows: 

Variable 1 ( x1 ) : 
Variable 2 ( x2) : 

5 

5 

4 

5.5 

6 

4 

2 

7 

2 

10 

8 3 

5 7.5 

(We have simply rearranged the values of variable 1 . )  The scatter and dot diagrams for 
the "new" data are shown in Figure 1 .2. Comparing Figures 1 . 1  and 1 .2, we find that 
the marginal dot diagrams are the same, but that the scatter diagrams are decidedly 
different. In Figure 1 .2, large values of x1 are paired with small values of x2 and small 
values of x1 with large values of x2 • Consequently, the descriptive statistics for the in
dividual variables .X1 , x2 , s1 1 , and s22 remain unchanged, but the sample covariance s1 2 , 
which measures the association between pairs of variables, will now be negative. 

The different orientations of the data in Figures 1 . 1  and 1 .2 are not discernible 
from the marginal dot diagrams alone. At the same time, the fact that the marginal 
dot diagrams are the same in the two cases is not immediately apparent from the 
scatter plots. The two types of graphical procedures complement one another; they 
are not competitors. 

The next two examples further illustrate the information that can be conveyed 
by a graphic display. 
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Dun & Bradstreet 
• 

Time Warner 
-10  ._____.____�----L--��-�__._ _ _.___�x1 Figure 1 .3 Profits per employee and  

0 10  50  60 70  80  nu mber of  employees for 16  pub l i sh ing 
Employees (thousands) f irms. 

Example 1 .3 (The effect of unusua l  observations on sample correlations) 

Some financial data representing jobs and productivity for the 16 largest pub
lishing firms appeared in an article in Forbes magazine on April 30, 1990. The 
data for the pair of variables x1 = employees (j obs) and x2 = profits per 
employee (productivity) are graphed in Figure 1 . 3 .  We have labeled two 
"unusual" observations. Dun & Bradstreet is the largest firm in terms of num
ber of employees, but is "typical" in terms of profits per employee. Time Warner 
has a "typical" number of employees, but comparatively small (negative) profits 
per employee. 

The sample correlation coefficient computed from the values of x1 and x2 is 

- .39 for all 16 firms 
- .56 for all firms but Dun & Bradstreet 

- .39 for all firms but Time Warner 

- .50 for all firms but Dun & Bradstreet and Time Warner 

It is clear that atypical observations can have a considerable effect on the sam
ple correlation coefficient. • 

Example 1 .4 (A scatter p lot for baseba l l  data) 

In a July 17, 1978, article on money in sports, Sports Illustrated magazine pro
vided data on x1 = player payroll for National League East baseball teams. 

We have added data on x2 = won-lost percentage for 1977. The results 
are given in Table 1 . 1 .  

The scatter plot in Figure 1 .4 supports the claim that a championship team 
can be bought. Of course, this cause-effect relationship cannot be substantiat
ed, because the experiment did not include a random assignment of payrolls. 
Thus, statistics cannot answer the question: Could the Mets have won with $4 
million to spend on player salaries? • 
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TABLE 1 . 1 1 977 SALARY AND FI NAL RECORD 
FOR TH E NATIONAL LEAGU E  EAST 

Team x1 = player payroll 
x2 = won-lost 

percentage 

Philadelphia Phillies 
Pittsburgh Pirates 
St. Louis Cardinals 
Chicago Cubs 
Montreal Expos 
New York Mets 

� 0£) C\S 
. 800 � � u ;.... � � 

� CZl 
0 b 
0 .400 � • 

3 ,497,900 
2,485 ,475 
1 ,782,875 
1 ,725 ,450 
1 ,645,575 
1 ,469,800 

• 
•• 

• 

• 

. 623 

.593 

.512 

.500 

.463 

.395 

�------�------�------�------�� xl 
0 1.0 2.0 3.0 4.0 

Player payroll in millions of dollars 

Figure 1 .4 Sa la ries and  won-lost percentage from Ta ble 1 . 1 .  

To construct the scatter plot in Figure 1 .4, we have regarded the six paired ob
servations in Table 1 . 1  as the coordinates of six points in two-dimensional space. The 
figure allows us to examine visually the grouping of teams with respect to the vari
ables total payroll and won-lost percentage. 

Example 1 .5 {Mu ltip le scatter p lots for paper strength measu rements) 

Paper is manufactured in continuous sheets several feet wide. Because of the 
orientation of fibers within the paper, it has a different strength when measured 
in the direction produced by the machine than when measured across, or at 
right angles to, the machine direction. Table 1 .2 shows the measured values of 

x1 = density (grams/cubic centimeter ) 
x2 = strength (pounds ) in the machine direction 

x3 = strength (pounds ) in the cross direction 

A novel graphic presentation of these data appears in Figure 1 . 5 ,  
page 16 .  The scatter plots are arranged as the off-diagonal elements of a co
variance array and box plots as the diagonal elements. The latter are on a 
different scale with this software, so we use only the overall shape to provide 
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TABLE 1 .2 PAPER-QUALITY M EASUREMENTS 

Strength 

Specimen Density Machine direction Cross direction 

1 .801 121.41 70.42 
2 .824 127.70 72.47 
3 .841 129 .20 78.20 
4 .816 131 .80 74.89 
5 .840 135 .10 71 .21 
6 . 842 131 .50 78.39 
7 .820 126.70 69.02 
8 .802 115 .10 73 .10 
9 .828 130.80 79.28 

10 .819 124.60 76.48 
11  .826 1 18 .31 70.25 
12 .802 114.20 72.88 
13 .810 120.30 68.23 
14 .802 115 .70 68.12 
15 .832 117.51 71 .62 
16 .796 109.81 53 .10 
17 .759 109.10 50.85 
18 .770 115 .10 51 .68 
19 .759 118 .31 50.60 
20 .772 1 12.60 53.51 
21 .806 1 16.20 56.53 
22 .803 118.00 70.70 
23 .845 131 .00 74.35 
24 .822 125.70 68.29 

26 .816 125.80 70.64 
27 .836 125.50 76.33 
28 .815 127 .80 76.75 
29 .822 130.50 80.33 
30 .822 127 .90 75.68 
31 .843 123.90 78.54 
32 .824 124.10 71 .91 
33 .788 120.80 68.22 
34 .782 107.40 54.42 
35 .795 120.70 70.41 
36 .805 121 .91 73 .68 
37 .836 122.31 74. 93 
38 .788 110 .60 53.52 
39 .772 103.51 48.93 
40 .776 110.71 53.67 
41 .758 113 .80 52.42 

Source: Data courtesy of SONOCO Products Company. 
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Density Strength (MD) Strength (CD) 

Max . 0.97 . . 

. . . . . . . , . . . . . . 

~ 
. . . . . ·: : .. •· ·. . . . . . . . . · ·' . . . . . ·: .. Med 0 .8 1  . ·.· . . . . . 

. 
, . . . . . . . . . . . 

Min 0.76 

Max -,.....- 1 35 . 1  . . . . . . . . .  . . . . . . . . . . . ... . . . . . . .. . . . . . . Med 1 2 1 .4 . . . . . .. . . . . 
. 
. 

. . 

. . . . ' · . :· . . . . 

. . . . . . . . . . . . . . Min _,__ 1 03 .5 . 
Max T 80.33 

. . . � . . . . .. . . . . . . . . . ... . . Med 70.70 . . . . :: ·.'.· .  . . . . . .. . .  . . . . . . . . 
. . : · . . . 

. . . 

. . j_ . . . . . . . . 
Min 

Figure 1 . 5  Scatter plots and  boxplots of paper-q ua l ity data from Ta ble 1 . 2 .  

48.93 

information on symmetry and possible outliers for each individual characteris
tic. The scatter plots can be inspected for patterns and unusual observations. 
In Figure 1 .5 ,  there is one unusual observation: the density of specimen 25 . 
Some of the scatter plots have patterns suggesting that there are two separate 
clumps of observations. 

These scatter plot arrays are further pursued in our discussion of new soft-
ware graphics in the next section. • 

In the general multiresponse situation, p variables are simultaneously record
ed on n items. Scatter plots should be made for pairs of important variables and, if 
the task is not too great to warrant the effort, for all pairs. 

Limited as we are to a three-dimensional world, we cannot always picture an en
tire set of data. However, two further geometric representations of the data provide 
an important conceptual framework for viewing multivariable statistical methods. 
In cases where it is possible to capture the essence of the data in three dimensions, 
these representations can actually be graphed. 
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n Points in p Dimensions (p-Dimensional Scatter Plot). Consider the natur
al extension of the scatter plot to p dimensions, where the p measurements 

on the jth item represent the coordinates of a point in p-dimensional space. The co
ordinate axes are taken to correspond to the variables, so that the jth point is xj 1 
units along the first axis, xj2 units along the second, . . .  , xj P units along the pth axis. 
The resulting plot with n points not only will exhibit the overall pattern of variabili
ty, but also will show similarities (and differences) among the n items. Groupings of 
items will manifest themselves in this representation. 

The next example illustrates a three-dimensional scatter plot. 

Example 1 .6 (Looking for lower-d imensional structu re) 

A zoologist obtained measurements on n = 25 lizards known scientifically as 
Cophosaurus texanus . The weight, or mass, is given in grams while the snout
vent length (SVL) and hind limb span (HLS) are given in millimeters. The data 
are displayed in Table 1 .3 .  

TABLE 1 .3 LIZARD S IZE DATA 

Lizard Mass SVL HLS Lizard Mass SVL HLS 

1 5 .526 59.0 113 .5 14 10.067 73.0 136.5 
2 10.401 75.0 142.0 15 10.091 73.0 135.5 
3 9.213 69.0 124.0 16 10.888 77 .0 139.0 
4 8. 953 67 .5 125.0 17 7 .610 61 .5 118.0 
5 7.063 62.0 129.5 18 7.733 66.5 133.5 
6 6.610 62.0 123.0 19 12.015 79.5 150.0 
7 1 1 .273 74.0 140.0 20 10.049 74.0 137.0 
8 2.447 47 .0 97.0 21 5 . 149 59.5 116 .0 
9 15 .493 86.5 162.0 22 9 .158 68.0 123 .0 

10 9 .004 69.0 126.5 23 12.132 75.0 141.0 
11 8 .199 70.5 136.0 24 6 .978 66.5 117.0 
12 6 .601 64.5 116 .0 25 6 .890 63.0 117.0 
13 7.622 67 .5 135.0 

Source : Data courtesy of Kevin E. Bonine. 

Although there are three size measurements, we can ask whether or not most 
of the variation is primarily restricted to two dimensions or even to one dimension. 

To help answer questions regarding reduced dimensionality, we construct 
the three-dimensional scatter plot in Figure 1 .6. Clearly most of the variation 
is scatter about a one-dimensional straight line. Knowing the position on a line 
along the major axes of the cloud of points would be almost as good as know
ing the three measurements Mass, SVL, and HLS. 

However, this kind of analysis can be missleading if one variable has a 
much larger variance than the others. Consequently, we first calculate the stan
dardized values, Zj k = (xjk - xk)/� , so the variables contribute equally to 



1 8  Chapter 1 Aspects of M u lt iva r iate Ana lys is 

15  
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- 1  
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SVL 

ZsvL 

90 

• 

HLS 

1 .5 2 .5 

Figure 1 .6 3D  scatter p lot of l i zard 
data from Tab le 1 . 3 .  

-0.50.5 
.....__ ._..__2 .5- 1 .5 ZHLS Figure 1 . 7  3 D  scatter p lot of 2 standard ized l i zard data . 

the variation in the scatter plot. Figure 1 .7 gives the three-dimensional scatter 
plot for the standardized variables. Most of the variation can be explained by 
a single variable determined by a line through the cloud of points. • 

A three-dimensional scatter plot can often reveal group structure. 

Example 1 .7 (Looking for group structu re i n  three d imensions) 

Referring to Example 1 .6 ,  it is interesting to see if male and female lizards oc
cupy different parts of the three dimensional space containing the size data. 
The gender, by row, for the lizard data in Table 1 .3  are 

f m f f m f m f m f m f m  

m m m f m m m f f m f f  

Figure 1 .8  repeats the scatter plot for the original variables but with males 
marked by solid circles and females by open circles. Clearly, males are typically 
larger than females. • 
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Figure 1 .8 3D scatter p lot of ma le  and  fema le  l i zards .  

jOfl � 

p Points in n Dimensions. The n observations of the p variables can also be 
. regarded as p points in n-dimensional space. Each column of X determines one of 

the points. The ith column, 

consisting of all n measurements on the ith variable, determines the ith point. 
In Chapter 3, we show how the closeness of points in n dimensions can be re

lated to measures of association between the corresponding variables. 

1 .4 DATA D ISPLAYS AN D PICTORIAL REPRESENTATIONS 

The rapid development of  powerful personal computers and workstations has led to 
a proliferation of sophisticated statistical software for data analysis and graphics. It 
is often possible, for example, to sit at one 's desk and examine the nature of multidi
mensional data with clever computer-generated pictures. These pictures are valu
able aids in understanding data and often prevent many false starts and subsequent 
inferential problems. 

As we shall see in Chapters 8 and 12, there are several techniques that seek to 
represent p-dimensional observations in few dimensions such that the original dis
tances (or similarities) between pairs of observations are (nearly) preserved. In gen
eral, if multidimensional observations can be represented in two dimensions, then 
outliers, relationships, and distinguishable groupings can often be discerned by eye. 
We shall discuss and illustrate several methods for displaying multivariate data in 
two dimensions. One good source for more discussion of graphical methods is [12] . 
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Li nki ng Mu ltip le Two-D imensional  Scatter Plots 

One of the more exciting new graphical procedures involves electronically connect
ing many two-dimensional scatter plots. 

Example 1 .8 (Li nked scatter p lots and brushing) 

To illustrate linked two dimensional scatter plots, we refer to the paper-quality 
data in Table 1 .2. These data represent measurements on the variables 
x1 = density, x2 = strength in the machine direction, and x3 = strength in the 
cross direction. Figure 1 . 9  shows two-dimensional scatter plots for pairs of these 
variables organized as a 3 X 3 array. For example, the picture in the upper left
hand corner of the figure is a scatter plot of the pairs of observations (x1 , x3 ) . 
That is, the x1 values are plotted along the horizontal axis, and the x3 values are 
plotted along the vertical axis. The lower right-hand corner of the figure con
tains a scatter plot of the observations ( x3 , x1) . That is, the axes are reversed. 
Corresponding interpretations hold for the other scatter plots in the figure. No
tice that the variables and their three-digit ranges are indicated in the boxes 
along the SW-NE diagonal. The operation of marking (selecting) , the obvious 
outlier in the (x1 , x3 ) scatter plot of Figure 1 . 9  creates Figure 1 . 10(a) ,  where 
the outlier is labeled as specimen 25 and the same data point is highlighted in 
all the scatter plots. Specimen 25 also appears to be an outlier in the (x1, x2 ) 
scatter plot but not in the (x2 , x3 ) scatter plot. The operation of deleting this 
specimen leads to the modified scatter plots of Figure 1 . 10(b ) . 

From Figure 1 . 10 ,  we notice that some points in, for example, the 
(x2 , x3 ) scatter plot seem to be disconnected from the others. Selecting these 
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points, using the (dashed) rectangle (see page 23 ) ,  highlights the selected 
points in all of the other scatter plots and leads to the display in Figure 
1 . 1 1 (a) . Further checking revealed that specimens 16-21 ,  specimen 34, and 
specimens 38-41 were actually specimens from an older roll of paper that was 
included in order to have enough plies in the cardboard being manufactured. 
Deleting the outlier and the cases corresponding to the older paper and ad
justing the ranges of the remaining observations leads to the scatter plots in 
Figure 1 . 1 1 (b ) .  

The operation of highlighting points corresponding to a selected range of 
one of the variables is called brushing. Brushing could begin with a rectangle, 
as in Figure 1 . 1 1 (a) , but then the brush could be moved to provide a sequence 
of highlighted points. The process can be stopped at any time to provide a snap
shot of the current situation. • 

Scatter plots like those in Example 1 . 8  are extremely useful aids in data analy
sis. Another important new graphical technique uses software that allows the data 
analyst to view high-dimensional data as slices of various three-dimensional per
spectives. This can be done dynamically and continuously until informative views 
are obtained. A comprehensive discussion of dynamic graphical methods is avail
able in [1] . A strategy for on-line multivariate exploratory graphical analysis, moti
vated by the need for a routine procedure for searching for structure in multivariate 
data, is given in [32] . 

Example 1 .9 {Rotated plots in three di mensions) 

Four different measurements of lumber stiffness are given in Table 4.3, page 187. 
In Example 4.14, specimen (board) 16 and possibly specimen (board) 9 are 
identified as unusual observations. Figures 1 . 12(a), (b) , and (c) contain per
spectives of the stiffness data in the x1 , x2 , x3 space. These views were obtained 
by continually rotating and turning the three-dimensional coordinate axes. Spin
ning the coordinate axes allows one to get a better understanding of the three
dimensional aspects of the data. Figure 1 . 12( d) gives one picture of the stiffness 
data in x2 , x3 , x4 space. Notice that Figures 1 . 12(a) and (d) visually confirm 
specimens 9 and 16  as outliers. Specimen 9 is very large in all three coordi
nates. A counterclockwiselike rotation of the axes in Figure 1 . 12(a) produces 
Figure 1 . 12(b ), and the two unusual observations are masked in this view. A fur
ther spinning of the x2 , x3 axes gives Figure 1 . 12(c) ; one of the outliers (16) is 
now hidden. 

Additional insights can sometimes be gleaned from visual inspection of the 
slowly spinning data. It is this dynamic aspect that statisticians are just begin
ning to understand and exploit . • 

Plots like those in Figure 1 . 12 allow one to identify readily observations that do 
not conform to the rest of the data and that may heavily influence inferences based 
on standard data-generating models. 
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Graphs of Growth Cu rves 

When the height of a young child is measured at each birthday, the points can be 
plotted and then connected by lines to produce a graph. This is an example of a 
growth curve. In general, repeated measurements of the same characteristic on the 
same unit or subject can give rise to a growth curve if an increasing, or decreasing, or 
even an increasing followed by a decreasing pattern is expected. 

Example 1 . 1 0  {Arrays of growth curves) 

The Alaska Fish and Game Department monitors grizzly bears with the goal of 
maintaining a healthy population. Bears are shot with a dart to induce sleep and 
weighed on a scale hanging from a tripod. Measurements of length are taken 
with a steel tape. Table 1 .4 gives the weights (wt) in kilograms and lengths 
(lngth) in centimeters of seven female bears at 2, 3, 4, and 5 years of age. 

First for each bear, we plot the weights versus the ages and then connect 
the weights at successive years by straight lines. This gives an approximation to 
growth curve for weight. Figure 1 .13 shows the growth curves for all seven bears. 
The noticeable exception to a common pattern is the curve for bear 5 .  Is this an 
outlier or just natural variation in the population? In the field, bears are weighed 
on a scale that reads pounds. Further inspection revealed that, in this case, an 
assistant later failed to convert the field readings to kilograms when creating 
the electronic database. The correct weights are ( 45, 66, 84, 1 12) kilograms. 

Because it can be difficult to inspect visually the individual growth curves 
in a combined plot, the individual curves should be replotted in an array where 
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TABLE 1 .4 FEMALE B EAR DATA 

Bear Wt2 Wt3 Wt4 Wt5 Lngth 2 Lngth 3 Lngth 4 Lngth 5 

1 48 59 95 82 141 157 168 183 
2 59 68 102 102 140 168 174 170 
3 61 77 93 107 145 162 172 177 
4 54 43 104 104 146 159 176 171 
5 100 145 185 247 150 158 168 175 
6 68 82 95 118  142 140 178 189 
7 68 95 109 111  139 171 176 175 

Source: Data courtesy of H. Roberts. 

2.0 2.5 3 .0 3 .5 

Year 

4.0 4.5 5.0 Figure 1 . 1 3  Combined g rowth 
cu rves fo r we ight  fo r seven fema le  
g rizzly bears. 

similarities and differences are easily observed.  Figure 1 . 14 gives the array of 
seven curves for weight. Some growth curves look linear and others quadratic. 

Figure 1 .15 gives a growth curve array for length. One bear seemed to get 
shorter from 2 to 3 years old, but the researcher knows that the steel tape mea
surement of length can be thrown off by the bear's posture when sedated. • 

We now turn to two popular pictorial representations of multivariate data in two 
dimensions: stars and Chernoff faces. 

Stars 

Suppose each data unit consists of nonnegative observations on p > 2 variables. In 
two dimensions, we can construct circles of a fixed (reference) radius with p equally 
spaced rays emanating from the center of the circle. The lengths of the rays repre
sent the values of the variables. The ends of the rays can be connected with straight 
lines to form a star. Each star represents a multivariate observation, and the stars can 
be grouped according to their (subjective) similarities. 
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It is often helpful, when constructing the stars, to standardize the observations. 
In this case some of the observations will be negative. The observations can then be 
reexpressed so that the center of the circle represents the smallest standardized ob
servation within the entire data set. 

Example 1 . 1 1  (Uti l ity data as stars) 

Stars representing the first 5 of the 22 public utility firms in Table 12.5, page 683, 
are shown in Figure 1 . 16 .  There are eight variables; consequently, the stars are 
distorted octagons. 

Arizona Public Service ( 1 ) Boston Edison Co. (2) 

8 2 

5 5 

Central Louisiana Electric Co. (3) 

5 

Commonwealth Edison Co. (4) 

Consolidated Edison Co. (NY) (5) 

1 

5 

5 

Figure 1 . 1 6  Sta rs for the fi rst five 
pub l ic ut i l it ies .  
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The observations on all variables were standardized. Among the first five 
utilities, the smallest standardized observation for any variable was - 1 .6 . Treat
ing this value as zero, the variables are plotted on identical scales along eight 
equiangular rays originating from the center of the circle. The variables are or
dered in a clockwise direction, beginning in the 12 o'clock position. 

At first glance, none of these utilities appears to be similar to any other. 
However, because of the way the stars are constructed, each variable gets equal 
weight in the visual impression. If we concentrate on the variables 6 (sales in 
kilowatt-hour [kWh] use per year) and 8 (total fuel costs in cents per kWh), 
then Boston Edison and Consolidated Edison are similar (small variable 6, large 
variable 8), and Arizona Public Service, Central Louisiana Electric, and Com
monwealth Edison are similar (moderate variable 6, moderate variable 8) .  • 

Chernoff Faces 

People react to faces. Chernoff [6] suggested representing p-dimensional observations 
as a two-dimensional face whose characteristics (face shape, mouth curvature, nose 
length, eye size, pupil position, and so forth) are determined by the measurements on 
the p variables. 

As originally designed, Chernoff faces can handle up to 18 variables. The as
signment of variables to facial features is done by the experimenter, and different 
choices produce different results. Some iteration is usually necessary before satis
factory representations are achieved. 

Chernoff faces appear to be most useful for verifying (1)  an initial grouping 
suggested by subject-matter knowledge and intuition or (2) final groupings produced 
by .clustering algorithms. 

Example 1 . 1 2  (Uti l ity data as Chernoff faces) 

Xl :  
X2 :  
X3 : 
X4 : 
Xs : 
X6 : 
X7 : 
X8 :  

From the data in Table 12.5, the 22 public utility companies were represented 
as Chernoff faces. We have the following correspondences: 

Variable 

Fixed-charge coverage � 

Rate of return on capital � 

Cost per kW capacity in place � 

Annual load factor � 

Peak kWh demand growth from 1974 � 

Sales (kWh use per year) � 

Percent nuclear � 

Total fuel costs (cents per kWh) � 

Facial characteristic 

Half-height of face 
Face width 
Position of center of mouth 
Slant of eyes (height ) 
Eccentricity 

width 
of eyes 

Half-length of eye 
Curvature of mouth 
Length of nose 

The Chernoff faces are shown in Figure 1 . 17 .  We have subj ectively 
grouped "similar" faces into seven clusters. If a smaller number of clusters is de
sired, we might combine clusters 5, 6, and 7 and, perhaps, clusters 2 and 3 to 
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Cluster 2 Cluster 3 Cluster 5 Cluster 7 

0 0 0 ffi CD  
4 1 6 5 7 

W CD G \D CD  
10 

0 
13  

3 22 21  15  

CD 
9 Cluster 4 Cluster 6 

8 0 0 CD 
20 14 8 2 

CD 0 CD 
1 8  1 1  1 2  

0 0 CD 
19  16  17  

Figure 1 . 1 7  Chernoff faces for 22 pub l ic ut i l it ies .  

obtain four or five clusters. For our assignment of variables to facial features, 
the firms group largely according to geographical location. • 

Constructing Chernoff faces is a task that must be done with the aid of a com
puter. The data are ordinarily standardized within the computer program as part of 
the process for determining the locations, sizes, and orientations of the facial char
acteristics. With some training, we can use Chernoff faces to communicate similari
ties or dissimilarities, as the next example indicates. 

Example 1 . 1 3  {Us ing Chernoff faces to show changes over time) 

Figure 1 . 18  illustrates an additional use of Chernoff faces. (See [24] .) In the 
figure, the faces are used to track the financial well-being of a company over 
time. As indicated, each facial feature represents a single financial indicator, and 
the longitudinal changes in these indicators are thus evident at a glance. • 
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1 . 5 D I STANCE 

Liquidity� 
Profitability 

1975 1 976 1 977 1978 1 979 

------------------------------------------------------� Time 

Figure 1 . 1 8  Chernoff faces over t ime.  

Chernoff faces have also been used to display differences in multivariate ob
servations in two dimensions. For example, the two-dimensional coordinate axes 
might represent latitude and longitude (geographical location) , and the faces might 
represent multivariate measurements on several U.S. cities. Additional examples of 
this kind are discussed in [30] . 

There are several ingenious ways to picture multivariate data in two dimen
sions. We have described some of them. Further advances are possible and will al
most certainly take advantage of improved computer graphics. 

Although they may at first appear formidable, most multivariate techniques are based 
upon the simple concept of distance. Straight-line, or Euclidean, distance should be 
familiar. If we consider the point P = ( x1 , x2 ) in the plane, the straight-line distance, 
d( 0, P) ,  from P to the origin 0 = (0 ,  0) is, according to the Pythagorean theorem, 

d (O, P) = V xi + x� (1-9) 

The situation is illustrated in Figure 1 . 19 .  In general, if the point P has p coordinates 
so that P = (x1 , x2 , • • •  , xp ) , the straight-line distance from P to the origin 
0 = (0 ,  0, . . .  , 0 )  is 

d ( 0, P)  = V xt + X� + . .  · + X� (1 -10) 

p 
d(O, P ) = jx T + X �� 

0 F------------' 1�11(- Xl�l Figure 1 . 1 9  Distance g iven by the 
Pythagorea n theorem. 
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(See Chapter 2.) All points (x1 , x2 , • • •  , xp) that lie a constant squared distance, such 
as c2, from the origin satisfy the equation 

(1-11)  

Because this is the equation of a hypersphere (a circle if p = 2) , points equidistant 
from the origin lie on a hypersphere. 

The straight-line distance between two arbitrary points P and Q with coordi
nates P = ( x1 , x2 , . . . , xp) and Q = (y1 , y2 , . . .  , Yp ) is given by 

d(P, Q)  = V(xl - Y1 ) 2 + ( x2 - Y2) 2 + · · · + (xp - Yp)2 (1 -12) 

Straight-line, or Euclidean, distance is unsatisfactory for most statistical pur
poses. This is because each coordinate contributes equally to the calculation of Eu
clidean distance. When the coordinates represent measurements that are subject to 
random fluctuations of differing magnitudes, it is often desirable to weight coordinates 
subject to a great deal of variability less heavily than those that are not highly vari
able. This suggests a different measure of distance. 

Our purpose now is to develop a "statistical" distance that accounts for differ
ences in variation and, in due course, the presence of correlation. Because our choice 
will depend upon the sample variances and covariances, at this point we use the term 
statistical distance to distinguish it from ordinary Euclidean distance. It is statistical 
distance that is fundamental to multivariate analysis. 

To begin, we take as fixed the set of observations graphed as the p-dimensional 
scatter plot. From these, we shall construct a measure of distance from the origin to 
a point P = ( x1 , x2 , . • •  , xp) · In our arguments, the coordinates (x1 , x2 , . . .  , xp) of P 
can vary to produce different locations for the point. The data that determine distance 
will, however, remain fixed. 

To illustrate, suppose we have n pairs of measurements on two variables each 
having mean zero. Call the variables x1 and x2 , and assume that the x1 measure
ments vary independently of the x2 measurements. 1 In addition, assume that the vari
ability in the x1 measurements is larger than the variability in the x2 measurements. 
A scatter plot of the data would look something like the one pictured in Figure 1 .20. 

Figure 1 .20 A scatter p lot with 
g reater va r iab i l ity in the x1 d i rect ion 
than i n  the x2 d i rect ion .  

1 At this point, "independently" means that the x2 measurements cannot be predicted with any ac
curacy from the x1 measurements, and vice versa. 
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Glancing at Figure 1 .20, we see that values which are a given deviation from 
the origin in the x1 direction are not as "surprising" or "unusual" as are values equidis
tant from the origin in the x2 direction. This is because the inherent variability in the 
x1 direction is greater than the variability in the x2 direction. Consequently, large x1 
coordinates (in absolute value) are not as unexpected as large x2 coordinates. It 
seems reasonable, then, to weight an x2 coordinate more heavily than an x1 coordi
nate of the same value when computing the "distance" to the origin . 

One way to proceed is to divide each coordinate by the sample standard devi
ation. Therefore, upon division by the standard deviations, we have the "standardized" 
coordinates xi = x1j� and xi = x2j'\l's;. The standardized coordinates are now 
on an equal footing with one another. After taking the differences in variability into 
account, we determine distance using the standard Euclidean formula. 

Thus, a statistical distance of the point P = ( x1 , x2 ) from the origin 0 = (0 ,  0) can 
be computed from its standardized coordinates xi = x1j� and xi = x2j'\l's; as 

d(O, P) = \l(xi )2 + (xi )2 

= )(�)2 + (�Y (1-13) 

Comparing (1-13) with (1-9) ,  we see that the difference between the two expressions 
is due to the weights k1 = 1/s1 1  and k2 = 1/s22 attached to xi and x� in (1-13) .  Note 
that if the sample variances are the same, k1 = k2 , and xi and x� will receive the same 
weight. In cases where the weights are the same, it is convenient to ignore the com
mon divisor and use the usual Euclidean distance formula. In other words, if the 
variability in the x1 direction is the same as the variability in the x2 direction, and 
the x1 values vary independently of the x2 values, Euclidean distance is appropriate. 

Using (1-13) ,  we see that all points which have coordinates ( x1 , x2 ) and are a 
constant squared distance c2 from the origin must satisfy 

2 2 
� + � = c2 S1 1 S22 

(1-14) 

Equation (1 -14) is the equation of an ellipse centered at the origin whose major and 
minor axes coincide with the coordinate axes. That is, the statistical distance in (1-13) 
has an ellipse as the locus of all points a constant distance from the origin. This gen
eral case is shown in Figure 1 .21 . 

cfi;; 
p 

0 ----�------------�------------�------� X I 
- c Js:: 

- c fi;; 
Figure 1 .2 1  The e l l i pse of consta nt 
statist ical d i stance 
d2 (0, P) = xf/s1 1 + x�/s2 2  = c2 • 
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Example 1 . 1 4  {Ca lcu lating a statistica l d istance) 

A set of paired measurements ( x1 , x2 ) on two variables yields x1 = x2 = 0, 
s1 1  = 4, and s22 = 1. Suppose the x1 measurements are unrelated to the x2 mea
surements; that is, measurements within a pair vary independently of one an
other. Since the sample variances are unequal, we measure the square of the 
distance of an arbitrary point P = ( x1 , x2 ) to the origin 0 = (0, 0) by 

x2 x2 
d2(0 P) = -1 + _2 ' 4 1 

All points ( x1 , x2 ) that are a constant distance 1 from the origin satisfy the equation 

x2 x2 
_1 + _2 = 1 4 1 

The coordinates of some points a unit distance from the origin are presented in 
the following table: 

Coordinates: ( x1 , x2 ) 

(0 ,  1 )  

(0 ,  - 1 ) 

(2 , 0 ) 

( 1 ,  v'3/2) 

x2 x2 
D

. 1 2 1 1stance: 4 + T = 

02 12 - + - = 1 4 1 
02 ( - 1 )2 - + = 1 4 1 

22 02 - + - = 1 4 1 
12 + (v'3/2? = 1 4 1 

A plot of the equation xi/4 + x�/1 = 1 is an ellipse centered at ( 0, 0) 
whose major axis lies along the x1 coordinate axis and whose minor axis lies 
along the x2 coordinate axis. The half-lengths of these major and minor axes are 
V4 = 2 and VI = 1 ,  respectively. The ellipse of unit distance is plotted in Fig
ure 1 .22 . All points on the ellipse are regarded as being the same statistical dis
tance from the origin-in this case, a distance of 1 .  • 

--�----�----r---�----+---� Xl 
-2 - 1  2 

- 1 

Figure 1 .22 E l l i pse of u n it d i stance, 
x2 x2 
___2_ + � = 1 .  
4 1 
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The expression in (1-13) can be generalized to accommodate the calculation of 
statistical distance from an arbitrary point P == ( x1 , x2 ) to any fixed point 
Q == (y1 , y2) . If we assume that the coordinate variables vary independently of one 
another, the distance from P to Q is given by 

d(P, Q) = 
I ( xi - YI ) 2 + ( x2 - Y2)2 

'I S1 1 S22 
(1-15) 

The extension of this statistical distance to more than two dimensions is straight
forward. Let the points P and Q have p coordinates such that P == ( x1 ,  x2 , • • •  , xp) 
and Q == (y1 , y2 , • • •  , yp) ·  Suppose Q is a fixed point [it may be the origin 
0 == (0 ,  0, . . .  , 0 ) ]  and the coordinate variables vary independently of one another. 
Let s1 1 , s2 2 , . . .  , s P P be sample variances constructed from n measurements on 
x1 , x2 , . . .  , x P , respectively. Then the statistical distance from P to Q is 

d(P, Q) = I ( xl - YI ) 2 + ( x2 - Y2)2 + . . .  + ( xp - Yp)2 

'I S1 1 s22 sPP 
(1-16) 

All points P that are a constant squared distance from Q lie on a hyperellipsoid 
centered at Q whose major and minor axes are parallel to the coordinate axes. We 
note the following: 

1. The distance of P to the origin 0 is obtained by setting y1 == y2 == · · · == Yp == 0 
in (1 -16) .  

2. If s1 1  == s22 == · · · == sPP ' the Euclidean distance formula in (1 -12) is appropriate. 

The distance in (1-16) still does not include most of the important cases we shall 
encounter, because of the assumption of independent coordinates. The scatter plot 
in Figure 1 .23 depicts a two-dimensional situation in which the x1 measurements do 
not vary independently of the x2 measurements. In fact, the coordinates of the pairs 
( x1 , x2 ) exhibit a tendency to be large or small together, and the sample correlation 
coefficient is positive. Moreover, the variability in the x2 direction is larger than the 
variability in the x1 direction . 

• - • I • • 
-

- · I • • 
------------��------�--� x l 

. 
. .-

.
-

• I -

• I • • 
• I • 

• I • Figure 1 .23 A scatte r p lot for 
positively correl ated measu rements 
and  a rotated coord i nate system .  
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What is a meaningful measure of distance when the variability in the x1 direc
tion is different from the variability in the x2 direction and the variables x1 and x2 are 
correlated? Actually, we can use what we have already introduced, provided that we 
look at things in the right way. From Figure 1 .23 , we see that if we rotate the origi
nal coordinate system through the angle (} while keeping the scatter fixed and label 
the rotated axes x 1 and x2 , the scatter in terms of the new axes looks very much like 
that in Figure 1 .20. (You may wish to turn the book to place the x1 and x2 axes in their 
customary positions. ) This suggests that we calculate the sample variances using the 
x1 and x2 coordinates and measure distance as in Equation (1-13) .  That is, with ref
erence to the xl and x2 axes, we define the distance from the point p = (xl ' x2 ) to 
the origin 0 = (0 ,  0 )  as 

d (O, P) = (1 -17) 

where sl l  and s22 denote the sample variances computed with the xl and x2 
measurements. 

The relation between the original coordinates ( x1 , x2 ) and the rotated coordi
nates (xl ' x2 ) is provided by 

x 1 = x 1 cos ( (}) + x2 sin ( (} )  

X2 = -X 1 sin ( (}) + X2 COS ( (} )  
(1-18) 

Given the relations in (1-18) ,  we can formally substitute for x1 and x2 in (1 -17) 
and express the distance in terms of the original coordinates. 

After some straightforward algebraic manipulations, the distance from 
P = (x1 , x2 ) to the origin 0 = (0 ,  0 )  can be written in terms of the original coordi
nates x1 and x2 of P as 

(1-19) 

where the a's are numbers such that the distance is nonnegative for all possible val
ues of x1 and x2 . Here a1 1 , a1 2 , and a2 2  are determined by the angle 0, and s1 1 , s1 2 , 
and s22 calculated from the original data.2 The particular forms for a1 1 , a1 2 , and a22 
are not important at this point. What is important is the appearance of the cross
product term 2a1 2x1x2 necessitated by the nonzero correlation r1 2 . 

Equation (1-19) can be compared with (1-13) .  The expression in (1-13) can be 
regarded as a special case of (1-19) with a1 1 = 1/ s1 1 , a22  = 1/ s22 , and a1 2 = 0. 

and 

2 Specifically, 

cos2 ( 8)  sin2 ( 8)  
a - + --------------1 1 -

cos2 ( 8)s1 1 + 2 sin ( 8) cos ( 8)s1 2 + sin2( 8 )s22 cos2 ( 8)s22 - 2 sin ( 8) cos (  8)s1 2 + sin2 ( 8)s1 1  
sin2 (8)  cos2 (8 )  

a - + --------------2 2 - cos2 ( 8 )s1 1  + 2 sin ( 8) cos ( 8 )s1 2 + sin2 ( 8 )s22 cos2 ( 8)s22 - 2 sin ( 8) cos (  8 )s1 2 + sin2 ( 8 )s1 1  

cos ( 8)  sin ( 8)  sin ( 8)  cos ( 8)  
a 

- -1 2 -
cos2 (8)s1 1  + 2 sin(8)  cos (8)s1 2 + sin2 (8 )s22 cos2 (8 )s22 - 2 sin(8 )  cos (8)s1 2 + sin2 (8)s1 1  
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Figure 1 .24 E l l i pse of points a 
consta nt d i sta nce from the point Q.  

In general, the statistical distance of the point P = (x1 , x2 ) from the fixed point 
Q = ( y1 , y2 ) for situations in which the variables are correlated has the general form 

d(P , Q) = v' a1 1 (x1 - Y1 ) 2 + 2a1 2 (X1 - Y1 ) ( x2 - Y2 ) + a22 (x2 - Y2)2 (1 -20) 

and can always be computed once a1 1 , a 1 2 , and a22 are known. In addition, the coordi
nates of all points P = ( x1 , x2 ) that are a constant squared distance c2 from Q satisfy 

a1 1 (x1 - Yl ) 2 + 2a 1 2 (X1 - Yl ) (x2 - Y2) + a22 (x2 - Y2 )2 = C2 (1-21) 

By definition, this is the equation of an ellipse centered at Q. The graph of such an 
equation is displayed in Figure 1 .24. The major (long) and minor (short) axes are in
dicated. They are parallel to the x1 and x2 axes. For the choice of a1 1 , a 1 2 , and a2 2  in 
footnote 2, the xl and x2 axes are at an angle (} with respect to the xl and x2 axes. 

The generalization of the distance formulas of (1-19) and (1-20) to p dimen
sions is straightforward. Let P = (x1 , x2 , . . . , xp) be a point whose coordinates rep
resent variables that are correlated and subj ect to inherent variability. Let 
0 = (0, 0, . . . , 0) denote the origin, and let Q = ( y1 , y2 , . . . , yp) be a specified fixed 
point . Then the distances from P to 0 and from P to Q have the general forms 

d(O, P) = v'a1 1xt + a22x� + . . .  + aPPx� + 2a1 2x1x2 + 2a1 3x1x3 + . . .  + 2ap- l ,pxp_ 1xp 

and 

d(P, Q) = 

(1-22) 

[a 1 1 ( x1 - Yl )2 + a2 2(x2 - Y2 )2 + . . · + app(xp - Yp)2 + 2a1 2( X1 - Yl ) ( x2 - Y2) 
+ 2a 1 3 ( x 1 - Y1 ) ( X3 - Y3 )  + . .  · + 2a p - 1 , p ( x p - 1 - Yp - 1 ) ( x p - Yp) ] 

(1 -23) 
where the a's are numbers such that the distances are always nonnegative? 

3The algebraic expressions for the squares of the distances in (1-22) and (1-23) are known as qua
dratic forms and, in particular, positive definite quadratic forms. It is possible to display these quadratic 
forms in a simpler manner using matrix algebra; we shall do so in Section 2.3 of Chapter 2. 
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We note that the distances in (1 -22) and (1 -23) are completely determined by 
the coefficients (weights) aik '  i = 1 ,  2, . . .  , p, k = 1 ,  2, . . . , p. These coefficients can 
be set out in the rectangular array 

(1 -24) 

where the ai k 's with i i= k are displayed twice, since they are multiplied by 2 in the 
distance formulas. Consequently, the entries in this array specify the distance func
tions. The ai k 's cannot be arbitrary numbers; they must be such that the computed 
distance is nonnegative for every pair of points. (See Exercise 1 . 10.) 

Contours of constant distances computed from (1 -22) and (1 -23) are 
hyperellipsoids. A hyperellipsoid resembles a football when p = 3; it is impossible 
to visualize in more than three dimensions. 

The need to consider statistical rather than Euclidean distance is illustrated 
heuristically in Figure 1 .25. Figure 1 .25 depicts a cluster of points whose center of 
gravity (sample mean) is indicated by the point Q. Consider the Euclidean distances 
from the point Q to the point P and the origin 0. The Euclidean distance from Q to 
P is larger than the Euclidean distance from Q to 0. However, P appears to be more 
like the points in the cluster than does the origin. If we take into account the vari
ability of the points in the cluster and measure distance by the statistical distance in 
(1-20) , then Q will be closer to P than to 0. This result seems reasonable given the 
nature of the scatter. 

• • • • • 
• • • • • • • 
• • • • • 

• • • • • • 
• • • • • •  • • • 

• • • • Q • • • 
• :fi" • • • 

. . . � . . • • • • • • • • • • • 
P'-'- • • • • • • • 

� . . . . 
• • 0 • 

X1 Figure 1 .25 A cl uster of poi nts 
rel ative to a point P and the or ig i n  . 

Other measures of distance can be advanced. (See Exercise 1 . 12.) At times, it 
is useful to consider distances that are not related to circles or ellipses. Any distance 
measure d ( P, Q )  between two points P and Q is valid provided that it satisfies the fol
lowing properties, where R is any other intermediate point: 

d (P, Q) = d(Q, P)  

d ( p' Q) > 0 if p i= Q 

d ( p' Q) = 0 if p = Q 

d (P, Q)  < d (P, R)  + d (R, Q)  

(1-25) 

( triangle inequality) 
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1 .6 FI NAL COM M E NTS 

EXERCISES 

We have attempted to  motivate the study of multivariate analysis and to  provide you 
with some rudimentary, but important, methods for organizing, summarizing, and dis
playing data. In addition, a general concept of distance has been introduced that will 
be used repeatedly in later chapters. 

1.1. Consider the seven pairs of measurements ( x1 , x2 ) plotted in Figure 1 . 1 :  

3 4 2 6 8 2 5 

x2 5 5.5 4 7 10 5 7.5 

Calculate the sample means .X1 and .X2 , the sample variances s1 1  and s22 , and the 
sample covariance s1 2 . 

1.2. A morning newspaper lists the following used-car prices for a foreign compact 
with age x1 measured in years and selling price x2 measured in thousands of 
dollars: 

3 5 5 7 7 7 8 9 10 11 

x2 2.30 1 .90 1 .00 .70 .30 1 .00 1 .05 .45 .70 .30 

(a) Construct a scatter plot of the data and marginal dot diagrams. 
(b) Infer the sign of the sample covariance s1 2 from the scatter plot. 
(c) Compute the sample means .X1 and .X2 and the sample variances s1 1 and s2 2 . 

Compute the sample covariance s1 2 and the sample correlation coefficient 
r1 2 . Interpret these quantities. 

(d) Display the sample mean array x, the sample variance-covariance array Sn ,  
and the sample correlation array R using (1-8) .  

1.3. The following are five measurements on the variables x1 , x2 , and x3 : 

x1 9 2 6 5 8 

x2 12 8 6 4 10 

x3 3 4 0 2 1 

Find the arrays x, Sn ,  and R. 
1.4. The 10 largest U.S. industrial corporations yield the following data: 
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x1 = sales x2 = profits x3 = assets 
Company (millions of dollars) (millions of dollars) (millions of dollars) 

General Motors 126,974 4,224 173 ,297 
Ford 96,933 3 ,835 160,893 
Exxon 86,656 3,510 83 ,219 
IBM 63,438 3 ,758 77,734 
General Electric 55,264 3,939 128,344 
Mobil 50,976 1 ,809 39,080 
Philip Morris 39 ,069 2,946 38,528 
Chrysler 36,156 359 51 ,038 
Du Pont 35 ,209 2,480 34,715 
Texaco 32,416 2,413 25,636 

Source: "Fortune 500," Fortune, 121 (April 23, 1990), 346--367. © 1990 Tune Inc. All rights reserved. 

(a) Plot the scatter diagram and marginal dot diagrams for variables x1 and x2 . 
Comment on the appearance of the diagrams. 

(b) Compute x1 , x2 , s1 1 , s2 2 , s1 2 , and r1 2 . Interpret r1 2 . 
1.5. Use the data in Exercise 1 .4. 

(a) Plot the scatter diagrams and dot diagrams for ( x2 , x3 ) and ( x1 , x3 ) .  Com
ment on the patterns. 

(b) Compute the x, Sn ,  and R arrays for ( x1 , x2 , x3 ) .  

1.6. The data in Table 1 .5 are 42 measurements on air-pollution variables recorded 
at 12:00 noon in the Los Angeles area on different days. (See also the air
pollution data on the CD-ROM.) 
(a) Plot the marginal dot diagrams for all the variables. 
(b) Construct the x, Sn ,  and R arrays, and interpret the entries in R. 

1.7. You are given the following n = 3 observations on p = 2 variables: 

Variable 1 :  

Variable 2: 

xl l = 2  x2 1 = 3  x3 1 = 4  

xl 2  = 1 x22 = 2 x3 2 = 4 

(a) Plot the pairs of observations in the two-dimensional "variable space." That 
is, construct a two-dimensional scatter plot of the data. 

(b) Plot the data as two points in the three-dimensional "item space." 

1.8. Evaluate the distance of the point P = ( -1 ,  - 1 )  to the point Q = ( 1 ,  0) using 
the Euclidean distance formula in (1 -12) with p = 2 and using the statistical 
distance in (1 -20) with a1 1  = 1/3, a22 = 4/27, and a1 2 = 1/9. Sketch the locus 
of points that are a constant squared statistical distance 1 from the point Q.  

1.9. Consider the following eight pairs of  measurements on two variables x1 and 
x2 : 

-3 -2 

-3 1 

1 

-1  

2 5 

2 1 

6 8 

5 3 

(a) Plot the data as a scatter diagram, and compute s1 1 , s2 2 , and s1 2 . 
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TABLE 1 . 5 AI R-POLLUTION DATA 

Solar 
Wind (x 1 )  radiation ( x2) CO (x3 )  NO (x4)  N02 ( x5 )  03 (x6) HC (x7) 

8 98 7 2 12 8 2 
7 107 4 3 9 5 3 
7 103 4 3 5 6 3 

10 88 5 2 8 15 4 
6 91 4 2 8 10 3 
8 90 5 2 12 12 4 
9 84 7 4 12 15 5 
5 72 6 4 21 14 4 
7 82 5 1 1 1  11  3 
8 64 5 2 13 9 4 
6 71 5 4 10 3 3 
6 91 4 2 12 7 3 
7 72 7 4 18  10  3 

10 70 4 2 1 1  7 3 
10 72 4 1 8 10 3 
9 77 4 1 9 10 3 
8 76 4 1 7 7 3 
8 71 5 3 16 4 4 
9 67 4 2 13 2 3 
9 69 3 3 9 5 3 

10 62 5 3 14 4 4 
9 88 4 2 7 6 3 
8 80 4 2 13 11 4 
5 30 3 3 5 2 3 
6 83 5 1 10 23 4 
8 84 3 2 7 6 3 
6 78 4 2 11  11  3 
8 79 2 1 7 10 3 
6 62 4 3 9 8 3 

10 37 3 1 7 2 3 
8 71 4 1 10 7 3 
7 52 4 1 12 8 4 
5 48 6 5 8 4 3 
6 75 4 1 10 24 3 

10 35 4 1 6 9 2 
8 85 4 1 9 10 2 
5 86 3 1 6 12 2 
5 86 7 2 13 18 2 
7 79 7 4 9 25 3 
7 79 5 2 8 6 2 
6 68 6 2 1 1  14 3 
8 40 4 3 6 5 2 

Source: Data courtesy of Professor G. C. Tiao. 
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(b) Using (1-18) ,  calculate the corresponding measurements on variables x1 
and x2 , assuming that the original coordinate axes are rotated through an 
angle of (} = 26° [given cos (26° )  = .899 and sin (26° ) = .438] . 

(c) Using the x1 and x2 measurements from (b) , compute the sample variances 
sl l  and s22 · 

(d) Consider the new pair of measurements ( x1 , x2 ) = ( 4, -2) .  Transform these 
to measurements on x1 and x2 using (1-18), and calculate the distance d(  0, P)  
of the new point P = (x1 , x2) from the origin 0 = ( O, O ) using (1-17) . 
Note: You will need s1 1  and s22 from (c) . 

(e) Calculate the distance from P = (4 ,  -2) to the origin 0 = (0 ,  0) using 
(1-19) and the expressions for a 1 1 , a22 , and a1 2 in footnote 2. 
Note: You will need s1 1 , s2 2 , and s1 2 from (a) . 
Compare the distance calculated here with the distance calculated using the x1 
and x2 values in (d) . (Within rounding error, the numbers should be the same.) 

1.10. Are the following distance functions valid for distance from the origin? Explain. 
(a) xr + 4x� + xlx2 = ( distance )2 

(b) xr - 2x� = ( distance ) 2 

1.11. Verify that distance defined by (1-20) with a1 1 = 4, a22  = 1 ,  and a1 2 = -1  sat
isfies the first three conditions in (1-25) .  (The triangle inequality is more diffi
cult to verify. ) 

1.12. Define the distance from the point P = ( x1 , x2 ) to the origin 0 = ( 0, 0 )  as 

d(O, P)  = max( j x1 j ,  l x2 1 )  

(a) Compute the distance from P = ( -3 ,  4 )  to the origin. 
(b) Plot the locus of points whose squared distance from the origin is 1 .  
(c) Generalize the foregoing distance expression to  points in p dimensions. 

1.13. A large city has major roads laid out in a grid pattern, as indicated in the fol
lowing diagram. Streets 1 through 5 run north-south (NS) ,  and streets A 
through E run east-west (EW) . Suppose there are retail stores located at in
tersections (A, 2 ) ,  (E, 3 ) ,  and (C, 5 ) .  Assume the distance along a street be
tween two intersections in either the NS or EW direction is 1 unit. Define 
the distance between any two intersections (points) on the grid to be the 
" city block" distance. [For example, the distance between intersections 
(D, 1 ) and (C, 2 ) ,  which we might call d ( ( D, 1 ) ,  (C, 2) ) ,  is given by 
d( (D,  1 ) , ( C, 2) ) = d ( (D, 1 ) , (D, 2 ) ) + d ( (D,  2 ) ,  (C, 2) ) = 1 + 1 = 2. 
Also, d ( (D,  1 ) ,  (C, 2) ) = d( (D, 1 ) ,  (C, 1 ) )  + d( (C, 1 ) ,  (C, 2) ) = 1 + 1 = 2.] 

2 3 4 5 
A 

B 

c 

D 

E 
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Locate a supply facility (warehouse) at an intersection such that the sum 
of the distances from the warehouse to the three retail stores is minimized. 

The following exercises contain fairly extensive data sets. A computer may be neces
sary for the required calculations. 

1.14. Table 1 .6  contains some of the raw data discussed in Section 1 .2. (See also the 
multiple-sclerosis data on the CD-ROM.) Two different visual stimuli (S1 and 
S2) produced responses in both the left eye ( L )  and the right eye ( R) of sub
jects in the study groups. The values recorded in the table include x1 (subject 's 
age) ;  x2 (total response of both eyes to stimulus S1 ,  that is, S1L + S1R); x3 
(difference between responses of eyes to stimulus S1 , I S1L - S1R I ) ;  and so 
forth. 

TABLE 1 .6 MULTI PLE-SCLEROS IS DATA 

Non-Multiple-Sclerosis Group Data 

Subject xi x2 x3 x4 Xs 
number (Age) (S1L + S1R) IS1L - S1RI (S2L + S2R) IS2L - S2R I 

1 1 8  152.0 1 .6  198.4 .0 
2 19 138.0 .4 180 .8 1 .6 
3 20 144.0 .0 186.4 .8 
4 20 143.6 3 .2 194.8 .0 
5 20 148.8 .0 217.6 .0 

65 67 154.4 2.4 205 .2 6 .0 
66 69 171 .2 1 .6  210.4 .8 
67 73 157.2 .4 204.8 .0 
68 74 175.2 5 .6 235 .6 .4 
69 79 155.0 1 .4 204.4 .0 

Multiple-Sclerosis Group Data 

Subject 
number xl x2 x3 x4 Xs 

1 23 148.0 .8 205 .4 .6 
2 25 195.2 3.2 262.8 .4 
3 25 158.0 8 .0 209 .8  12.2 
4 28 134.4 .0 198 .4 3 .2 
5 29 190.2 14.2 243 .8 10.6 

25 57 165.6 16 .8 229.2 15 .6 
26 58 238.4 8.0 304.4 6.0 
27 58 164.0 .8 216.8 .8  
28 58 169.8 .0 219.2 1 .6  
29 59 199 .8 4.6 250.2 1 .0 

Source: Data courtesy of Dr. G. G. Celesia. 
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(a) Plot the two-dimensional scatter diagram for the variables x2 and x4 for the 
multiple-sclerosis group. Comment on the appearance of the diagram. 

(b) Compute the x, Sn ,  and R arrays for the non-multiple-sclerosis and multiple
sclerosis groups separately. 

1.15. Some of the 98 measurements described in Section 1 .2 are listed in Table 1 .7 
(See also the radiotherapy data on the CD-ROM. ) The data consist of average 
ratings over the course of treatment for patients undergoing radiotherapy. Vari
ables measured include x1 (number of symptoms, such as sore throat or nausea) ; 
x2 (amount of activity, on a 1-5 scale) ; x3 (amount of sleep, on a 1-5 scale) ; x4 
(amount of food consumed, on a 1-3 scale) ; x5 (appetite, on a 1-5 scale) ; and x6 
(skin reaction, on a 0-3 scale) . 

TABLE 1 .7 RAD IOTH ERAPY DATA 

xl x2 x3 x4 Xs x6 
Symptoms Activity Sleep Eat Appetite Skin reaction 

.889 1 .389 1 .555 2.222 1 .945 1 .000 
2.813 1 .437 .999 2.312 2.312 2.000 
1 .454 1 .091 2.364 2.455 2.909 3.000 
.294 .941 1 .059 2.000 1 .000 1 .000 

2.727 2.545 2.819 2.727 4.091 .000 

4.100 1 .900 2.800 2.000 2.600 2.000 
. 125 1 .062 1 .437 1 .875 1 .563 .000 

6.231 2.769 1 .462 2.385 4.000 2.000 
3.000 1 .455 2.090 2.273 3.272 2.000 

.889 1 .000 1 .000 2.000 1 .000 2.000 

Source: Data courtesy of Mrs. Annette Tealey, R.N. Values of x2 and x3 less than 1 .0  are 
due to errors in the data collection process. Rows containing values of x2 and x3 less than 
1 .0 may be omitted. 

(a) Construct the two-dimensional scatter plot for variables x2 and x3 and the 
marginal dot diagrams (or histograms) . Do there appear to be any errors 
in the x3 data? 

(b) Compute the x, Sn , and R arrays. Interpret the pairwise correlations. 
1.16. At the start of a study to determine whether exercise or dietary supplements 

would slow bone loss in older women, an investigator measured the mineral 
content of bones by photon absorptiometry. Measurements were recorded for 
three bones on the dominant and nondominant sides and are shown in Table 1 .8. 
(See also the mineral-content data on the CD-ROM. ) 

Compute the x, Sn , and R arrays. Interpret the pairwise correlations. 

1.17. Some of the data described in Section 1 .2 are listed in Table 1 .9 .  (See also the 
national-track-records data on the CD-ROM. ) The national track records for 
women in 55 countries can be examined for the relationships among the run
ning events. Compute the x, Sn , and R arrays. Notice the magnitudes of the 
correlation coefficients as you go from the shorter (100-meter) to the longer 
(marathon) running distances. Interpret these pairwise correlations. 
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TABLE 1 .8 M I N ERAL CONTENT I N  BONES 

Subject Dominant Dominant Dominant 
number radius Radius humerus Humerus ulna Ulna 

1 1 . 103 1 .052 2.139 2.238 .873 .872 
2 .842 .859 1 .873 1 .741 .590 .744 
3 .925 .873 1 .887 1 .809 .767 .713 
4 .857 .744 1 .739 1 .547 .706 .674 
5 .795 .809 1 .734 1 .715 .549 .654 
6 .787 .779 1 .509 1 .474 .782 .571 
7 .933 .880 1 .695 1 .656 .737 .803 
8 .799 .851 1 .740 1 .777 .618 .682 
9 .945 .876 1 .811 1 .759 .853 .777 

10 .921 .906 1 .954 2.009 .823 .765 
1 1  .792 .825 1 . 624 1 .657 .686 .668 
12 .815 .751 2.204 1 .846 .678 .546 
13 .755 .724 1 .508 1 .458 .662 .595 
14 .880 .866 1 .786 1 .811  .810 .819 
15 .900 .838 1 . 902 1 .606 .723 .677 
16  .764 .757 1 .743 1 .794 .586 .541 
17 .733 .748 1 .863 1 . 869 .672 .752 
18  .932 .898 2.028 2.032 .836 .805 
19  .856 .786 1 .390 1 .324 .578 .610 
20 .890 . 950 2 .187 2.087 .758 .718 
21 .688 .532 1 .650 1 .378 .533 .482 
22 .940 .850 2.334 2.225 .757 .731 
23 .493 .616 1 .037 1 .268 .546 .615 
24 .835 .752 1 .509 1 .422 .618 .664 
25 .915 .936 1 .971 1 .869 .869 .868 

Source: Data courtesy of Everett Smith. 

1.18. Convert the national track records for women in Table 1 . 9  to speeds measured 
in meters per second. For example, the record speed for the 100-m dash for 
Argentinian women is 100 m/11 .61 sec = 8.613 mjsec. Notice that the records 
for the 800-m, 1500-m, 3000-m and marathon runs are measured in minutes. 
The marathon is 26.2 miles, or 42,195 meters, long. Compute the i, Sn , and R 
arrays. Notice the magnitudes of the correlation coefficients as you go from 
the shorter (100 m) to the longer (marathon) running distances. Interpret these 
pairwise correlations. Compare your results with the results you obtained in Ex
ercise 1 . 17. 

1.19. Create the scatter plot and boxplot displays of Figure 1 .5 for (a) the mineral
content data in Table 1 . 8  and (b) the national-track-records data in Table 1 .9 .  

1.20. Refer to the bankruptcy data in Table 11 .4, page 655, and on the data CD-ROM. 
Using appropriate computer software, 
(a) View the entire data set in x1 , x2 , x3 space. Rotate the coordinate axes in 

various directions. Check for unusual observations. 
(b) Highlight the set of points corresponding to the bankrupt firms. Examine 

various three-dimensional perspectives. Are there some orientations of 
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TABLE 1 .9 NATIONAL TRACK RECORDS FOR WOMEN  

lOO m 200 m 400 m 800 m 1500 m 3000 m Marathon 
Country (s) (s) (s) (min) (min) (min) (min) 
Argentina 1 1 .61 22.94 54.50 2 .15 4.43 9.79 178.52 
Australia 1 1 .20 22.35 51 .08 1 .98 4.13 9.08 152.37 
Austria 11 .43 23 .09 50.62 1 .99 4.22 9 .34 159.37 
Belgium 1 1 .41 23 .04 52.00 2.00 4 .14 8 .88 157.85 
Bermuda 1 1 .46 23.05 53.30 2 .16 4.58 9.81 169.98 
Brazil 1 1 .31  23 .17 52.80 2 .10 4.49 9 .77 168.75 
Burma 12.14 24.47 55.00 2 .18 4.45 9.51 191 .02 
Canada 11 .00 22.25 50.06 2.00 4.06 8 .81 149.45 
Chile 12.00 24.52 54.90 2.05 4.23 9.37 171 .38 
China 1 1 .95 24.41 54.97 2.08 4.33 9 .31 168.48 
Colombia 1 1 .60 24.00 53 .26 2. 1 1  4.35 9 .46 165 .42 
Cook Islands 12.90 27.10 60.40 2.30 4.84 11 . 10  233 .22 
Costa Rica 1 1 .96 24.60 58.25 2.21 4.68 10.43 171 .80 
Czechoslovakia 1 1 .09 21 .97 47 .99 1 .89 4 .14 8 .92 158 .85 
Denmark 1 1 .42 23.52 53 .60 2.03 4 .18 8.71 151 .75 
Dominican Republic 1 1 .79 24.05 56.05 2.24 4.74 9 .89 203 .88 
Finland 11 . 1 3  22.39 50.14 2.03 4 .10 8 .92 154.23 
France 11 . 15  22.59 51 .73 2.00 4.14 8 .98 155.27 
German Democratic 

Republic 10.81 21.71 48. 16 1 .93 3.96 8.75 157.68 
Federal Republic 

of Germany 1 1 .01 22.39 49.75 1 . 95 4.03 8.59 148.53 
Great Britain and 

Northern Ireland 1 1 .00 22.13 50.46 1 .98 4.03 8 .62 149 .72 
Greece 1 1 .79 24.08 54.93 2.07 4.35 9 .87 182.20 
Guatemala 1 1 .84 24.54 56.09 2.28 4.86 10.54 215.08 
Hungary 1 1 .45 23 .06 51 .50 2.01 4 .14 8 .98 156.37 
India 11 .95 24.28 53.60 2.10 4.32 9 .98 188.03 
Indonesia 1 1 .85 24.24 55.34 2.22 4.61 10.02 201 .28 
Ireland 1 1 .43 23 .51 53.24 2.05 4 .11  8.89 149.38 
Israel 1 1 .45 23.57 54.90 2 .10 4.25 9.37 160.48 
Italy 1 1 .29 23 .00 52.01 1 .96 3 .98 8.63 151 .82 
Japan 1 1 .73 24.00 53.73 2.09 4.35 9 .20 150.50 
Kenya 11 .73 23 .88 52.70 2.00 4 .15 9 .20 181 .05 
Korea 1 1 .96 24.49 55.70 2 .15 4.42 9.62 164.65 
Democratic People's 

Republic of Korea 12.25 25 .78 51 .20 1 .97 4.25 9 .35 179.17 
Luxembourg 12.03 24.96 56.10 2.07 4.38 9 .64 174.68 
Malaysia 12.23 24.21 55.09 2 .19 4.69 10.46 182.17 
Mauritius 1 1 .76 25 .08 58.10 2.27 4.79 10.90 261 .13  
Mexico 1 1 .89 23 .62 53.76 2.04 4.25 9 .59 158.53 
Netherlands 1 1 .25 22.81 52.38 1 .99 4.06 9.01 152.48 

(continues) 
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TABLE 1 .9 NATIONAL TRACK RECORDS FOR WOMEN  

lOO m 200 m 400 m 800 m 1500 m 3000 m Marathon 
Country (s) (s) (s) (min) (min) (min) (min) 

New Zealand 11 .55 23 .13 51 .60 2.02 4 .18 8.76 145.48 
Norway 1 1 .58 23 .31 53 .12 2.03 4.01 8.53 145.48 
Papua New Guinea 12.25 25 .07 56.96 2.24 4.84 10.69 233.00 
Philippines 1 1 .76 23.54 54.60 2.19 4 .60 10.16 200.37 
Poland 11 .13 22.21 49.29 1 . 95 3 .99 8.97 160.82 
Portugal 11 .81 24.22 54.30 2.09 4 .16 8 .84 151 .20 
Rumania 11 .44 23.46 51 .20 1 .92 3 .96 8.53 165 .45 
Singapore 12.30 25.00 55.08 2.12 4.52 9 .94 182.77 
Spain 11 .80 23 .98 53.59 2.05 4.14 9 .02 162.60 
Sweden 11 . 16  22.82 51 .79 2.02 4.12 8 .84 154.48 
Switzerland 1 1 .45 23 .31 53.11 2.02 4 .07 8.77 153 .42 
Taiwan 11 .22 22.62 52.50 2.10 4.38 9.63 177.87 
Thailand 1 1 .75 24.46 55.80 2.20 4.72 10.28 168.45 
Turkey 11 .98 24.44 56.45 2.15 4.37 9 .38 201 .08 
U.S.A. 10.79 21 .83 50.62 1 .96 3 .95 8.50 142.72 
U.S.S.R. 11 .06 22. 19 49.19 1 .89 3 .87 8.45 151 .22 
Western Samoa 12.74 25 .85 58.73 2.33 5 .81 13 .04 306.00 

Source: IAAF/ATFS Track and Field Statistics Handbook for the 1984 Los Angeles Olympics. 

three-dimensional space for which the bankrupt firms can be distinguished 
from the nonbankrupt firms? Are there observations in each of the two 
groups that are likely to have a significant impact on any rule developed to 
classify firms based on the sample means, variances, and covariances calcu
lated from these data? (See Exercise 11 .24. ) 

1.21. Refer to the milk transportation-cost data in Table 6.8, page 334, and on the 
CD-ROM. Using appropriate computer software, 
(a) View the entire data set in three dimensions. Rotate the coordinate axes in 

various directions. Check for unusual observations. 
(b) Highlight the set of points corresponding to gasoline trucks. Do any of the 

gasoline-truck points appear to be multivariate outliers? (See Exercise 6.17.) 
Are there some orientations of x1 , x2 , x3 space for which the set of points 
representing gasoline trucks can be readily distinguished from the set of 
points representing diesel trucks? 

1.22. Refer to the oxygen-consumption data in Table 6 .10,  page 336, and on the CD
ROM. Using appropriate computer software, 
(a) View the entire data set in three dimensions employing various combina

tions of three variables to represent the coordinate axes. Begin with the 
x1 , x2 , x3 space. 

(b) Check this data set for outliers. 
1.23. Using the data in Table 11 .9 ,  page 664, and on the CD-ROM, represent the 

cereals in each of the following ways. 
(a) Stars. 
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(b) Chernoff faces. (Experiment with the assignment of variables to facial char
acteristics.) 

1.24. Using the utility data in Table 12.5, page 683, and on the CD-ROM, represent 
the public utility companies as Chernoff faces with assignments of variables to 
facial characteristics different from those considered in Example 1 . 12. Compare 
your faces with the faces in Figure 1 . 17 .  Are different groupings indicated? 

1.25. Using the data in Table 12.5 and on the CD-ROM, represent the 22 public util
ity companies as stars. Visually group the companies into four or five clusters. 

1.26. The data in Table 1 . 10 (see the bull data on the CD-ROM) are the measured 
characteristics of 7 6 young (less than two years old) bulls sold at auction. Also 
included in the table are the selling prices (SalePr) of these bulls. The column 
headings (variables) are defined as follows: { 1 Angus 

Breed = 5 Hereford 
8 Simental 

FtFrBody = Fat free body 
(pounds) 

Frame = Scale from 1 ( small ) 

to 8 ( large ) 

SaleHt = Sale height at 

shoulder ( inches ) 

YrHgt = Yearling height at 

shoulder ( inches ) 

PrctFFB = Percent fat-free 
body 

BkFat = Back fat 

( inches) 

Sale Wt = Sale weight 

(pounds ) 

(a) Compute x, Sn , and R arrays. Interpret the pairwise correlations. Do some 
of these variables appear to distinguish one breed from another? 

(b) View the data in three dimensions using the variables Breed, Frame, and 
BkFat. Rotate the coordinate axes in various directions. Check for out
liers. Are the breeds well separated in this coordinate system? 

(c) Repeat part b using Breed, FtFrBody, and SaleHt. Which three-dimensional 
display appears to result in the best separation of the three breeds of bulls? 

TABLE 1 . 1 0  DATA ON  BU LLS 

Breed SalePr YrHgt FtFrBody PrctFFB Frame BkFat SaleHt SaleWt 

1 2200 51 .0 1128 70.9 7 .25 54.8 1720 
1 2250 51 .9  1108 72.1 7 .25 55.3 1575 
1 1625 49 .9 1011 71 .6 6 .15 53 .1 1410 
1 4600 53 . 1  993 68.9 8 .35 56.4 1595 
1 2150 51 .2 996 68.6 7 .25 55.0 1488 

8 1450 51 .4 997 73.4 7 . 10 55.2 1454 
8 1200 49.8 991 70.8 6 . 15  54.6 1475 
8 1425 50.0 928 70.8 6 . 10 53 .9  1375 
8 1250 50.1 990 71.0 6 .10 54.9 1564 
8 1500 51 .7 992 70.6 7 . 15  55 .1  1458 

Source: Data courtesy of Mark Ellersieck. 



48 Chapter 1 Aspects of M u lt ivar iate Ana lysis 

REFERENCES 

1 .  Becker, R .  A . ,  W. S .  Cleveland, and A.  R .  Wilks. "Dynamic Graphics for Data Analysis." 
Statistical Science, 2, no. 4 (1987), 355-395. 

2. Benjamin, Y. , and M. lgbaria. "Clustering Categories for Better Prediction of Comput
er Resources Utilization." Applied Statistics, 40, no. 2 (1991 ) ,  295-307 . 

3. Bhattacharyya, G. K. ,  and R. A. Johnson. Statistical Concepts and Methods. New York: 
John Wiley, 1977. 

4. Bliss, C. I. "Statistics in Biology," Statistical Methods for Research in the Natural Sciences, 
vol. 2. New York: McGraw-Hill, 1967. 

5. Capon, N. , J. Farley, D. Lehman, and J. Hulbert. "Profiles of Product Innovators among 
Large U. S. Manufacturers." Management Science, 38, no. 2 (1992) , 157-169. 

6. Chernoff, H. "Using Faces to Represent Points in K-Dimensional Space Graphically." 
Journal of the American Statistical Association, 68 , no. 342 (1973),  361-368. 

7. Cochran, W. G. Sampling Techniques (3d ed.). New York: John Wiley, 1977. 

8. Cochran, W. G. , and G. M. Cox. Experimental Designs (2d ed. ) .  New York: John Wiley, 
1957. 

9 .  Davis, J. C. "Information Contained in Sediment Size Analysis." Mathematical Geology, 
2, no. 2 (1970) , 105-112. 

10. Dawkins, B. "Multivariate Analysis of National Track Records." The American Statisti
cian, 43, no. 2 (1989) , 110-115. 

11 .  Dunham, R. B., and D. J. Kravetz. "Canonical Correlation Analysis in a Predictive Sys
tem." Journal of Experimental Education, 43, no. 4 (1975) ,  35-42. 

12. Everitt, B. Graphical Techniques for Multivariate Data. New York: North-Holland, 1978. 

13. Gable, G. G. "A Multidimensional Model of Client Success when Engaging External 
Consultants." Management Science, 42 , no. 8 (1996) 1175-1198. 

14. Halinar, J. C. "Principal Component Analysis in Plant Breeding." Unpublished report 
based on data collected by Dr. F. A. Bliss, University of Wisconsin, 1979. 

15. Kim, L., and Y. Kim. "Innovation in a Newly Industrializing Country: A Multiple Dis
criminant Analysis." Management Science, 31, no. 3 (1985) 312-322. 

16. Klatzky, S. R., and R. W. Hodge. "A Canonical Correlation Analysis of Occupational Mo
bility." Journal of the American Statistical Association, 66, no. 333 (1971) ,  16-22. 

17. Linden, M. "Factor Analytic Study of Olympic Decathlon Data." Research Quarterly, 
48, no. 3 (Oct. 1977) , 562-568. 

18. MacCrimmon, K., and D. Wehrung. "Characteristics of Risk Taking Executives." Man
agement Science, 36, no. 4 (1990) , 422-435. 

19.  Marriott, F. H. C. The Interpretation of Multiple Observations. London: Academic Press, 
1974. 

20. Mather, P. M. "Study of Factors Influencing Variation in Size Characteristics in Flu
vioglacial Sediments." Mathematical Geology, 4, no. 3 (1972) , 219-234. 

21. McLaughlin, M.,  et al. "Professional Mediators ' Judgments of Mediation Tactics : Multi
dimensional Scaling and Cluster Analysis." Journal of Applied Psychology, 76, no. 3 
(1991 ) ,  465-473. 

22. Naik, D. N. , and R. Khattree. "Revisiting Olympic Track Records: Some Practical Con
siderations in the Principal Component Analysis." The American Statistician, 50, no. 2 
(1996) , 140-144. 



Chapter 1 References 49 

23. Nason, G. "Three-dimensional Projection Pursuit." Applied Statistics, 44, no. 4 (1995 ) ,  
41 1-430. 

24. Smith, M., and R. Taffler. "Improving the Communication Function of Published Ac
counting Statements." Accounting and Business Research, 14, no. 54 (1984) , 139-146. 

25. Spenner, K. I. "From Generation to Generation: The Transmission of Occupation." Ph.D. 
dissertation, University of Wisconsin, 1977. 

26. Tabakoff, B., et al. "Differences in Platelet Enzyme Activity between Alcoholics and 
Nonalcoholics." New England Journal of Medicine, 318, no. 3 (1988), 134-139. 

27. Timm, N. H. Multivariate Analysis with Applications in Education and Psychology. Mon
terey, CA: Brooks/Cole, 1975. 

28. Trieschmann, J. S., and G. E. Pinches. "A Multivariate Model for Predicting Financially 
Distressed P-L Insurers." Journal of Risk and Insurance, 40, no. 3 (1973) , 327-338. 

29. Tukey, J. W. Exploratory Data Analysis. Reading, MA: Addison-Wesley, 1977. 

30. Wainer, H., and D. Thissen. "Graphical Data Analysis." Annual Review of Psychology, 
32, (1981) ,  191-241.  

31 .  Wartzman, R. "Don't Wave a Red Flag at the IRS." The Wall Street Journal (February 24, 
1 993) ,  C1, C15. 

32. Weihs, C., and H. Schmidli. "OMEGA (On Line Multivariate Exploratory Graphical 
Analysis) :  Routine Searching for Structure." Statistical Science, 5, no. 2 (1990) , 175-226. 



CHAPTER 

2 
Matrix Algebra and Random Vectors 

2 . 1  I NTRODUCTION 

We saw in Chapter 1 that multivariate data can be conveniently displayed as an array 
of numbers. In general, a rectangular array of numbers with, for instance, n rows and 
p columns is called a matrix of dimension n X p. The study of multivariate methods 
is greatly facilitated by the use of matrix algebra. 

The matrix algebra results presented in this chapter will enable us to concisely 
state statistical models. Moreover, the formal relations expressed in matrix terms 
are easily programmed on computers to allow the routine calculation of important sta
tistical quantities. 

We begin by introducing some very basic concepts that are essential to both 
our geometrical interpretations and algebraic explanations of subsequent statistical 
techniques. If you have not been previously exposed to the rudiments of matrix al
gebra, you may prefer to follow the brief refresher in the next section by the more de
tailed review provided in Supplement 2A. 

2.2 SOME BASICS OF MATRIX AND VECTOR ALG EBRA 

Vectors 

An array x of n real numbers x1 , x2 , . . .  , xn is called a vector, and it is written as 

x ==  

where the prime denotes the operation of transposing a column to a row. 
so 
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Figure 2.1  The vector x '  = [ 1 , 3, 2 ] .  

A vector x can be represented geometrically as a directed line in n dimensions 
with component x1 along the first axis, x2 along the second axis, . . .  , and xn along the 
nth axis. This is illustrated in Figure 2.1 for n = 3 .  

A vector can be expanded or contracted by multiplying it by a constant c. In par
ticular, we define the vector ex as 

ex = 

That is, ex is the vector obtained by multiplying each element of x by c. [See Figure 
2.2(a) . ] 

2 

/ 
/ 

/ 

X 

/ 
/ 

/ 

2x 
/-1( 

2 

(a) (b) 

Figure 2.2 Sca la r  m u lt ip l icat ion and  vector add it ion . 
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2 

Two vectors may be added. Addition of x and y is defined as 

x + y =  + 

Yn 
so that x + y is the vector with ith element xi + Yi . 

The sum of two vectors emanating from the origin is the diagonal of the paral
lelogram formed with the two original vectors as adj acent sides. This geometrical in
terpretation is illustrated in Figure 2.2(b ) .  

A vector has both direction and length. In n = 2 dimensions, we consider the 
vector 

X =  [:J 
The length of x, written Lx , is defined to be 

Lx = Yxi + X� 

Geometrically, the length of a vector in two dimensions can be viewed as the hy
potenuse of a right triangle. This is demonstrated schematically in Figure 2 .3 .  

The length of a vector x' = [ x1 , x2 , • • •  , xn ] ,  with n components, is defined by 

(2-1) 

Multiplication of a vector x by a scalar c changes the length. From Equation (2-1 ) ,  

Lex = Yc2XI + c2x� + · · · + c2x� 
= I c I Y xi + x� + · · · + x� = I c I Lx 

Multiplication by c does not change the direction of the vector x if c > 0. How
ever, a negative value of c creates a vector with a direction opposite that of x. From 

(2-2) 

it is clear that x is expanded if I c I > 1 and contracted if 0 < I c I < 1. [Recall Figure 
2.2(a).] Choosing c = L�1 , we obtain the unit vector L�1x, which has length 1 and lies 
in the direction of x. 

Figure 2.3 Length of x = V xt + x� . 
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y 

X 

Figure 2.4 The ang le  e between 
x' = [x1 , X2J and y' = [y1 , Y2 ] ·  

A second geometrical concept is angle . Consider two vectors in a plane and 
the angle 0 between them, as in Figure 2.4. From the figure, 0 can be represented as 
the difference between the angles 01 and 02 formed by the two vectors and the first 
coordinate axis. Since, by definition, 

and 

cos (O ) = cos (02 - 01 ) = cos ( 02 ) cos (01 ) + sin (02 ) sin (01 ) 
the angle 0 between the two vectors x' = [ x1 , x2 ] and y' = [y1 , y2 ] is specified by 

cos ( 0 ) = cos ( 02 - 01 ) = (�) (�) + ( Y2 ) ( x2 ) = 
XlYl + XzYz (2-3) Ly Lx Ly Lx LxLy 

We find it convenient to introduce the inner product of two vectors. For n = 2 
dimensions, the inner product of x and y is 

x'y = X1Y1 + X2Y2 

With this definition and Equation (2-3) ,  
L = � X 

x' y  x ' y  
cos ( O ) = -- = ----LxLy � v?Y 

Since cos ( 90° ) = cos (270° ) = 0 and cos ( 0 ) = 0 only if x 'y  = 0, x and y are per
pendicular when x'y  = 0. 

For an arbitrary number of dimensions n, we define the inner product of x and y as 

(2-4) 
The inner product is denoted by either x' y  or y' x. 

Using the inner product, we have the natural extension of length and angle to 
vectors of n components: 

Lx = length of x = � (2-5) 
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x' y x' y 
cos ( 0) = L L = 

" ;---:-- " ;--:-x y v x' x  v y' y 
(2-6) 

Since, again, cos ( 0) = 0 only if x' y = 0, we say that x and y are perpendicular when 
x' y = 0. 

Example 2 . 1  (Ca lcu lati ng lengths of vecto rs and the angle between them) 

Given the vectors x' = [ 1 ,  3, 2 ] and y' = [ -2, 1 ,  - 1 ] ,  find 3x and x + y. Next, 
determine the length of x, the length of y, and the angle between x and y. Also, 
check that the length of 3x is three times the length of x. 

First, 

Next, x 'x  = 12 + 32 + 22 = 14, y' y = ( -2)2 + 12 + ( -1 )2 = 6, and x'y = 
1 ( -2 ) + 3 ( 1 ) + 2( -1 ) = -1 .  Therefore, 

and 

Lx = \1£ = v14 = 3 .742 Ly = VfY = v'6 = 2.449 

x' y - 1  
cos ( O) = LxLy 

= 3 .742 X 2.449 = - .l09 

so 0 = 96.3° . Finally, 

L3x = V32 + 92 + 62 = VI26 and 3Lx = 3v14 = VI26 
showing L3x = 3Lx . • 

A pair of vectors x and y of the same dimension is said to be linearly dependent 
if there exist constants c1 and c2 , both not zero, such that 

A set of vectors x1 , x2 , . . •  , xk is said to be linearly dependent if there exist constants 
c1 , c2 , . . .  , ck , not all zero, such that 

(2-7) 

Linear dependence implies that at least one vector in the set can be written as 
a linear combination of the other vectors. Vectors of the same dimension that are not 
linearly dependent are said to be linearly independent. 
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Example 2.2 ( Identifying l i nearly i ndependent vectors) 

Consider the set of vectors 

Setting 

implies that 

c1 + c2 + c3 = 0 
2c1 - 2c3 = 0 
c1 - c2 + c3 = 0 

with the unique solution c1 = c2 = c3 = 0. As we cannot find three constants 
c1 , c2 , and c3 , not all zero, such that c1 x1 + c2x2 + c3x3 = 0, the vectors x1 , x2 , 
and x3 are linearly independent. • 

The projection (or shadow) of a vector x on a vector y is 

. . (x ' y) (x' y) 1 
ProJection of x on y = -, - y = -- - y (2-8) 

y y  Ly Ly 

where the vector L;1y has unit length. The length of the projection is 

l x ' y l  x' y 
Length of protection = -

L 
= Lx -- = Lx l cos (O ) I (2-9) 

y LxLy 

where 0 is the angle between x and y. (See Figure 2.5 .) 

Matrices 

A matrix is any rectangular array of real numbers. We denote an arbitrary array of 
n rows and p columns by 

a1 1  a 1 2 a l p 
A 

a2 1 a22 a2p = 
(nx p) 

an l an 2 an p  
Many of the vector concepts just introduced have direct generalizations to matrices. 

(x ' y) y y ' y 
�1-.('----- LX cos (8) --)lt.....-JI Figure 2.5 The projection of x on y.  
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The transpose operation A' of a matrix changes the columns into rows, so that 
the first column of A becomes the first row of A' , the second column becomes the 
second row, and so forth. 

Example 2.3 (The transpose of a matrix) 

If 

then 

A - [3 
(2 X3 ) 1 

- 1  2] 
5 4 [ 3 1 ] 

A' = -1  5 
(3 X 2) 2 4 • 

A matrix may also be multiplied by a constant c. The product cA is the matrix 
that results from multiplying each element of A by c. Thus 

cal l  cal 2 ca1 P 

cA 
ca2 1 ca22 ca2P = 

(nXp) 
can l can 2 canp 

Two matrices A and B of the same dimensions can be added. The sum A + B has 
( i, j ) th entry ai j + bij . 

Example 2.4 (The sum of two matrices and mu lti p l ication 
of a matrix by a constant) 

If 

then 

A _ [0 3 
(2X3 ) 1 -1 

1] [ 1 -25 -31] and B = 
1 (2 X 3) 2 

4A � [0 �2
4 4

4] 
and 

(2X 3 ) 4 

A [0 + 1 
+ B = 

(2X3 ) (2X 3 ) 1 + 2 
3 - 2 1 - 3] = [ 1 1 -2] 

-1 + 5 1 + 1 3 4 2 • 

It is also possible to define the multiplication of two matrices if the dimensions 
of the matrices conform in the following manner: When A is ( n  X k )  and B is 
( k X p ) , so that the number of elements in a row of A is the same as the number of 
elements in a column of B, we can form the matrix product AB. An element of the 
new matrix AB is formed by taking the inner product of each row of A with each 
column of B. 



or 
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The matrix product AB is 

A B = the (n X p) matrix whose entry in the ith row 
(nx k) (k xp) and jth column is the inner product of the ith row 

of A and the jth column of B 

k 
( i , j )  entry of AB = ai 1 b1 j + ai 2b2j + · · · + ai kbk j = � ai ebej 

€= 1 
(2-10) 

When k = 4, we have four products to add for each entry in the matrix AB. Thus, 

a1 1  a 1 2 a 1 3  a 1 4 bl l  bl j bl p 

A B 
b2 1 b2j b2p  

= (ai l ai 2 ai 3  ai 4) 
(n X4) (4Xp) b3 1 b3 j b3 p 

b4 1 b4j b4p 
an l an 2 an 3 an 4 

Column 

1 

= Row i [ · · (an b1 i + a; 2 b2 i � a; 3b3 i + a; 4b4 i ) · · ] 
Example 2 .5  (Matrix mu ltip l i cation) 

If 

then 

and 

A B =
[3 - 1 2] [ -�] =

[3 ( -2) + ( - 1 ) (7 ) + 2( 9 ) ] 
(2x3 ) (3 x l ) 1 5 4 

9 
1 (  -2) + 5 (7 ) + 4( 9 ) 

(2X l )  

(2�2) (2�3 ) 
- [ � -n [ � -� !J 
= 
[2( 3 ) + 0 ( 1 ) 2( - 1 ) + 0 ( 5 )  2 (2) + 0 (4 )] 

1 ( 3 ) - 1 ( 1 ) 1 ( - 1 ) - 1 (5 ) 1 (2 ) - 1 ( 4) - [ � =� -� J 
(2X3 ) • 
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When a matrix B consists of single column, it is customary to use the lowercase 
b vector notation. 

Example 2.6 {Some typica l  products and their  d imensions) 

Let 

A =  
[ 1 -2 3] 2 4 -1  

b = [ -!] c = [ _;] 
Then Ab, be' , b ' c ,  and d '  Ab are typical products. 

d = [�] 

The product Ab is a vector with dimension equal to the number of rows of A. 

b ' c = [7 -3 6 ]  [ _;] = [ - 13 ]  

The product b ' c is a 1 X 1 vector or a single number, here -13 .  [ 7 ] [ 35 56 -28 ] 
be' = -3 [5 8 -4] = -15 -24 12 

6 30 48 -24 

The product be ' is a matrix whose row dimension equals the dimension of b 
and whose column dimension equals that of c. This product is unlike b' c, which 
is a single number. 

The product d' Ab is a 1 X 1 vector or a single number, here 26. • 

Square matrices will be of special importance in our development of statistical 
methods. A square matrix is said to be symmetric if A = A' or a i f = a1 i for all i and j. 

Example 2.7 {A symmetric matrix) 

The matrix 
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is symmetric; the matrix 

is not symmetric. • 

When two square matrices A and B are of the same dimension, both products 
AB and BA are defined, although they need not be equal. (See Supplement 2A.) If 
we let I denote the square matrix with ones on the diagonal and zeros elsewhere, it 
follows from the definition of matrix multiplication that the ( i, j)th entry of AI is 
a · 1 X 0 + · · · + a · · 1 X 0 + a · · X 1 + a · ·+ 1 X 0 + · · · + a · k X 0 = a · · so AI = A l l , J - lj l , J l l f ' • 

Similarly, lA = A, so 

I A = A I = A for any A 
(kXk) (kX k) (kX k) (k Xk) (kX k) (kX k) 

(2-1 1 )  

The matrix I acts like 1 in ordinary multiplication ( 1 · a = a • 1 = a ) , so it is 
called the identity rna trix. 

The fundamental scalar relation about the existence of an inverse number a-1 

such that a-1 a = aa-1 = 1 if a # 0 has the following matrix algebra extension: If 
there exists a matrix B such that 

B A = A B = I  
(kX k) (kXk) (kXk) (k X k) (kXk) 

then B is called the inverse of A and is denoted by A-1 . 
The technical condition that an inverse exists is that the k columns a1 , a2 , . . .  , ak 

of A are linearly independent. That is, the existence of A-1 is equivalent to 

(See Result 2A.9 in Supplement 2A.) 

Example 2.8 (The existence of a matrix i nverse) 

For 

A = [! �] 
you may verify that 

so 

[- .2 .4] [3 2] = [ ( - .2 )3  + ( .4 )4 ( - .2)2 + ( .4 ) 1 J .8 - .6 4 1 ( . 8 )3  + ( -
.6 )4 ( .8)2 + ( - . 6 ) 1  

[ - .2 .4] . 8  - .6 

(2-12) 
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is A-1 . We note that 

implies that c1 = c2 = 0, so the columns of A are linearly independent. This 
confirms the condition stated in (2-12) . • 

A method for computing an inverse, when one exists, is given in Supplement 2A. 
The routine, but lengthy, calculations are usually relegated to a computer, especially 
when the dimension is greater than three. Even so, you must be forewarned that if 
the column sum in (2-12) is nearly 0 for some constants c1 , . . .  , ck , then the computer 
may produce incorrect inverses due to extreme errors in rounding. It is always good 
to check the products AA-1 and A-1 A for equality with I when A-1 is produced by a 
computer package. (See Exercise 2.10 .) 

Diagonal matrices have inverses that are easy to compute. For example, 

a1 1  0 0 0 0 
0 a22 0 0 0 
0 0 a3 3  0 0 
0 0 0 a44 0 
0 0 0 0 as s  

if all the ai i  # 0. 

1 
a1 1  

0 

has inverse 0 

0 

0 

0 

1 
a22 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

Another special class of square matrices with which we shall become familiar 
are the orthogonal matrices, characterized by 

QQ' = Q 'Q  = I or Q'  = Q-1 (2-13) 

The name derives from the property that if Q has ith row qi , then QQ' = I implies 
that q�qi = 1 and qiqj = 0 for i * j, so the rows have unit length and are mutually 
perpendicular (orthogonal) . According to the condition Q'  Q = I, the columns have 
the same property. 

We conclude our brief introduction to the elements of matrix algebra by intro
ducing a concept fundamental to multivariate statistical analysis. A square matrix A 
is said to have an eigenvalue A, with corresponding eigenvector x # 0, if 

Ax = Ax (2-14) 

Ordinarily, we normalize x so that it has length unity; that is, 1 = x 'x. It is conve
nient to denote normalized eigenvectors by e, and we do so in what follows. Sparing 
you the details of the derivation (see [1 ] ) ,  we state the following basic result: 
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Example 2.9 (Verifying eigenvalues and eigenvectors) 

Let 

A = [ 1 
-

5] 
-

5 1 
Then, since 

[ 1 -5] -5 1 

A1 = 6 is an eigenvalue, and 

1 
-

v'2 
1 

- -

v'2 

= 6 

1 
v'2 
1 

v'2 

1 
-

v'2 
1 

-

-

v'2 

is its corresponding normalized eigenvector. You may wish to show that a sec
ond eigenvalue-eigenvector pair is A2 = -4, e2 = [ 1/v'2, 1/v'2J. • 

A method for calculating the A's and e's is described in Supplement 2A. It is in
structive to do a few sample calculations to understand the technique. We usually rely 
on a computer when the dimension of the square matrix is greater than two or three. 

2.3 POSITIVE DEF IN ITE MATRICES 

The study of the variation and interrelationships in multivariate data is often based 
upon distances and the assumption that the data are multivariate normally distributed. 
Squared distances (see Chapter 1) and the multivariate normal density can be ex
pressed in terms of matrix products called quadratic forms (see Chapter 4) . Conse
quently, it should not be surprising that quadratic forms play a central role in 
multivariate analysis. In this section, we consider quadratic forms that are always 
nonnegative and the associated positive definite matrices. 

Results involving quadratic forms and symmetric matrices are, in many cases, 
a direct consequence of an expansion for symmetric matrices known as the spectral 
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decomposition. The spectral decomposition of a k X k symmetric matrix A is 
given by1 

where A1 , A2 , . . .  , Ak are the eigenvalues of A and e1 , e2 , . . . , ek are the associated nor
malized eigenvectors. (See also Result 2A.14 in Supplement 2A) . Thus, ei ei = 1 for 
i = 1 ,  2, . . . , k, and eiej = 0 for i # j. 

Example 2. 1 0  (The spectra l decomposition of a matrix) 

Consider the symmetric matrix 

A =  
[ �4

2

3 �: -�] 
-2 10 

The eigenvalues obtained from the characteristic equation I A - AI I = 0 
are A1 = 9, A2 = 9, and A3 = 18 (Definition 2A.30) . The corresponding eigen
vectors e 1 , e2 , and e3 are the (normalized) solutions of the equations Aei = Aiei 
for i = 1, 2, 3. Thus, Ae1 = Ae1 gives 

or 

[ 13 -4 2] [ e1 1 ] [ e1 1 ] 
-4 13 -2 e2 1 = 9 e2 1 

2 -2 10 e3 1 e3 1 

13e1 1 - 4e2 1 + 2e3 1  = 9e1 1  

-4e1 1  + 13e2 1 - 2e3 1 = 9e2 1 

2e1 1  - 2e2 1 + 10e3 1 = 9e3 1  

Moving the terms on the right of the equals sign to the left yields three 
homogeneous equations in three unknowns, but two of the equations are 
redundant . Selecting one of the equations and arbitrarily setting e1 1  = 1 
and e2 1 = 1 ,  we find that e3 1  = 0. Consequently, the normalized eigenvec-
tor is e1 = [ 1;V12 + 12 + o2 , 1;V12 + 12 + 02 , o;V12 + 12 + o2 ] = 
[ 1/v'z, 1/v'z, 0 ] ,  since the sum of the squares of its elements is unity. You 
may verify that e2 = [ 1 /V'I8, -1/VIS, -4/V'I8] is also an eigenvector for 
9 = A2 , and e3 = [2/3, -2/3, 1/3 ] is the normalized eigenvector correspond
ing to the eigenvalue A3 = 18 . Moreover, eiej = 0 for i # j. 

1 A proof of Equation (2-16) is beyond the scope of this book. The interested reader will find a 
proof in [6] , Chapter 8.  
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The spectral decomposition of A is then 

or 

1 
-[ 13 -4 -�] = 9 
V2 [� 1 o] -4 13 1 -

- V2 2 -2 10 V2 
0 

1 2 
-- -

V18 3 
-1  [Jrs -1  -4  J + 9  -- --

V18 + 18 V18 V18 
2 [� 2 �] - -

3 3 
-4 1 

-- -

V18 3 

1 
1 1 

1 
0 18  18 

2 2 
1 1 

= 9 1 1 
0 

+ 9 
18  18 

2 2 
4 4 

0 0 0 
18  18 

4 
18 
4 
18 
16  
18  _j 

4 4 2 
- - - -

9 9 9 

+ 18 
4 4 2 

- - -

9 9 9 
2 2 1 
- - - -

9 9 9 

as you may readily verify. • 

The spectral decomposition is an important analytical tool. With it, we are very 
easily able to demonstrate certain statistical results. The first of these is a matrix ex
planation of distance, which we now develop. 

Because x' Ax has only squared terms xf and product terms xixk , it is called a 
quadratic form. When a k X k symmetric matrix A is such that 

0 < x'Ax (2-17) 
for all x' = [x1 , x2 , . . .  , xk ] , both the matrix A and the quadratic form are said to be 
nonnegative definite. If equality holds in (2-17) only for the vector x' = [0, 0, . . .  , O J ,  
then A or the quadratic form is said to be  positive definite. In other words, A is pos
itive definite if 

0 < x'Ax (2-18) 

for all vectors x # 0. 
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Example 2 . 1 1 (A positive defi n ite matrix and quadratic fo rm) 

Show that the matrix for the following quadratic form is positive definite: 

3xi + 2x� - 2V2 x1x2 
To illustrate the general approach, we first write the quadratic form in 

matrix notation as 

By Definition 2A.30, the eigenvalues of A are the solutions of the equa
tion I A - AI I == 0, or (3 - A) (2  - A )  - 2 == 0. The solutions are A1 == 4 and 
A2 == 1 .  Using the spectral decomposition in (2-16) ,  we can write 

A == A1e1 ei + A2e2 e2 
(2X2) (2X 1 ) ( 1 X2) (2X 1 ) ( 1 X2) 

== 4e1 ei + e2 e2 
(2 X 1 ) ( 1 X2) (2X 1 ) ( 1 X2) 

where e1 and e2 are the normalized and orthogonal eigenvectors associated with 
the eigenvalues A1 == 4 and A2 == 1 ,  respectively. Because 4 and 1 are scalars, 
premultiplication and postmultiplication of A by x' and x, respectively, where 
x' == [ x1 , x2] is any nonzero vector, give 

x' A x == 4x' e1 ei x + x' e2 e2 x 
( 1 X2) (2 X2) (2X l )  ( 1 X2) (2X l )  ( 1 X2) (2X l )  ( 1 X2) (2X l )  ( 1 X 2) (2X l )  

== 4yy + y�  > 0 

with 

y1 == x' e1 == e1 x and y2 == x' e2 == e2x 

We now show that y1 and y2 are not both zero and, consequently, that 
x' Ax == 4yy + y� > 0, or A is positive definite . 

or 

From the definitions of y1 and y2 , we have 

y == E X 
(2X l )  (2X2) (2X l )  

Now E i s  an orthogonal matrix and hence has inverse E ' .  Thus, x == E' y. But 
x is a nonzero vector, and 0 # x == E' y implies that y # 0. • 

Using the spectral decomposition, we can easily show that a k X k symmetric 
matrix A is a positive definite matrix if and only if every eigenvalue of A is positive. 
(See Exercise 2.17.) A is a nonnegative definite matrix if and only if all of its eigen
values are greater than or equal to zero. 

Assume for the moment that the p elements x1 , x2 , . . .  , xP of a vector x are re
alizations of p random variables X1 , X2 , • • •  , XP . As we pointed out in Chapter 1 ,  we 
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can regard these elements as the coordinates of a point in p-dimensional space, and 
the "distance" of the point [ x1 , x2, • • •  , x p ] to the origin can, and in this case should, 
be interpreted in terms of standard deviation units. In this way, we can account for 
the inherent uncertainty (variability) in the observations. Points with the same as
sociated "uncertainty" are regarded as being at the same distance from the origin. 

If we use the distance formula introduced in Chapter 1 [see Equation (1-22) ] ,  
the distance from the origin satisfies the general formula 

(distance ) 2 = a1 1  xi + a22x� + · · · + a P Px� 
+ 2(a 1 2x1x2 + a1 3x1x3 + · · · + ap- l , pxp- lxp ) 

provided that ( distance )2 > 0 for all [ x1 , x2 , . . .  , xp ] # [0, 0, . . .  , O J . Setting ai j = aj i , 
i # j, i = 1 ,  2, . . . , p, j = 1 ,  2, . . .  , p, we have 

a1 1  a1 2 al p xl 

0 < ( distance ) 2 = [ x 1 , x2 , . . . , x P ] a2 1 a22 a2p x2 

ap l ap2 aPP Xp 
or 

0 < ( distance )2 = x' Ax for x # 0 (2-19) 

From (2-1 9) , we see that the p X p symmetric matrix A is positive definite. In 
sum, distance is determined from a positive definite quadratic form x' Ax. Conversely, 
a positive definite quadratic form can be interpreted as a squared distance. 

Comment. Let the square of the distance from the point x' = [ x1 , x2 , . . . , xp ] 
to the origin be given by x' Ax, where A is a p X p symmetric positive definite ma
trix. Then the square of the distance from x to an arbitrary fixed point 
JL ' = [JL1 , JL2 , • • •  , JLp ] is given by the general expression (x - JL ) ' A(x - JL ) . 

Expressing distance as the square root of a positive definite quadratic form al
lows us to give a geometrical interpretation based on the eigenvalues and eigenvec
tors of the matrix A. For example, suppose p = 2. Then the points x' = [ x1 , x2 ] of 
constant distance c from the origin satisfy 

By the spectral decomposition, as in Example 2. 11 ,  

A = A1e1 e� + A2e2e2 so x 'Ax = A1 (x ' e1 )
2 + A2 (x' e2)

2 

Now, c2 = A1yi + A2y� is an ellipse in y1 = x' e 1 and y2 = x' e2 because A1 , A2 > 0 
when A is positive definite. (See Exercise 2.17.) We easily verify that x = cA11/2e1 
satisfies x' Ax = A1 ( cA11/2e �  e1 )

2 = c2 . Similarly, x = cA21/2e2 gives the appropriate 
distance in the e2 direction. Thus, the points at distance c lie on an ellipse whose axes 
are given by the eigenvectors of A with lengths proportional to the reciprocals of the 
square roots of the eigenvalues. The constant of proportionality is c. The situation 
is illustrated in Figure 2.6. 
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Figure 2.6 Poi nts a constant 
d ista nce c from the or ig in  
(p = 2, 1 :::; A1 < A2 ) .  

I f  p > 2 ,  the points x' = [ x1 , x2 , • • •  , xp] a constant distance c = Vx7Ax from 
the origin lie on hyperellipsoids c2 = A1 (x ' e 1 )

2 + · · · + Ap(x' ep )2, whose axes are 
given by the eigenvectors of A. The half-length in the direction ei is equal to cj'\IA; , 
i = 1 ,  2, . . . , p, where A1 , A2 , . • .  , AP are the eigenvalues of A. 

2.4 A SQUARE-ROOT MATRIX 

The spectral decomposition allows us to express the inverse of a square matrix in terms 
of its eigenvalues and eigenvectors, and this leads to a useful square-root matrix. 

Let A be a k X k positive definite matrix with the spectral decomposition k 
A = � Aieiei . Let the normalized eigenvectors be the columns of another matrix 

i = l 
P = [ e1 , e2 , . . .  , ek ] .  Then 

where PP ' = P ' P = I and A is the diagonal matrix 

Al 0 0 

A 0 A2 0 
with Ai > 0 = 

(kXk ) 
0 0 Ak 
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since (PA-1P ' ) PAP' = PAP' (PA-1P ' )  = PP ' = I . 

Next, let A 1/2 denote the diagonal matrix with \!A; as the ith diagonal element. 
k 

The matrix � \IA;eiei = PA 112P' is called the square root of A and is denoted by A112 . 
i = l  

2.5 RANDOM VECTORS AN D MATRICES 

A random vector i s  a vector whose elements are random variables. Similarly, a random 
matrix is a matrix whose elements are random variables. The expected value of a ran
dom matrix (or vector) is the matrix (vector) consisting of the expected values of each 
of its elements. Specifically, let X = { Xij} be an n X p random matrix. Then the ex
pected value of X, denoted by E(X) , is the n X p matrix of numbers (if they exist) 

E(X) (2-23) 

where, for each element of the matrix,2 

2 If you are unfamiliar with calculus, you should concentrate on the interpretation of the expected 
value and, eventually, variance. Our development is based primarily on the properties of expectation 
rather than its particular evaluation for continuous or discrete random variables. 



68 Chapter 2 Matr ix Algebra and Random Vectors 

lao X · ..f. · (x . . ) dx · .  if Xij is a continuous random variable with 
l j } l j  l j  l j  

( ) oo probability density function hj xi j 

if Xij is a discrete random variable with 
probability function Pij (xi j) 

Example 2. 1 2  (Computi ng expected va lues fo r d i screte random var iables) 

Suppose p = 2 and n = 1 ,  and consider the random vector X' = [ X1 , X2 ] .  Let 
the discrete random variable X1 have the following probability function: 

-1  0 1 

.3 .3 .4 

Then E(X1 ) = 2: x1p1 ( x1 ) = ( -1 )  ( .3 )  + (0) ( . 3 )  + ( 1 )  ( .4) = . 1 .  
all x1 

Similarly, let the discrete random variable X2 have the probability 
function 

Thus, 

0 1 

.8 .2 

Then E(X2 ) = 2: x2p2 (x2 ) = (0 )  ( . 8 )  + ( 1 )  ( .2) = .2. 
all x2 

E(X ) = [E(X1 ) ] = [ · 1] 
E(X2) .2 • 

Two results involving the expectation of sums and products of matrices follow 
directly from the definition of the expected value of a random matrix and the univariate 
properties of expectation, E(X1 + YjJ = E(X1 ) + E(Yi) and E(cX1 ) = cE(X1 ) . 
Let X and Y be random matrices of the same dimension, and let A and B be 
conformable matrices of constants. Then (see Exercise 2.40) 

2.6 M EAN VECTORS AN D COVARIANCE MATRICES 

Suppose X' = [X1 , X2 , . . .  , Xp] is a p  X 1 random vector. Then each element of X is a 
random variable with its own marginal probability distribution. (See Example 2.12.) The 



Sect ion 2 .6 Mean Vectors and Cova r iance Matr ices 69 

marginal means JLi and variances a-r are defined as JLi = E(Xi) and a-r = E(Xi - JLi ) 2 , 
i = 1 ,  2, . . . , p, respectively. Specifically, 

JLi = 

a-? = l 

10000 x;li (x; ) dx; if X; is a continuous random variable with probability 
density function fi( xi ) 

:L xipi (xi ) 
all x1 

if Xi is a discrete random variable with probability 
function Pi ( xi ) 

ioo ( ) 2 -F ( ) d if Xl· is a continuous random variable -00 xi - JLi J i xi xi 
with probability density function /i( xJ 

:L ( xi - JLi )2 Pi ( xi ) 
all x1 

if Xi is a discrete random variable 
with probability function Pi( xi ) 

(2-25) 

It will be convenient in later sections to denote the marginal variances by a-i i  rather 
than the more traditional a-7 , and consequently, we shall adopt this notation. 

The behavior of any pair of random variables, such as Xi and Xk , is described 
by their j oint probability function, and a measure of the linear association between 
them is provided by the covariance 

= 

:L :L (xi - JLJ (xk - JLk)Pi k (xi , xk) 
all X1 all xk 

if xi '  xk are continuous 
random variables with 
the joint density 
function hk(xi ,  xk ) 

if xi ' xk are discrete 
random variable with 
joint probability 
function Pik (xi , xk ) 

(2-26) 

and JLi and JLk , i, k = 1, 2, . . . , p, are the marginal means. When i = k, the covari
ance becomes the marginal variance. 

More generally, the collective behavior of the p random variables X1 , X2 , • • •  , X P 
or, equivalently, the random vector X' = [ X1 , X2 , • • •  , XP ] , is described by a joint prob
ability density function f(x1 , x2 , • • •  , xp) = f(x) . As we have already noted in this 
book, f(x) will often be the multivariate normal density function. (See Chapter 4.) 

If the joint probability P[Xi < xi and Xk < xk ] can be written as the product 
of the corresponding marginal probabilities, so that 

(2-27) 
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for all pairs of values xi , xk , then Xi and Xk are said to be statistically independent. 
When Xi and Xk are continuous random variables with joint density fik (xi , xk) and 
marginal densities /i(xz ) and fk(xk) , the independence condition becomes 

fik ( xi , xk ) = /i( xi )fk ( xk ) 
for all pairs ( xi , xk ) .  

The p continuous random variables X1 , X2 , • • •  , XP are mutually statistically 
independent if their joint density can be factored as 

!I2· · ·p ( xl , x2 , . . .  , xp) = f1 (xi )f2 (x2 ) · .
. /p (xp) (2-28) 

for all p-tuples ( x1 , x2 , • • •  , xp) · 
Statistical independence has an important implication for covariance. The fac

torization in (2-28) implies that Cov (Xi , Xk) = 0. Thus, 

The converse of (2-29) is not true in general; there are situations where 
Cov (Xi , Xk) = 0, but Xi and Xk are not independent. (See [2] . ) 

The means and covariances of the p X 1 random vector X can be set out as 
matrices. The expected value of each element is contained in the vector of means 
IL = E(X) ,  and the p variances (J'i i  and the p(p - 1 )/2 distinct covariances 
(J'ik ( i < k) are contained in the symmetric variance-covariance matrix 
I = E(X - 1L )  (X - 1L )  ' .  Specifically, 

E(X1 ) 

E(X) = 
E(X2) = 

i-Ll 

and 

I = E(X - 1L )  (X - 1L ) ' 

= E  

xp - JLp 

(XI - JLI )2 

= E 
(X2 - JL2 ) (XI - JLI ) 

(Xp - JLp) (XI - JLI ) 

E(Xl - JLI )2 

E(X2 - JL2) (XI - JL1 ) 

E(Xp - JLp) (XI - JLI ) 

E(Xp) JLp 

(XI - JLI ) (X2 - JL2 ) 
(X2 - JL2)2 

(Xp - JLp) (X2 - JL2) 

E (X1 - JL1 ) (X2 - JL2) 
E(X2 - JL2)2 

E(Xp - JLp) (X2 - JL2) 

= JL (2-30) 

(XI - JLI ) (Xp - JLp) 
(X2 - JL2) (Xp - JLp) 

(Xp - JLp)2 

E(X1 - JL1 )  (Xp - JLp) 
E(X2 - JL2) (Xp - JLp) 

E(Xp - JLp)2 



or 
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I =  Cov (X) = (2-31)  

Example 2. 1 3  (Computi ng the covariance matrix) 

Find the covariance matrix for the two random variables X1 and X2 introduced 
in Example 2.12 when their joint probability function p1 2 ( x1 , x2 ) is represented 
by the entries in the body of the following table: 

x2 

xl 0 1 P1 ( x1 ) 

-1 .24 .06 .3 
0 . 16  . 14 . 3  
1 .40 .00 .4 

P2(x2 ) .8 .2 1 

We have already shown that JL1 = E(X1 ) = . 1  and JL2 = E(X2) = .2. (See 
Example 2.12.) In addition, 

o-1 1  = E(X1 - JL1 )2 = � ( xi - . 1 ) 2PI (xl ) 
all x1 

= ( -1 - . 1 ) 2 ( .3 )  + (0 - .1 )2 ( .3 ) + ( 1 - .1 )2 ( .4 ) = .69 

o-22 = E(X2 - JL2)2 = � ( x2 - .2 )2P2 (x2 ) all x2 

= ( 0  - .2 )2 ( .8 )  + ( 1 - .2 )2 ( .2 ) 

= . 1 6  

o-1 2 = E(X1 - JL1 ) (X2 - JL2) = � (xi - .1 ) (x2 - .2)PI 2 (xl , x2 ) 
all pairs (x1 , x2) 

= ( -1 - . 1 ) ( 0 - .2) ( .24 ) + ( - 1 - .1 ) ( 1 - .2) ( .06 ) 

+ . . . + ( 1 - . 1 )  ( 1 - .2 ) ( .00) = - .08 
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and 

Consequently, with X' = [X1 , X2] ,  

IL = E(X) = [E(X1 ) ] = [JL1] = [ · 1] 
E(X2) JL2 .2 

I =  E(X - JL ) (X - JL ) ' 

= E [ (X1 - JL1 )2 

(X2 - JL2) (XI - JL1 ) 

= [E(X1 - JL1 )2 E(Xl - JLI )
2
(X2 - JL2)] 

E(X2 - JL2) (X1 - JL1 ) E(X2 - JL2 ) 

= [ :� � ::�] = [ - :�: - :�� J • 

We note that the computation of means, variances, and covariances for discrete 
random variables involves summation (as in Examples 2.12 and 2.13), while analogous 
computations for continuous random variables involve integration. 

Because a-ik = E(Xi - JLJ (Xk - JLk) = a-k i '  it is convenient to write the ma
trix appearing in (2-31) as 

I = E(X - JL ) (X - JL) ' = (2-32) 

We shall refer to IL and I as the population mean (vector) and population 
variance-covariance (matrix) , respectively. 

The multivariate normal distribution is completely specified once the mean 
vector IL and variance-covariance matrix I are given (see Chapter 4) ,  so it is not 
surprising that these quantities play an important role in many multivariate 
procedures. 

It is frequently informative to separate the information contained in vari
ances a-i i  from that contained in measures of association and,  in particular, the 
measure of association known as the population correlation coefficient Pi k · The 
correlation coefficient Pi k  i s  defined in  terms of  the covariance a-ik and variances 
a-i i  and a-kk  as 

(2-33) 

The correlation coefficient measures the amount of linear association between the ran
dom variables Xi and Xk . (See, for example, [2] . ) 
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Let the population correlation matrix be the p X p symmetric matrix 

lTl l  lT1 2 
� �  � yo=;; 

lT1 2 lT22 
p = � yo=;; yo=;; yo=;; 

lTl p lT2p 
� ver;; yo=;; ver;; 
1 P1 2 P1 p 

P1 2 1 P2p 

P1 p P2p 1 

and let the p X p standard deviation matrix be 

� 0 

yl/2 = 0 yo=;; 
0 0 

Then it is easily verified (see Exercise 2.23) that 

and 

lTl p 
� ver;; 

lT2p 
yo=;; ver;; 

lT pp 

ver;; ver;; 

0 
0 

(2-34) 

(2-35) 

(2-36) 

(2-37) 

That is, I can be obtained from V112 and p, whereas p can be obtained from I. 
Moreover, the expression of these relationships in terms of matrix operations allows 
the calculations to be conveniently implemented on a computer. 

Example  2. 1 4  (Computing the corre lation matrix from 
the covariance matrix) 

Suppose 

Obtain V112 and p. 
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Here 0 
va=; � ] - [� � 050 ] 0 

and 
� 0 0 

Consequently, from (2-37) ,  the correlation matrix p is given by 

(vl/2rl:.t (vl/2rl = [ � 
= [ l 

Partit ion ing the Covariance Matrix 

0 OJ [ 4 
! 0 1 3 0 ! 2 5 

1 -!] 6 
1 
1 

- 5  

1 
9 

-3 

2] [ ! 0 -3 � � 25 0 0 �] 
• 

Often, the characteristics measured on individual trials will fall naturally into two 
or more groups. As examples, consider measurements of variables representing 
consumption and income or variables representing personality traits and physical 
characteristics. One approach to handling these situations is to let the character
istics defining the distinct groups be subsets of the total collection of characteris
tics. If the total collection is represented by a (p X 1 )  -dimensional random vector 
X, the subsets can be regarded as components of X and can be sorted by parti
tioning X. 

In general, we can partition the p characteristics contained in the p X 1 random 
vector X into, for instance, two groups of size q and p - q, respectively. For exam
ple, we can write 

xl } q i-Ll 

Xq 
= [i-��;-j JLq 

= [:;��] X =  and 1L = E(X) = 
Xq+ l  }p - q 

JLq+ l 

xp JLp 

(2-38) 
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From the definitions of the transpose and matrix multiplication, 

(XI - JLI ) (Xq+l  - JLq+ I ) 
(X2 - JL2 ) (Xq+ l  - JLq+I ) 

( X1 - JL1 ) ( xq+2 - JLq+2 ) 
( X2 - JL2 ) ( xq+2 - JLq+2 ) 

(X1 - JLI ) (Xp - JLp) 
(X2 - JL2) (Xp - JLp) 

Upon taking the expectation of the matrix (X ( l ) - JL ( 1 ) ) (X (2) - JL (2) ) ' , we get 

O"l, q + l  O"l, q+2 (Tl p 

O"q, q+ l  O"q, q+2 O"qp 

(2-39) 

which gives all the covariances, O"ij' i = 1, 2, . . .  , q,  j = q + 1, q + 2, . . .  , p, between 
a component of X ( l ) and a component of X (2 ) . Note that the matrix I1 2 is not 
necessarily symmetric or even square. 

Making use of the partitioning in Equation (2-38), we can easily demonstrate that 

(X - JL ) (X - JL ) ' 

and consequently, 

(X ( l ) - IL ( 1 ) )  (X ( l ) - IL ( 1 ) ) ' 

(qx l ) ( l x q) 

(X(2) - IL (2 ) ) (X ( l ) - IL ( l ) ) ' 

( (p-q) X l ) ( l Xq) 

(X ( l ) - IL ( 1 ) )  (X (2) - IL (2) ) '  
( qX l ) ( l X (p-q) )  

(X (2) - IL (2 ) ) (X (2) - IL (2) ) ' 
( (p-q) X l ) ( l X (p-q) )  

q p-q 

I = E(X - 1L)  (X - 1L ) ' = 
q [��-1- - - - i - - -��-?-J (px p) P - q I2 1 : I22 I 

(pxp) 0"1 1 O"l q I O"l, q+ l  (Tl p 
I 
I 
I 

O"q l O"q q O"q, q+ l  O"qp 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

(]" q+l , l (]" q+ l, q 1: (]" q+ l , q+ l  (]" q+ l , p 

(Tp l O"pq O"p, q+ l  (Tpp 

(2-40) 
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Note that I1 2 = I2 1 . The covariance matrix of X(l ) is I1 1 , that of X(2) is I22 , and that 
of elements from x(l ) and X(2) is I1 2 (or I2 1) .  

The Mean Vector and  Covariance Matrix 
for Linear Combinations of Random Var iab les 

Recall that if a single random variable, such as X1 , is multiplied by a constant c, then 

E(cX1 ) = cE(X1 ) = CJL1 

and 

If X2 is a second random variable and a and b are constants, then, using additional 
properties of expectation, we get 

Cov ( aX1 , bX2) = E(aX1 - aJL1 ) ( bX2 - bJL2) 
= abE(X1 - JL1 ) (X2 - JL2) 
= abCov (X1 , X2) = aba-1 2 

Finally, for the linear combination aX1 + bX2 , we have 

E( aX1 + bX2) = aE(X1 ) + bE(X2) = aJL1 + bJL2 
Var ( aX1 + bX2) = E[ (aX1 + bX2) - (aJL1 + bJL2 ) ]2 I I I I 

= E[a(X1 - JL1 ) + b (X2 - JL2) ]2 

= E[a2 (X1 - JL1 )2 + b2(X2 - JL2)2 + 2ab (X1 - JL1 ) (X2 - JL2) J  
= a2Var (X1 ) + b2Var (X2) + 2abCov (X1 , X2) 
= a2a-1 1  + b2a-22 + 2aba-1 2 

With c' = [a ,  b ] ,  aX1 + bX2 can be written as 

[a b] [�:] = c 'X 

Similarly, E(aX1 + bX2) = aJL1 + bJL2 can be expressed as 

If we let 

[a b] [::] = c' p 

be the variance-covariance matrix of X, Equation (2-41) becomes 

Var (aX1 + bX2) = Var (c 'X ) = c ' Ic 
since 

(2-41) 

(2-42) 
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The preceding results can be extended to a linear combination of p random variables: 

or 

In general, consider the q linear combinations of the p random variables X1 , . . . , XP : 

Z = 

zl = cl lxl + c1 2x2 + . . .  + cl pxp 
z2 = Cz lXl + CzzX2 + . . . + CzpXp 

zl 

. . . . . . 

C1 1  C1 2 cl p 
Zz C2 1 Czz  c2p  = 

Zq Cq l Cq 2  Cqp 
(qx l ) (qx p) 

xl 
Xz 

xp 
(pX l ) 

= ex (2-44) 

where 11-x and Ix are the mean vector and variance-covariance matrix of X, respec
tively. (See Exercise 2.28 for the computation of the off-diagonal terms in CixC ' .) 

We shall rely heavily on the result in (2-45) in our discussions of principal com
ponents and factor analysis in Chapters 8 and 9 .  

Example 2 . 1 5 (Means and covariances of l i near combinations) 

Let X' = [ X1 , X2] be a random vector with mean vector 11-'x = [JL1 , JLz ] and 
variance-covariance matrix 

Find the mean vector and covariance matrix for the linear combinations 

Z1 = X1 - X2 
z2 = xl + Xz 
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or 

in terms of ILx and Ix . 
Here 

p,z = E(Z)  = Cp,x = D 
and 

-1 ] [I-Ll ] [I-Ll - JL2] 1 JL2 - i-Ll + JL2 

Iz = Cov (Z)  = CixC ' = [11 - 1 ] [o-1 1  o-12] [ 1 1 ] 1 lT1 2 lT22 -1 1 

Note that if o-1 1  = o-22-that is, if X1 and X2 have equal variances-the off-diagonal 
terms in Iz vanish. This demonstrates the well-known result that the sum and dif
ference of two random variables with identical variances are uncorrelated. • 

Partition ing the Sample Mean Vector 
and Covariance Matrix 

Many of the matrix results in this section have been expressed in terms of population 
means and variances ( covariances ). The results in (2-36), (2-37) , (2-38), and (2-40) also 
hold if the population quantities are replaced by their appropriately defined sample 
counterparts. 

Let x' = [ .X1 , x2 , • • •  , x p ] be the vector of sample averages constructed from 
n observations on p variables X1 ,  X2, • • •  , XP , and let 

be the corresponding sample variance-covariance matrix. 
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The sample mean vector and the covariance matrix can be partitioned in order 
to distinguish quantities corresponding to groups of variables. Thus, 

and 

xl 

X - -�!{ _ _  
[-�:�!-] 

(pX l ) Xq+ l  x(2) 

Xp 

I 

S1 1 sl q : sl , q+ l si p 
I 
I 
I 
I 
I 

s = n 
Sq l Sq q 

I 
Sq,q + l  Sq p -s�::·-�- - - - - - - - - - - -s �:��--1 -s�:-� �:-�-- - - - - - - - - - -s�:�; (pXp) 

q p-q 
q [S1 1 1 S1 2J = 

- - - - - - - -r - - - - - - -p - q S2 1 : S22 

(2-46) 

(2-47) 

where x( l ) and x(2) are the sample mean vectors constructed from observations 
( l ) - [ J '  d (2) - [ J ' . 1 . s . h 1 . x - x1 , . . .  , xq an x - Xq+b · · · , xp , respect1ve y, 1 1 1s t e samp e covari-

ance matrix computed from observations x( l ) ; S2 2  is the sample covariance matrix 
computed from observations x(2) ; and S1 2 = S2 1 is the sample covariance matrix for 
elements of x( l ) and elements of x(2) . 

2.7 MATRIX IN EQUALITI ES AND MAXI MIZATION 

Maximization principles play an important role in several multivariate techniques. 
Linear discriminant analysis, for example, is concerned with allocating observations 
to predetermined groups. The allocation rule is often a linear function of measure
ments that maximizes the separation between groups relative to their within-group 
variability. As another example, principal components are linear combinations of 
measurements with maximum variability. 

The matrix inequalities presented in this section will easily allow us to derive cer
tain maximization results, which will be referenced in later chapters. 



80 Chapter 2 Matrix A lgebra and Random Vectors 

Cauchy-Schwarz Inequality. Let b and d be any two p X 1 vectors. Then 

(b ' d) 2 < (b 'b ) (d ' d) (2-48) 

with equality if and only if b = cd (or d = cb) for some constant c. 

Proof. The inequality is obvious if either b = 0 or d = 0. Excluding this pos
sibility, consider the vector b - xd, where x is an arbitrary scalar. Since the length 
of b - xd is positive for b - xd =I= 0, in this case 

0 < (b - xd) ' (b - xd) = b 'b - xd 'b - b ' (xd) + x2d' d 
= b 'b  - 2x (b ' d) + x2(d 'd )  

The last expression is quadratic in x .  If we complete the square by adding and sub
tracting the scalar (b '  d)2/d' d, we get 

(b '  d)2 (b '  d)2 
0 < b 'b  - + - 2x(b' d) + x2 (d '  d) 

d ' d d ' d  

- b '  - + ' - -
(b '  d)2 ( b' d)2 

- b 
d' d 

(d d) X d' d 

The term in brackets is zero if we choose x = b' d/d' d, so we conclude that 

(b '  d)2 
0 < b 'b - -

d' d 

or (b ' d)2 < (b ' b ) (d 'd )  if b =I= xd for some x. 
Note that if b = cd, 0 = (b - cd) ' (b - cd) , and the same argument produces 

(b 'd ) 2 = (b 'b )  ( d ' d ) .  • 

A simple, but important, extension of the Cauchy-Schwarz inequality fol
lows directly. 

Extended Cauchy-Schwarz Inequality. Let b and d be any two vectors, 
and let B be a positive definite matrix. Then (px l ) (px l ) 

(pxp) 
(b ' d)2 < (b ' Bb )  (d 'B-1 d) (2-49) 

with equality if and only if b = cB-1d (or d = eBb) for some constant c. 

Proof. The inequality is obvious when b = 0 or d = 0. For cases other than 
these, consider the square-root matrix B112 defined in terms of its eigenvalues Ai and 

p 
the normalized eigenvectors ei as B112 = :L � e ie i . If we set [see also (2-22)] i= l 

p 1 
B-1/2 = " - e.e� � ,.. /\ l l i= l Y J\i 
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it follows that 

and the proof is completed by applying the Cauchy-Schwarz inequality to the vec
tors (B112b) and (B-112d) . • 

The extended Cauchy-Schwarz inequality gives rise to the following maxi
mization result . 

Maximization Lemma. Let B be positive definite and d be a given vec-
(px p) (px l ) 

tor. Then, for an arbitrary nonzero vector x , 
(pX l ) 

(x '  d)2 
max = d' B-1 d  
x :;t: O  x '  Bx 

with the maximum attained when x = cB-1 d for any constant c =1= 0. 
(pX l ) (pXp) (pX l ) 

(2-50) 

Proof. By the extended Cauchy-Schwarz inequality, (x '  d)2 < (x 'Bx) ( d 'B-1d) . 
Because x =I= 0 and B is positive definite, x ' Bx > 0. Dividing both sides of the in
equality by the positive scalar x' Bx yields the upper bound 

( ' d ) 2 X 
< d' B-1d 

x ' Bx 

Taking the maximum over x gives Equation (2-50) because the bound is attained for 
x = cB-1d. • 

A final maximization result will provide us with an interpretation of eigenvalues. 

Maximization of Quadratic Forms for Points on the Unit Sphere. Let B be 
(pX p) 

a positive definite matrix with eigenvalues A1 > A2 > · · · > AP > 0 and associated 

normalized eigenvectors e1 , e2 , . . .  , eP . Then 

Moreover, 

x' Bx 
max -, - =  A1 
x :;t: O  X X 

x' Bx 
min -, - =  AP x :;t: O  X X 

( attained when x = e1 ) 

( attained when x = ep) 

(2-51 )  

x ' Bx 
max -, - = Ak+ l 

x .1 e1 , . . .  , ek X X 
( attained when x = ek+l , k == 1 ,  2, . . .  , p - 1 )  (2-52) 

where the symbol j_ is read "is perpendicular to." 
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Proof. Let P be the orthogonal matrix whose columns are the eigenvectors 
(px p) 

e1 , e2 , . . .  , eP and A be the diagonal matrix with eigenvalues A1 , A2 , . . . , AP along the 
main diagonal. Let B112 = PA112P '  [see (2-22)] and y = P' x . 

(pX l ) (pXp) (pX l ) 
Consequently, x # 0 implies y # 0. Thus, 

x' Bx x' Blf2Blf2x 
= 

x' x x' PP' x 
'-.r--1 

I 
(pXp) 

x 'PA 112P ' PA 112P ' x  
y ' y  

y' Ay 
--

y 'y 

Setting x = e 1 gives 

y = P' e1 = 

since 

1 
0 

0 

k = 1 
k i= 1  

For this choice of x, we have y' Ay/y' y  = A1/1 = A1 , or 

A similar argument produces the second part of (2-51) .  
Now, x = Py = y1e1 + y2e2 + . . .  + yPeP , so x l_ er , . . . , ek implies 

0 = e �x = y1e�e 1 + y2e� e2 + . .  · + y e�e = y· i < k l l l p l p n -

(2-53) 

(2-54) 

Therefore, for x perpendicular to the first k eigenvectors ei , the left-hand side of the 
inequality in (2-53) becomes 

x'Bx 
x' x 

p 
2: "-iYT 

i=k+ l  
p 
2: YT 

i=k+l 

Taking yk+ l  = 1 ,  Yk+2 = . . · 
= Yp = 0 gives the asserted maximum. • 
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For a fixed x0 =I= 0, x0Bx0/x0x0 has the same value as x' Bx, where 
x' = x0/� is of unit length. Consequently, Equation (2-51) says that the largest 
eigenvalue, A1 , is the maximum value of the quadratic form x' Bx for all points x 
whose distance from the origin is unity. Similarly, AP is the smallest value of the qua
dratic form for all points x one unit from the origin. The largest and smallest eigen
values thus represent extreme values of x' Bx for points on the unit sphere. The 
"intermediate" eigenvalues of the p X p positive definite matrix B also have an in
terpretation as extreme values when x is further restricted to be perpendicular to the 
earlier choices. 



S U PPLE M E NT 2A 

Vectors and Matrices: 

Basic Concepts 

84 

Vectors 

Many concepts, such as a person's health, intellectual abilities, or personality, cannot 
be adequately quantified as a single number. Rather, several different measurements 
x1 , x2 , • • •  , Xm are required. 

Definition 2A.l. An m-tuple of real numbers ( x1 , x2 , • • •  , xi , . . .  , xm ) arranged 
in a column is called a vector and is denoted by a boldfaced, lowercase letter. 

Examples of vectors are 

x = a = [�J b =  

1 
-1  

1 ' 

- 1  

Vectors are said to be equal if their corresponding entries are the same. 

Definition 2A.2 (Scalar Multiplication). Let c be an arbitrary scalar. Then 
the product ex is a vector with ith entry cxi . 

To illustrate scalar multiplication, take c1 = 5 and c2 = -1 .2. Then 

c1y = 5 [ �] = [ 1�] and c2y = ( - 1 .2 )  [ �] = [ =�:� ] 
-2 -10 -2 2.4 

Definition 2A.3 (Vector Addition). The sum of two vectors x and y, each hav
ing the same number of entries, is that vector 

z = x + y with ith entry zi = xi + Yi 
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X + y z 

Taking the zero vector, 0, to be the m-tuple (0 ,  0, . . .  , 0 )  and the vector -x to be the 
1n-tuple ( -x1 , -x2 , • • •  , -xm ) , the two operations of scalar multiplication and vector 
addition can be combined in a useful manner. 

Definition 2A.4. The space of all real m-tuples, with scalar multiplication and 
vector addition as just defined, is called a vector space. 

Definition 2A.5. The vector y = a1x1 + a2x2 + · · · + akxk is a linear combi
nation of the vectors x1 , x2 , . . .  , xk . The set of all linear combinations of x1 , x2 , . . .  , xk , 
is called their linear span . 

Definition 2A.6. A set of vectors x1 , x2 , . . .  , xk is said to be linearly dependent 
if there exist k numbers ( a1 , a2 , • • •  , ak ) , not all zero, such that 

a1x1 + a2x2 + · · · + akxk = 0 

Otherwise the set of vectors is said to be linearly independent. 

If one of the vectors, for example, xi , is 0, the set is linearly dependent. (Let ai 
be the only nonzero coefficient in Definition 2A.6.) 

The familiar vectors with a one as an entry and zeros elsewhere are linearly in
dependent. For m = 4, 

1 0 
0 1 

xl = 
0 ' x2 = 

0 
0 0 

so 

implies that a1 = a2 = a3 = a4 = 0. 

0 0 
0 0 

' x3 = 
1 ' x4 = 

0 
0 1 

a1 • 0 + a2 • 1 + a3 • 0 + a4 • 0 
a1 • 0 + a2 • 0 + a3 • 1 + a4 • 0 

As another example, let k = 3 and m = 3 ,  and let 
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Then 

2x1 - x2 + 3x3 = 0 

Thus, x1 , x2 , x3 are a linearly dependent set of vectors, since any one can be written 
as a linear combination of the others (for example, x2 = 2x1 + 3x3) .  

Definition 2A.7. Any set of m linearly independent vectors is called a basis for 
the vector space of all m-tuples of real numbers. 

Result 2A.l. Every vector can be expressed as a unique linear combination of 
a fixed basis. • 

With m = 4, the usual choice of a basis is 

1 
0 
0 ' 

0 

0 
1 
0 ' 

0 

0 
0 
1 ' 

0 

0 
0 
0 
1 

These four vectors were shown to be linearly independent. 
uniquely expressed as 

1 0 0 0 xl 
0 1 0 0 x2 xl 0 

+ x2 0 
+ x3 + x4 0 1 x3 

0 0 0 1 x4 

Any vector x can be 

= x  

A vector consisting of m elements may be regarded geometrically as a point in 
m-dimensional space. For example, with m = 2, the vector x may be regarded as 
representing the point in the plane with coordinates x1 and x2 • 

Vectors have the geometrical properties of length and direction. 

2 

X2 - - - - - - - - I X =[��] 
I 
I 
I 
I 
I 

Definition 2A.8. The length of a vector of m elements emanating from the 
origin is given by the Pythagorean formula: 

length of X = Lx = y' xr + X� + . . . + X� 

Definition 2A.9. The angle (} between two vectors x and y, both having m en
tries, is defined from 

cos (O ) 
(X1Y1 + X2Y2 + · · · + XmYm) 

LxLy 
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where Lx = length of x and Ly = length of y, x1 , x2 , • • • , xm are the elements of x, and 
Y1 , Y2 , . . • , Ym are the elements of y. 

Let 

-1  4 
5 

and 
-3 

x =  
2 

y =  
0 

-2 1 

Then the length of x, the length of y, and the cosine of the angle between the two 
vectors are 

and 

length of x = V( -1 )2 + 52 + 22 + ( -2)2 = \134 = 5.83 

length of y = V42 + ( -3 )2 + 02 + 12 = \126 = 5. 10 

1 1 
cos ( B )  = - - [ XlYl + X2Y2 + X3Y3 + X4Y4] Lx Ly 

1 1 
= \134 \126  [ ( - 1 )4 + 5 ( -3 )  + 2 (0 )  + ( -2 ) 1 ]  

1 
5 .83 X 5 .10 [ 

-21 J = - ·706 

Consequently, B = 135° . 

Definition 2A.l0. The inner (or dot) product of two vectors x and y with the 
same number of entries is defined as the sum of component products: 

We use the notation x 'y  or y 'x  to denote this inner product. 

With the x 'y  notation, we may express the length of a vector and the cosine of 
the angle between two vectors as 

Lx = length of x = V xi + x� + · · · + x� = � 
x 'y  

cos ( B )  = " �:- " �:
v x' x  v y 'y  

Definition 2A.ll. When the angle between two vectors x, y is B = goo or 270°, 
we say that x and y are perpendicular. Since cos (B) = 0 only if B = goo or 270°, the 
condition becomes 

x and y are perpendicular if x 'y  = 0 

We write x ..l y. 
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The basis vectors 

1 0 0 0 
0 1 0 0 
0 ' 0 ' 1 ' 0 
0 0 0 1 

are mutually perpendicular. Also, each has length unity. The same construction holds 
for any number of entries m. 

Result 2A.2. 

(a) z is perpendicular to every vector if and only if z = 0. 
(b) If z is perpendicular to each vector x 1 , x2 , . . .  , xk , then z is perpendicular to their 

linear span. 
(c) Mutually perpendicular vectors are linearly independent. • 

Definition 2A.12. The projection (or shadow) of a vector x on a vector y is 
. . (x ' y) 

proJectzon ofx on y = --2- Y Ly 
If y has unit length so that Ly = 1 ,  

projection ofx on y = (x' y)y 

Result 2A.3 (Gram-Schmidt Process). Given linearly independent vectors 
x1 , x2 , . . .  , xk , there exist mutually perpendicular vectors u1 , u2 , . . .  , uk with the same 
linear span. These may be constructed sequentially by setting 

We can also convert the u's to unit length by setting zj = ujj� . In this con
k- 1 

struction, (xkzj) zj is the projection of xk on zj and � (xkzj)zj is the projection ofxk 
j= 1 

on the linear span ofx1 , x2 , . . .  , xk- 1 · 

For example, to construct perpendicular vectors from 

4 
0 
0 
2 

and 

3 
1 
0 

-1  

• 
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we take 

so 

and 

Thus, 

3 
1 

u2 = 
0 

- 1  

Matrices 

4 
0 
0 
2 

u� u1 = 42 + 02 + 02 + 22 = 20 

x;u1 = 3 (4 )  + 1 ( 0) + 0 (0 )  - 1 (2) = 10 

4 1 4 
10 0 1 

and 
1 0 

z - --
20 0 0 1 - V20 0 ' 

2 -2 2 

1 
1 1 

z2 = -v'6 0 
-2 

Definition 2A.l3. An m X k matrix, generally denoted by a boldface upper
case letter such as A, R, I, and so forth, is a rectangular array of elements having m 
rows and k columns. 

Examples of matrices are [ -7 2] B = [� 3 A =  � ! ' -2 

I =  [ . � 
-.3 

.7 -
.
3 ] 

2 1 ' 
1 8 

E = [ e1 ] 

1/�l I = [� 0 �] 1 
0 

In our work, the matrix elements will be real numbers or functions taking on values 
in the real numbers. 

Definition 2A.14. The dimension (abbreviated dim) of an m X k matrix is the 
ordered pair (m, k) ;  m is the row dimension and k is the column dimension. The di
mension of a matrix is frequently indicated in parentheses below the letter repre
senting the matrix. Thus, the m X k matrix A is denoted by A . In the preceding (mxk) 
examples, the dimension of the matrix I is 3 X 3, and this information can be con-
veyed by writing I . (3 X3 ) 
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An m X k matrix, say, A, of arbitrary constants can be written 

a1 1  a 1 2 

A 
a2 1 a22  

== 

(mXk) 
am l  am2 

or more compactly as A == { ai j } ,  where the index i refers to the row and the index (mXk) 
j refers to the column. 

An m X 1 matrix is referred to as a column vector. A 1 X k matrix is referred 
to as a row vector. Since matrices can be considered as vectors side by side, it is nat
ural to define multiplication by a scalar and the addition of two matrices with the 
same dimensions. 

Definition 2A.15. Two matrices A == { ai j } and B == {bi j} are said to be (mXk) (mxk) 
equal, written A == B, if ai j == bij , i == 1 ,  2, . . .  , m, j == 1 ,  2, . . . , k. That is, two matri
ces are equal if 

(a) Their dimensionality is the same. 
(b) Every corresponding element is the same. 

Definition 2A.16 (Matrix Addition). Let the matrices A and B both be of di
mension m X k with arbitrary elements ai j and bi j ' i 

== 1 ,  2, . . .  , m, j == 1 ,  2, . . .  , k, 
respectively. The sum of the matrices A and B is an m X k matrix C, written 
C == A + B, such that the arbitrary element of C is given by 

C · . == a - . + b· . l 1 l 1 l 1 i == 1 ,  2, . . .  , m, j == 1 ,  2, . . .  , k 

Note that the addition of matrices is defined only for matrices of the same dimension. 

For example, 

[! � n + [� -� �J [ � � 1� J 
A + B c 

Definition 2A.17 (Scalar Multiplication). Let c be an arbitrary scalar 
and A == { a · · }  Then cA == Ac == B == {b ·  ·} where b· · == ca · · 

== a ·  ·C l 1 • l 1 ' l 1 l 1 l 1 ' (mXk) (mXk) (mXk) (mXk) 
i == 1 ,  2, . . .  , m, j = 1 ,  2, . . . , k . 

Multiplication of a matrix by a scalar produces a new matrix whose elements are 
the elements of the original matrix, each multiplied by the scalar. 

For example, if c == 2, [ 3 -4] [3 -4 ] [ 6 
2 2  6 2 6 2  4 

0 5 0 5 0 
cA Ac 

-8 ] 
12 
10 

B 
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Definition 2A.l8 (Matrix Subtraction). Let A = {aij} and B = {bij } (mXk) (mxk) 
be two matrices of equal dimension. Then the difference between A and B, written 
A - B, is an m X k matrix C = { ci j } given by 

C = A - B = A + ( - 1 )B  

That is, cij = ai j + ( - 1 )bi j = ai j - bi j , i  = 1 , 2, . . .  , m, j  = 1 , 2, . . .  , k . 

Definition 2A.l9. Consider the m X k matrix A with arbitrary elements aij ' 
i = 1 ,  2, . . .  , m, j = 1 ,  2, . . .  , k. The transpose of the matrix A, denoted by A' , is the 
k X m matrix with elements aj i , j = 1 , 2, . . .  , k , i  = 1 , 2, . . .  , m. That is, the transpose 
of the matrix A is obtained from A by interchanging the rows and columns. 

As an example, if 

A - [2 
(2X 3 ) 7 

1 3] [2 7 ] 
4 6 

, then A' = 1 -4 - (3X2) 
3 6 

Result 2A.4. For all matrices A, B ,  and C (of equal dimension) and scalars 
c and d, the following hold: 

(a) (A + B) + C = A + (B + C) 

(b) A +  B = B + A  

(c) c (A + B )  = cA + cB 
(d) ( c  + d)A = cA + dA 
(e) (A + B) ' = A' + B '  (That is, the transpose of the sum i s  equal to  the 

sum of the transposes.) 
(f) ( cd)A = c (dA) 
(g) ( cA) ' = cA ' • 

Definition 2A.20. If an arbitrary matrix A has the same number of rows and 
columns, then A is called a square matrix. The matrices I, I, and E given after 
Definition 2A.13 are square matrices. 

Definition 2A.21. Let A be a k  X k (square) matrix. Then A is said to be 
symmetric if A = A' . That is, A is symmetric aij = aj i , i = 1 , 2, . . .  , k, j  = 1 , 2, . . .  , k. 

Examples of symmetric matrices are 

[ 1 0 OJ 
I = 0 1 0 , (3 X3 ) Q Q 1 

B = (4X 4) 

a c e f 
c b g d 
e g c a 
f d a d 



92 Chapter 2 Matr ix Algebra and Random Vectors 

Definition 2A.22. The k X k identity matrix, denoted by I , is the 
(kxk ) 

square matrix with ones on the main (NW-SE) diagonal and zeros elsewhere. The 
3 X 3 identity matrix is shown before this definition. 

Definition 2A.23 (Matrix Multiplication). The product AB of an m X n matrix 
A = {ai j } and an n X k matrix B = {bi j} is the m X k matrix C whose elements are 

n 
e ·  · = " a - obo · l j  � l t, q €= 1 

i = 1 ,  2, . . .  , m j = 1 ,  2, . . . , k 

Note that for the product AB to be defined, the column dimension of A must equal 
the row dimension of B. If that is so, then the row dimension of AB equals the row 
dimension of A, and the column dimension of AB equals the column dimension of B. 

For example, let 

Then 

where 

A - [3 (2X 3 ) 4 
-
0
1 2

5] and B = [ � -�] (3 X2) 4 3 

[
4
3 -1  2] [ � -�] _ [ 1 1  20] _ [e1 1  e1 2] 

0 5 4 3 32 31 e2 1 e22 
(2X3 ) (3X2) (2X2) 

e1 1  = ( 3 ) ( 3 )  + ( - 1 ) ( 6 )  + (2 ) (4 ) = 11 
e 1 2 = ( 3 )  ( 4) + ( - 1 )  ( -2 ) + ( 2 )  ( 3 )  = 20 
c2 1 = ( 4 ) ( 3 )  + (0 ) ( 6 )  + ( 5 ) (4 )  = 32 
e22 = ( 4) ( 4) + ( 0) ( -2) + ( 5 )  ( 3 ) = 31 

As an additional example, consider the product of two vectors. Let 

1 2 
0 

and 
-3 

x =  y =  -1 -2 
3 -8 

Then x '  = [ 1  0 -2 3 ] and 

x 'y  = [ 1 0 -2 3 ]  

2 
-3 

= [-20 J = [ 2 -3 -1 -8  J - 1 
-8 

1 
0 

-2 
3 

= y 'x  

Note that the product xy is undefined, since x is a 4 X 1 matrix and y is a 4 X 1 ma
trix, so the column dim of x, 1, is unequal to the row dim of y, 4. If x and y are vec
tors of the same dimension, such as n X 1 ,  both of the products x 'y  and xy' are 
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defined. In particular, y' x = x'y = x1 y1 + x2y2 + · · · + XnYn , and xy' is an n X n 
matrix with i, jth element xiyj . 

Result 2A.5. For all matrices A, B. and C (of dimensions such that the indi-
cated products are defined) and a scalar c, 

(a) c (AB) = ( cA)B 

(b) A(BC) = (AB)C 
(c) A(B + C) = AB + AC 

(d) (B + C)A = BA + CA 

(e) (AB ) ' = B' A' 

More generally, for any xj such that Axj is defined, 
n n 

(f) 2: Axj = A 2: xj 
j=l j=l 

• 

There are several important differences between the algebra of matrices and the 
algebra of real numbers. Two of these differences are as follows: 

1. Matrix multiplication is, in general, not commutative. That is, in general, 
AB # BA. Several examples will illustrate the failure of the commutative law 
(for matrices) . 

but 

is not defined. 

but 

Also, [4 -1] [ 2 1 ] = [ 11 OJ 0 1 -3 4 -3 4 
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but [ 2 1 ] [4 -1] [ 8 -1 ] 
-3 4 0 1 - -12 7 

2. Let 0 denote the zero matrix, that is, the matrix with zero for every element. In 
the algebra of real numbers, if the product of two numbers, ab, is zero, then 
a = 0 or b = 0. In matrix algebra, however, the product of two nonzero ma
trices may be the zero matrix. Hence, 

AB 0 
(mXn ) ( n Xk) (mXk) 

does not imply that A = 0 or B = 0. For example, 

It is true, however, that if either A = 0 or B = 0 , then 
A B = 0 . (mX n ) (mXn ) (nX k) (n X k ) 

(mXn ) (n Xk ) (mXk) 

Definition 2A.24. The determinant of the square k X k matrix A = { ai j} , de
noted by I A I, is the scalar 

I A I = a1 1  if k = 1 
k 

I A I = � a1 j i A1 j l ( - 1 ) 1 +j if k > 1 
j= l 

where A1j is the ( k - 1 )  X ( k - 1 ) matrix obtained by deleting the first row and jth k 
column of A. Also, I A I = � aij I Aij I ( -1 ) i+j, with the ith row in place of the first row. 

j= l 

3 
7 
2 

Examples of determinants (evaluated using Definition 2A.24) are 

1 3 
6 4 = 1 1 4 1 ( - 1 )2 + 3 1 6 1 ( - 1 )3 = 1 (4) + 3 ( 6 ) ( - 1 )  = -14 

In general, 

1 6 
4 5 = 3 4 5 ( - 1 ) 2 + 1 7 5 ( - 1 ) 3 + 6  7 4 ( - 1 ) 4 -7 -7 1 1 2 1 2 -7 

= 3 (39 )  - 1 ( -3) + 6 ( -57) = -222 
1 0 0 1 
0 1 0 = 1 0 ( - 1 )2 + 0 

0 0 ( - 1 ) 3 + 0 
0 1 ( -1 )4 = 1 ( 1 )  = 1 

0 0 1 0 1 0 1 0 0 
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If I is the k X k identity matrix, I I I = 1 . 

a1 1  a 1 2 a 1 3 
a2 1 a22 a23 
a3 1 a3 2 a3 3  

= a1 1a22a3 3  + a1 2a2 3a3 1 + a2 1 a3 2a 1 3 - a3 1 a22a 1 3 - a2 1 a 1 2a3 3  - a32a2 3a1 1 
The determinant of any 3 X 3 matrix can be computed by summing the products of 
elements along the solid lines and subtracting the products along the dashed lines in 
the following diagram. This procedure is not valid for matrices of higher dimension, 
but in general, Definition 2A.24 can be employed to evaluate these determinants. 

' ..... ...... ' .... "),. '<  
.... .... ...... � , ...... ' 

' 
\ 

\ 

We next want to state a result that describes some properties of the determinant. 
However, we must first introduce some notions related to matrix inverses. 

Definition 2A.25. The row rank of a matrix is the maximum number of linearly 
independent rows, considered as vectors (that is, row vectors) . The column rank of 
a matrix is the rank of its set of columns, considered as vectors. 

For example, let the matrix 

A = [� ! - � ] 
0 1 -1  

The rows of  A,  written as vectors, were shown to  be linearly dependent after Defin
ition 2A.6. Note that the column rank of A is also 2, since 

but columns 1 and 2 are linearly independent. This is no coincidence, as the follow
ing result indicates. 
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Result 2A.6. The row rank and the column rank of a matrix are equal. • 

Thus, the rank of a matrix is either the row rank or the column rank. 

Definition 2A.26. A square matrix A is nonsingular if A x 0 
(kx k ) (kx k) (k x 1 ) (kX 1 ) 

implies that x 0 . If a matrix fails to be nonsingular, it is called singular. 
(k X 1 ) (k X 1 ) 

Equivalently, a square matrix is nonsingular if its rank is equal to the number of rows 
(or columns) it has. 

Note that Ax = x1a1 + x2a2 + · · · + xkak, where ai is the ith column of A, so 
that the condition of nonsingularity is just the statement that the columns of A are 
linearly independent. 

Result 2A.7. Let A be a nonsingular square matrix of dimension k X k. Then 
there is a unique k X k matrix B such that 

AB = BA = I  

where I is the k X k identity matrix. • 

Definition 2A.27. The B such that AB = BA = I is called the inverse of A and 
is denoted by A-1 . In fact, if BA = I or AB = I, then B = A-\ and both products 
must equal I. 

s1nce 

For example, 

[2 3] [ 2_ _ ;?_] A = has A-1 = i i 1 5 - - -
7 7 

[2 3] [ t - �] = [ t - �] [2 3] 
= [1 01 ] 1 5 - 7  7 - 7  7 1 5 0 

Result 2A.8. 

(a) The inverse of any 2 X 2 matrix 

is given by 
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(b) The inverse of any 3 X 3 matrix 

is given by 

-1 - 1 
A - TAf 

In both (a) and (b) , it is clear that I A I # 0 if the inverse is to exist . 
(c) In general, A-1 has j, ith entry [ I Aij Il l A I ]  ( - 1  ) i+j, where A i j is the matrix ob-

tained from A by deleting the ith row and jth column. • 

Result 2A.9. For a square matrix A of dimension k X k, the following are 
equivalent: 

(a) A x = 0 implies x = 0 (A is nonsingular) . 
( kXk ) (kX l ) ( kX l ) (k X 1 ) (kX l ) 

(b) I A I # 0. 
(c) There exists a matrix A-1 such that AA-1 = A-1 A = I . 

(k Xk) 
• 

Result 2A.l0. Let A and B be square matrices of the same dimension, and let 
the indicated inverses exist. Then the following hold: 

(a) (A-1 ) ' = (A' )-1 

(b) (AB )-1 = B-1A-1 

The determinant has the following properties. 

Result 2A.ll. Let A and B be k X k square matrices. 

(a) I A I = l A ' I 
(b) If each element of a row (column) of A is zero, then I A I = 0 
(c) If any two rows (columns) of A are identical, then I A I = 0 
(d) If A is nonsingular, then I A I = 1/ l A-1 1 ;  that is, I A I I  A-1 1 = 1 .  
(e) I AB I = I A I I  B I 
(f) I cA I = ck I A I , where c is a scalar. 

• 

You are referred to [6] for proofs of parts of Results 2A.9 and 2A.11 .  Some of 
these proofs are rather complex and beyond the scope of this book. • 
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Definition 2A.28. Let A = { a i j } be a k X k square matrix. The trace of the 
k 

matrix A, written tr (A) ,  is the sum of the diagonal elements; that is, tr (A) = � a i i .  
i= 1 

Result 2A.l2. Let A and B be k X k matrices and c be a scalar. 

(a) tr ( c A) = c tr (A) 
(b) tr (A ± B)  = tr (A) ± tr (B )  
(c) tr (AB)  = tr (BA) 
(d) tr (B-1AB ) = tr (A) 

k k 
(e) tr (AA' ) = � � arj 

i = 1 j= 1 
• 

Definition 2A.29. A square matrix A is said to be orthogonal if its rows, con
sidered as vectors, are mutually perpendicular and have unit lengths; that is, AA' = I. 

Result 2A.l3. A matrix A is orthogonal if and only if A-1 = A' .  For an or
thogonal matrix, AA' = A' A = I, so the columns are also mutually perpendicular 
and have unit lengths. • 

An example of an orthogonal matrix is 

A =  

1 1 
2 2 
1 1 
2 - 2  1 1 
2 2 1 1 
2 2 

1 1 
2 2 1 1 
2 2 
1 1 

- 2  2 1 1 
2 2 

Clearly, A = A' ,  so AA' = A' A = AA. We verify that AA = I = AA' = A' A, or 

1 1 1 1 1 1 1 1 1 0 0 0 - 2  2 2 2 - 2  2 2 2 1 1 1 1 1 1 1 1 0 1 0 0 2 2 2 2 2 - 2  2 2 1 1 1 1 1 1 1 1 0 0 1 0 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 0 0 0 1 2 2 2 2 2 2 2 - 2  
A A I 

so A' = A-\ and A must be an orthogonal matrix. 
Square matrices are best understood in terms of quantities called eigenvalues 

and eigenvectors. 

Definition 2A.30. Let A be a k X k square matrix and I be the k X k identi
ty matrix. Then the scalars A1 , A2 , • . .  , Ak satisfying the polynomial equation 
I A - AI I = 0 are called the eigenvalues (or characteristic roots) of a matrix A. The 
equation I A - AI I = 0 (as a function of A) is called the characteristic equation. 

For example, let 

A = [� �] 
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I A - AI I = c � J - A[� n 
= 

1 - A 0 
1 3 _ A 

= ( 1  - A) ( 3  - A) = 0 

implies that there are two roots, A1 = 1 and A2 = 3 . The eigenvalues of A are 3 
and 1 .  Let 

A =  [ �4
2

3 

�� -�] -2 10 

Then the equation 

13 - A -4 2 
I A - AI I = -4 13 - A -2 = -A3 + 36A2 - 405A + 1458 = 0 

2 -2 10 - A 

has three roots: A1 = 9, A2 = 9, and A3 = 18; that is, 9, 9, and 18 are the eigenvalues of A. 

Definition 2A.31. Let A be a square matrix of dimension k X k and let A be 
an eigenvalue of A. If x is a nonzero vector ( x # 0 ) such that 

(kX l ) (kX l ) (k X l ) 
Ax = Ax 

then x is said to be an eigenvector (characteristic vector) of the matrix A associated 
with the eigenvalue A. 

An equivalent condition for A to be a solution of the eigenvalue-eigenvector 
equation is I A - AI I = 0. This follows because the statement that Ax = Ax for some 
A and x # 0 implies that 

0 = (A - AI)x = x1 col 1 (A - AI) + · · · + xk colk(A - AI) 
That is, the columns of A - AI are linearly dependent so, by Result 2A.9 (b ) ,  

I A - AI I = 0 ,  as asserted. Following Definition 2A.30, we have shown that the 
eigenvalues of 

A =  c �] 
are A1 = 1 and A2 = 3 .  The eigenvectors associated with these eigenvalues can be 
determined by solving the following equations: 
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From the first expression, 

or 

xl = xl 
x1 + 3x2 = x2 

x1 = -2x2 

There are many solutions for x1 and x2 • 
Setting x2 = 1 (arbitrarily) gives x1 = -2, and hence, 

is an eigenvector corresponding to the eigenvalue 1 .  From the second expression, 

x1 = 3x1 
x1 + 3x2 = 3x2 

implies that x1 = 0 and x2 = 1 (arbitrarily) , and hence, 

X = [�] 
is an eigenvector corresponding to the eigenvalue 3 .  It is usual practice to deter
mine an eigenvector so that it has length unity. That is, if Ax = Ax, we take 
e = x/ Vx'x as the eigenvector corresponding to A. For example, the eigenvector 
for A1 = 1 is e1 = [ -2/VS,  1/VS] . 

Definition 2A.32. A quadratic form Q(x) in the k variables x1 , x2 , • • •  , xk is 
Q(x) = x' Ax, where x' = [x1 , x2 , • • •  , xk ] and A is a k X k symmetric matrix. 

k k 
Note that a quadratic form can be written as Q(x)  = � � ai jxixj . For example, 

i= l j= l 

Q(x) = [ x1 x2 ] [ � � J 
Q(x) = [x1 x2 x3 ] [ � 

Any symmetric square matrix can be reconstructured from its eigenvalues and 
eigenvectors. The particular expression reveals the relative importance of each pair 
according to the relative size of the eigenvalue and the direction of the eigenvector. 

Result 2A.l4. The Spectral Decomposition. Let A be a k X k symmetric ma
trix. Then A can be expressed in terms of its k eigenvalue-eigenvector pairs ( Ai , ei) as 

k 
A =  " A -e -e � � l l l  i= l  • 
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For example, let 

Then 

A =  [2.2 .4] .4 2.8 

I A - AI I = A2 - SA + 6.16 - .16 = (A - 3 ) (A - 2) 

so A has eigenvalues A1 = 3 and A2 = 2. The corresponding eigenvectors are 
e1 = [ 1/ v'5, 2/v'5] and e2 = [2/v'S,  -1/v'S ] , respectively. Consequently, 

1 

A = [2.2 .4] = 3 v'5 
.4 2.8 2 

v'5 

[_
1 �] + 2 

v'S v'S  

- [ 1 :� �:!] + [ � :� - :!] 

2 
v'5 
-1  
v'5 

[ 2 -1  J v'S v'S  

The ideas that lead to the spectral decomposition can be extended to provide 
a decomposition for a rectangular, rather than a square, matrix. If A is a rectangu
lar matrix, then the vectors in the expansion of A are the eigenvectors of the square 
matrices AA' and A' A. 

Result 2A.15. Singular-Value Decomposition. Let A be an m X k matrix of 
real numbers. Then there exist an m X m orthogonal matrix U and a k X k orthog
onal matrix V such that 

A =  UAV' 

where the m X k matrix A has ( i, i ) entry Ai > 0 for i = 1 ,  2, . . .  , min (m, k) and the 
other entries are zero. The positive constants Ai are called the singular values of A. • 

The singular-value decomposition can also be expressed as a matrix expansion 
that depends on the rank r of A. Specifically, there exist r positive constants 
A1 , A2 , . . .  , Ar , r orthogonal m X 1 unit vectors u1 , u2 , . . .  , u, and r orthogonal k X 1 
unit vectors v1 , v2 , . . .  , vr , such that 

r 
A = � Aiuivi = UrArV� 

i = l  

where ur = [ ul ' u2 , . . .  ' Ur ] , vr = [ vl ' v2 , . . .  ' Vr ] , and Ar i s  an r X r diagonal matrix 
with diagonal en tries Ai . 

Here AA' has eigenvalue-eigenvector pairs ( Ar , ui ) ,  so 

AA' u ·  = A?u .  l l l 

with Ai , A� ,  . . .  , A; > 0 = A;+ 1 , A;+2 , . . . , A� (for m > k). Then vi = Aj1A'ui . Alter
natively, the vi are the eigenvectors of A' A with the same nonzero eigenvalues Ar . 
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The matrix expansion for the singular-value decomposition written in terms of 
the full dimensional matrices U, V, A is 

A = U A V' 
(mxk) (mXm) (mxk) (k Xk ) 

where U has m orthogonal eigenvectors of AA' as its columns, V has k orthogonal 
eigenvectors of A' A as its columns, and A is specified in Result 2A.15 .  

Then 

For example, let 

A = [ 3 1 1 ] 
-1  3 1 

AA, = [ 3 1 1 J [ � -� ] = [ 11  1 J -1  3 1 
1 1 

1 1 1  

You may verify that the eigenvalues 'Y = A2 o f  AA' satisfy the equation 
y2 - 22y + 120 = (y - 12) (y - 10) , and consequently, the eigenvalues are 
y1 = AI = 12 and y2 = A� = 10. The corresponding eigenvectors are 

ul = [ � � J and u2 = [ � � J respectively. 

Also, 

so j A ' A - yl l = -y3 - 22y2 - 120y = -y(y - 12) ( y  - 10) , and the eigenvalues 
are y1 = AI = 12, y2 = A� = 10, and y3 = A� = 0. The nonzero eigenvalues are the 
same as those of AA' .  A computer calculation gives the eigenvectors 

Eigenvectors v1 and v2 can be verified by checking: [ 10 0 
A 'Av1 = � 10 

4 [ 10 0 
A 'Av2 = � 10 

4 

�] � [�] = 12 � [�] = Aiv1 

�] -1 [ -�] = 10 -
1 [ -�] = Ah2 

2
vs o vs o 
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Taking A1 = VI2 and A2 = v'IO , we find that the singular-value decomposition of A is 

A = [ 3 -1  
1 1 J 3 1 

1 1 
-

[� �] + v'IO 
- [� o] = VI2 v'2 2 v'2 -1  

- -

1 v'6 -1  v'5 
-

v'2 v'2 

The equality may be checked by carrying out the operations on the right-hand side. 
The singular-value decomposition is closely connected to a result concerning the 

approximation of a rectangular matrix by a lower-dimensional matrix, due to Eckart 
and Young ( [3] ) . If a m  X k matrix A is approximated by B, having the same di
mension but lower rank, the sum of squared differences 

m k 
:L :L ( aij - bij )2 = tr [ (A - B) (A - B) ' ]  
i= l  j= l  

Result 2A.16. Let A be an m X k matrix of real numbers with m > k and 
singular value decomposition UA V' . Let s < k = rank (A) .  Then 

s 
B = " A·U·V� � l l l  i= l  

is the rank-s least squares approximation to  A .  It minimizes 

tr [ (A - B) (A - B) ' J 

over all m X k matrices B having rank no greater than s. The minimum value, or k 
error of approximation, is :L Af . • 

i= s+ l 

To establish this result, we use UU' = Im and VV ' = Ik to write the sum of 
squares as 

tr [ (A - B)  (A - B) ' ]  = tr [UU' (A - B) VV' (A - B ) ' ]  

= tr [U' (A - B) VV' (A - B ) 'UJ 

m k m 
= tr [ ( A - C ) (A - C) ' ] = :L :L ( Aij - cij )2 = :L ( Ai - ci i ) 2 + :L :L  crj i= l  j = l  i= l  i=l=j 

where C = U' BV. Clearly, the minimum occurs when ci j = 0 for i # j and ci i  = Ai for 
s 

the s largest singular values. The other ci i = 0. That is, UBV' = As or B = :L Aiuivi . 
i= l 
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EXERCISES  

2.1. Let x' = [5 ,  1 ,  3 ] and y' = [ -1 ,  3 , 1 ] . 
(a) Graph the two vectors. 
(b) Find (i) the length of x, (ii) the angle between x and y, and (iii) the projection 

of y on x. 
(c) Since x = 3 and y = 1 ,  graph [5 - 3, 1 - 3, 3 - 3 ]  = [2 , -2, OJ and 

[ -1 - 1, 3 - 1, 1 - 1 ] = [ -2, 2, OJ .  
2.2. Given the matrices 

perform the indicated multiplications. 
(a) SA 
(b) BA 
(c) A'B ' 
(d) C'B 
(e) Is AB defined? 

2.3. Verify the following properties of the transpose when 

A = [ � � J B = D � � J and C = D � J 
(a) (A ' ) ' = A  
(b) ( c' ) -1 = ( c -1 ) ' 
(c) (AB ) ' = B ' A' 
(d) For general A and B , (AB) ' = B ' A ' .  

(mxk) (kx€) 
2.4. When A-1 and B-1 exist, prove each of the following. 

(a) (A' )-1 = (A-1 ) ' 
(b) (AB )-1 = B-1A-1 
Hint: Part a can be proved by noting that AA-1 = I, I =  1 ' ,  and (AA-1 ) ' = 
(A-1 ) 'A ' .  Part b follows from (B-1A-1 )AB = B-1 (A-1A)B = B-1B = I. 

2.5. Check that 

is an orthogonal matrix. 
2.6. Let 

(a) Is A symmetric? 

[ 5 12] 
Q = - �� 1: 

13 13 

A =  [ 9 -2] -2 6 

(b) Show that A is positive definite. 



2.7. Let A be as given in Exercise 2.6. 
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(a) Determine the eigenvalues and eigenvectors of A. 
(b) Write the spectral decomposition of A. 
(c) Find A-1 . 
(d) Find the eigenvalues and eigenvectors of A-1 . 

2.8. Given the matrix 
A = [ 1 2] 2 -2 

find the eigenvalues A1 and A2 and the associated normalized eigenvectors e1 and 
e2 • Determine the spectral decomposition (2-16) of A. 

2.9. Let A be as in Exercise 2.8. 
(a) Find A-1 . 
(b) Compute the eigenvalues and eigenvectors of A-1 . 
(c) Write the spectral decomposition of A-\ and compare it with that of A 
from Exercise 2.8 . 

2.10. Consider the matrices 

A = [ : .001 ::���] and B = [ : .001 : :���001] 
These matrices are identical except for a small difference in the ( 2, 2) position. 
Moreover, the columns of A (and B) are nearly linearly dependent. Show that 
A-1 · ( -3)B-1 . Consequently, small changes-perhaps caused by rounding
can give substantially different inverses. 

2.11. Show that the determinant of the p X p diagonal matrix A = { aij} with 
ai j = 0, i # j, is given by the product of the diagonal elements ; thus, 
I A I = a1 1a22 · · · app · 
Hint: By Definition 2A.24, I A I = a1 1A1 1  + 0 + · · · + 0. Repeat for the sub
matrix A1 1  obtained by deleting the first row and first column of A. 

2.12. Show that the determinant of a square symmetric p X p matrix A can be ex
pressed as the product of its eigenvalues A1 , A2 , . . . , AP ; that is, I A I = Tif=1 Ai . 
Hint: From (2-16) and (2-20) , A = PAP' with P ' P = I. From Result 2A.11 (e), 
I A I = I PAP ' I = I P I I AP ' I = I P I I A I I P ' I = I A I I I I , since I I I = I P ' P I  = I P' I I P I · Apply Exercise 2.1 1 . 

2.13. Show that I Q I = + 1 or -1 if Q is a p X p orthogonal matrix. 
Hint: I QQ ' I = 1 1 1 . Also, from Result 2A.11 , 1 QQ ' I = I Q I I Q ' I = I Q I2 • Thus, 
I Q 12 = I I j .  Now use Exercise 2.11 . 

2.14. Show that Q' A Q and A have the same eigenvalues if Q is orthogonal. 
(pXp) (pXp) (pXp) (pXp) 

Hint: Let A be an eigenvalue of A. Then 0 = I A - AI I · By Exercise 2.13 and Result 2A.1 1 (e) , we can write 0 = I Q ' I I A - AI I I Q I = I Q' AQ - AI I , since 
Q ' Q = I. 

2.15. A quadratic form x' Ax is said to be positive definite if the matrix A is positive 
definite. Is the quadratic form 3xi + 3x� - 2x1 x2 positive definite? 
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2.16. Consider an arbitrary n X p matrix A. Then A' A is a symmetric p X p matrix. 
Show that A' A is necessarily nonnegative definite. 
Hint: Set y = Ax so that y' y = x' A' Ax. 

2.17. Prove that every eigenvalue of a k X k positive definite matrix A is positive. 
Hint: Consider the definition of an eigenvalue, where Ae = Ae. Multiply on the 
left by e' so that e' Ae = Ae ' e. 

2.18. Consider the sets of points ( x1 , x2 ) whose "distances" from the origin are given by 

for c2 = 1 and for c2 = 4. Determine the major and minor axes of the ellipses 
of constant distances and their associated lengths. Sketch the ellipses of con
stant distances and comment on their positions. What will happen as c2 
increases? 

m 
2.19. Let A 112 = � \IT; eie; = P A 112P ' ,  where PP ' = P' P = I. (The A/s and the 

(mXm) i= 1 e; 's are the eigenvalues and associated normalized eigenvectors of the matrix 
A.) Show Properties (1)-( 4) of the square-root matrix in (2-22) . 

2.20. Determine the square-root matrix A112, using the matrix A in Exercise 2.3. Also, 
determine A-112, and show that A112 A-112 = A-112 A112 = I. 

2.21. (See Result 2A.15) Using the matrix 

(a) Calculate A' A and obtain its eigenvalues and eigenvectors. 
(b) Calculate AA' and obtain its eigenvalues and eigenvectors. Check that the 
nonzero eigenvalues are the same as those in part a. 

(c) Obtain the singular-value decomposition of A. 

2.22. (See Result 2A.15) Using the matrix 

(a) Calculate AA' and obtain its eigenvalues and eigenvectors. 
(b) Calculate A' A and obtain its eigenvalues and eigenvectors. Check that the 
nonzero eigenvalues are the same as those in part a. 

(c) Obtain the singular-value decomposition of A. 

2.23. Verify the relationships V112 pV112 = I and p = (V112 ) -1I (V112 ) -r, where I is 
the p X p population covariance matrix [Equation (2-32)] , p is the p X p pop
ulation correlation matrix [Equation (2-34)] , and V112 is the population standard 
deviation matrix [Equation (2-35)] . 



2.24. Let X have covariance matrix 

Find 
(a) I-1 
(b) The eigenvalues and eigenvectors of I. 
(c) The eigenvalues and eigenvectors of I-1 . 

2.25. Let X have covariance matrix 

(a) Determine p and V112. 
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(b) Multiply your matrices to check the relation V112 pV112 = I. 

2.26. Use I as given in Exercise 2.25 . 
(a) Find p1 3 . 
(b) Find the correlation between X1 and � X2 + � X3 • 

2.27. Derive expressions for the mean and variances of the following linear combi
nations in terms of the means and co variances of the random variables X1 , X2 , and x3 .  
(a) X1 - 2X2 
(b) -x1 + 3X2 (c) X1 + X2 + X3 
(e) X1 + 2X2 - X3 
(f) 3X1 - 4X2 if X1 and X2 are independent random variables. 

2.28. Show that 
Cov ( c1 1x1 + c1 2x2 + . . .  + C1 pxp , c2 1x1 + c22x2 + . . . + C2pxp) = c1Ixc2 
where c1 = [ c1 1 , c1 2 , . . . , c1 P ] and c2 = [ c2 1 , c22 , . . .  , c2P ] .  This verifies the off
diagonal elements CixC' in (2-45) or diagonal elements if c1 = c2 . 
Hint: By (2-43), Z1 - E(Z1 ) = c1 1 (X1 - JL1 ) + · · · + c1 p (Xp - JLp) and 
Z2 - E(Z2) = c2 1 (X1 - JL1 ) + · · · + c2p (Xp - JLp) · So Cov (Z1 , Z2) = 
E[ (Z1 - E(Z1 ) ) (Z2 - E(Z2 ) ) ] = E[ ( c1 1 (X1 - JL1 ) + 
. . .  + C1 p ( Xp - JLp) )  ( C2 1 ( X1 - JL1 ) + C22 ( X2 - JL2 ) + . . .  + C2p ( Xp - JLp) ) ] . The product 
( c1 1 (X1 - JL1 ) + C1 2 (X2 - JL2) + · · · 

+ c1 p (Xp - JLp) )  ( c2 1 (X1 - JL1 ) + C22 (X2 - JL2) + · · ·  + c2p (Xp - JLp) )  

= (� Cle (Xe - JLe) ) (�
1 
C2m (Xm - JLm) ) 

p p 
= L L Cu; C2m(Xe - JLe) (Xm - JLm) 

€= 1  m= 1  
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has expected value 
p p 
L L C1eC2ma-em = [ cl b · · · , C1 p ]I [c2 r , · · · , C2p ] ' . €= 1 m= l 

Verify the last step by the definition of matrix multiplication. The same steps 
hold for all elements. 

2.29. Consider the arbitrary random vector X' = [X1 , X2 , X3 , X4 , X5 ] with mean 
vector IL' = [JL1 , JL2 , JL3 , JL4 , JLs J .  Partition X into 

[X( l )J X = -- -- - - -X (2) 
where 

X(1 l = [ �J and X(2l = [�; ] 
Let I be the covariance matrix of X with general element a-i k .  Partition I into 
the covariance matrices ofX( l ) and X(2) and the covariance matrix of an element 
of X( l ) and an element of X(2) . 

2.30. You are given the random vector X' = [X1 , X2 , X3 , X4] with mean vector 
ILx = [ 4, 3, 2, 1 J and variance-covariance matrix 

3 0 2 2 

Ix = 0 1 1 0 
2 1 9 -2 
2 0 -2 4 Partition X as 
xl 

X =  x2 = [i-��;J - - - - - -
x3 
x4 

Let 
A = [1 2] and B = [� -2] 

-1 
and consider the linear combinations AX( l ) and BX(2) . Find 
(a) E(X( 1 ) ) 
(b) E(AX( 1 ) ) 
(c) Cov (X( 1 ) ) 
(d) Cov (AX(1 ) ) 
(e) E(X(2) ) 
(f) E(BX(2) ) 
(g) Cov (X(2) ) 
(h) Cov (BX(2) ) 
(i) Cov (X( 1 ) , X(2) ) 
(j)  Cov ( AX(l ) , BX(2) ) 
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2.31. Repeat Exercise 2.30, but with A and B replaced by 

[2 -1] A = [ 1 - 1  J and B = 0 1 

2.32. You are given the random vector X' = [X1 , X2 , • • •  , X5 ] with mean vector 
IL'x = [2, 4, -1 ,  3 , OJ and variance-covariance matrix 

4 -1 1 1 0 2 2 
-1  3 1 -1  0 

Ix = 1 1 6 1 -1  2 1 -1  1 4 0 - 2 
0 0 -1  0 2 

Partition X as 

x1 
x2 

= [i���-J X =  x3 
x4 
Xs 

Let 

A = C -� ] and B = C 1 -�J 1 

and consider the linear combinations AX(1 ) and BX(2) . Find 
(a) E(X(1 ) ) 
(b) E(AX(1 ) ) 
(c) Cov (X (1 ) ) 
(d) Cov (AX( 1 ) ) 
(e) E(X(2) ) 
(f) E(BX(2) ) 
(g) Cov (X (2) ) 
(h) Cov (BX(2) ) 
(i) Cov (X (1 ) , X(2) ) 
(j) Cov (AX(1 ) , BX(2) ) 

2.33. Repeat Exercise 2.32, but with X partitioned as 

X =  
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and with A and B replaced by 

A = [ � - � � J and B = [ � _ n 
2.34. Consider the vectors b '  = [2, - 1 ,  4, OJ  and d' = [ - 1 ,  3 ,  -2, 1 ] . Verify the 

Cauchy-Schwarz inequality (b ' d) 2 < (b 'b ) (d ' d) . 
2.35. Using the vectors b '  = [ -4, 3 ]  and d' = [ 1 ,  1 ] ,  verify the extended Cauchy

Schwarz inequality (b ' d) 2 < (b ' Bb) ( d' B-1 d) if 

B = [ -� -�] 
2.36. Find the maximum and minimum values of the quadratic form 

4xi + 4x� + 6x1 x2 for all points x' = [ x1 , x2 ] such that x' x = 1 .  
2.37. With A as given in Exercise 2.6, find the maximum value of  x' Ax for x 'x  = 1 .  
2.38. Find the maximum and minimum values of  the ratio x' Ax/x' x  for any nonzero 

vectors x' = [ x1 , x2 , x3 ] if 

2.39. Show that 

A =  [ �4
2

3 �� -� ] 
-2 10 

s t 
A B C has ( i , j ) th entry � � au;bekckj (rXs ) ( sX t ) ( tXv )  €= 1 k= l 

t 
Hint: BC has ( e, j ) th entry � bekckj = dej · So A(BC) has ( i , j) th element 

k= l 

2.40. Verify (2-24) : E(X + Y) = E(X) + E(Y) and E(AXB) = AE(X)B. 

Hint: X + Y has Xij + Yij as its ( i , j) th element. Now, E (Xij + Yij) 

= E (Xij ) + E(Yij) by a univariate property of expectation, and this last quan

tity is the ( i , j) th element of E(X) + E(Y) .  Next (see Exercise 2.39) , AXB 

has ( i, j ) th entry � � aieXekbkj , and by the additive property of expectation, 
e k 

which is the ( i ,  j )th element of AE(X)B. 
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CHAPTER 

3 
Sample Geometry 

and Random Sampling 

3 . 1  INTRODUCTION 

With the vector concepts introduced in the previous chapter, we can now delve deep
er into the geometrical interpretations of the descriptive statistics x, Sn ,  and R; we 
do so in Section 3.2. Many of our explanations use the representation of the columns 
of X as p vectors in n dimensions. In Section 3 .3 we introduce the assumption that 
the observations constitute a random sample. Simply stated, random sampling implies 
that (1) measurements taken on different items (or trials) are unrelated to one an
other and (2) the joint distribution of all p variables remains the same for all items. 
Ultimately, it is this structure of the random sample that justifies a particular choice 
of distance and dictates the geometry for the n-dimensional representation of the 
data. Furthermore, when data can be treated as a random sample, statistical inferences 
are based on a solid foundation. 

Returning to geometric interpretations in Section 3 .4 , we introduce a single 
number, called generalized variance, to describe variability. This generalization of 
variance is an integral part of the comparison of multivariate means. In later sec
tions we use matrix algebra to provide concise expressions for the matrix products and 
sums that allow us to calculate X and sn directly from the data matrix X. The con
nection between x, Sn , and the means and covariances for linear combinations of 
variables is also clearly delineated, using the notion of matrix products. 

3.2 TH E GEOM ETRY OF TH E SAMPLE 

1 1 2  

A single multivariate observation is the collection of measurements on p different 
variables taken on the same item or trial. As in Chapter 1 ,  if n observations have 
been obtained,  the entire data set can be placed in an n X p array (matrix) : 
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X1 1  X1 2 Xl p X X2 1 X22 X2p = (nx p) 
Xn l Xn 2 Xn p 

Each row of X represents a multivariate observation. Since the entire set of mea
surements is often one particular realization of what might have been observed, we 
say that the data are a sample of size n from a p-variate "population." The sample then 
consists of n measurements, each of which has p components. 

As we have seen, the data can be plotted in two different ways. For the 
p-dimensional scatter plot, the rows of X represent n points in p-dimensional space. 
We can write 

X1 1  X1 2 Xl p x1 � 1st (multivariate ) observation X X2 1 X22 X2p x2 
(3-1) = (n Xp) 

Xn l Xn 2 Xnp x' n � nth (multivariate ) observation 

The row vector xj ,  representing the jth observation, contains the coordinates of a point. 
The scatter plot of n points in p-dimensional space provides information on the 

locations and variability of the points. If the points are regarded as solid spheres, 
the sample mean vector x, given by (1-8) ,  is the center of balance. Variability occurs 
in more than one direction, and it is quantified by the sample variance-covariance ma
trix Sn . A single numerical measure of variability is provided by the determinant of 
the sample variance-covariance matrix. When p is greater than 3, this scatter plot rep
resentation cannot actually be graphed. Yet the consideration of the data as n points 
in p dimensions provides insights that are not readily available from algebraic ex
pressions. Moreover, the concepts illustrated for p = 2 or p = 3 remain valid for 
the other cases. 

Example 3 . 1  (Computi ng the mean vector) 

Compute the mean vector x from the data matrix. X = [ -! � ] 
Plot the n = 3 data points in p = 2 space, and locate x on the resulting diagram. 

The first point, x1 , has coordinates x1 = [ 4, 1 ] .  Similarly, the remaining 
two points are x2 = [ -1 ,  3 ] and x3 = [ 3 ,  5 ] .  Finally, 

x = 4 - 1 + 3 

3 

1 + 3 + 5 
3 
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Figure 3.1  A plot of the data matrix 
X as n = 3 poi nts i n  p = 2 space. 

Figure 3 . 1  shows that x is the balance point (center of gravity) of the scat-
ter plot. • 

The alternative geometrical representation is constructed by considering the 
data as p vectors in n-dimensional space. Here we take the elements of the columns 
of the data matrix to be the coordinates of the vectors. Let 

X1 1  X1 2 Xl p 
X X2 1 X22 X2p = [yl i Y2 I 

i yp ] (3-2) = (nx p) : . .
. 

Xn l Xn 2 Xnp 
Then the coordinates of the first point y1 = [ x1 1 , x2 1 , . . . , xn 1 ] are the n measure
ments on the first variable. In general, the ith point yi = [ x1 i , x2 i , . . . , xn i ] is deter
mined by the n-tuple of all measurements on the ith variable. In this geometrical 
representation, we depict yr , . . . , yP as vectors rather than points, as in the p
dimensional scatter plot. We shall be manipulating these quantities shortly using the 
algebra of vectors discussed in Chapter 2. 

Example 3 .2 (Data as p vectors in n d imensions) 

Plot the following data as p = 2 vectors in n = 3 space : 

Here y1 = [ 4, - 1 ,  3 J and y2 = [ 1 ,  3 ,  5 ] .  These vectors are shown in Figure 3.2. • 

Many of the algebraic expressions we shall encounter in multivariate analysis 
can be related to the geometrical notions of length, angle, and volume. This is im
portant because geometrical representations ordinarily facilitate understanding and 
lead to further insights. 
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Figure 3.2 A p lot of the data matrix 
X as p = 2 vectors i n n = 3 space. 

Unfortunately, we are limited to visualizing objects in three dimensions, and 
consequently, the n-dimensional representation of the data matrix X may not seem 
like a particularly useful device for n > 3. It turns out, however, that geometrical 
relationships and the associated statistical concepts depicted for any three vectors 
remain valid regardless of their dimension. This follows because three vectors, even 
if n dimensional, can span no more than a three-dimensional space, just as two vec
tors with any number of components must lie in a plane. By selecting an appropri
ate three-dimensional perspective-that is, a portion of the n-dimensional space 
containing the three vectors of interest-a view is obtained that preserves both lengths 
and angles. Thus, it is possible, with the right choice of axes, to illustrate certain al
gebraic statistical concepts in terms of only two or three vectors of any dimension n. 
Since the specific choice of axes is not relevant to the geometry, we shall always label 
the coordinate axes 1 ,  2, and 3 .  

I t  i s  possible to give a geometrical interpretation of the process of finding a 
sample mean. We start by defining the n X 1 vector 1� = [ 1 , 1 ,  . . .  , 1 ] . (To simplify 
the notation, the subscript n will be dropped when the dimension of the vector 1n is 
clear from the context.) The vector 1 forms equal angles with each of the n coordi
nate axes, so the vector ( 1/Yn)1 has unit length in the equal-angle direction. Con
sider the vector yi = [ xl i , x2 i , . . .  , xn i J . The proj ection of Yi on the unit vector ( 1/Yn)1 is, by (2-8) , , ( 1 ) 1 

_ 
X1 i + X2 i + · · · + Xn i _ _ Y . - 1 - 1 - 1 - X ·1 z Vn Vn n z (3-3) 

That is, the sample mean xi = (xl i + x2 i + · · · + xnJ/n = yi1/n corresponds to the 
multiple of 1 required to give the projection of Yi onto the line determined by 1. 

Further, for each yi , we have the decomposition 

0 1 X� 

Y; -X,l 
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Figure 3.3 The decom posit ion of Yi 
i nto a mean component xi1 and  a 
deviation com ponent di = Yi - Xj1 ,  
i = 1 1  2 ,  3 .  

where xil is perpendicular to  Yi - xil . The deviation, or mean corrected, vector is 

d · = Y· - x-1 = l l l 

xl i - xi 
X2 i - xi 

(3-4) 

The elements of di are the deviations of the measurements on the ith variable from 
their sample mean. Decomposition of the Yi vectors into mean components and de
viation from the mean components is shown in Figure 3.3 for p = 3 and n = 3 .  

Example 3 . 3  (Decomposing a vector i nto its mean and deviation  
components) 

Let us carry out the decomposition of Yi into xil and di = Yi - xil, i = 1, 2, for 
the data given in Example 3.2: 

X = [ -� � ] 
Here x1 = (4 - 1 + 3 )/3 = 2 and x2 = ( 1 + 3 + 5 )/3 = 3, so 

Consequently, 



and 

Sect ion 3 . 2  The Geometry of the  Sample 1 1 7  

We note that .X11 and d 1 = y1 - .X11 are perpendicular, because 

( :Xl l) ' ( yl - :Xl l) = [2 2 2] [ -�] = 4 - 6 + 2 = 0 

A similar result holds for x21 and d2 = y2 - x21. The decomposition is 

• 

For the time being, we are interested in the deviation (or residual) vectors 
di = Yi - xil. A plot of the deviation vectors of Figure 3.3 is given in Figure 3.4. We 
have translated the deviation vectors to the origin without changing their lengths or 
orientations. 

Now consider the squared lengths of the deviation vectors. Using (2-5) and 
(3-4) , we obtain 

n L�� = dj di = � (xj i - xi )2 (3-5) 
j= l 

(Length of deviation vector )2 = sum of squared deviations 

3 

Figure 3.4 The deviation vectors di 
from F ig u re 3 .3 .  
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From (1-3) , we see that the squared length i s  proportional to the variance of the mea
surements on the ith variable. Equivalently, the length is proportional to the stan
dard deviation. Longer vectors represent more variability than shorter vectors. 

For any two deviation vectors di and dk , 
n 

didk == � ( xj i - xi ) (xjk - xk) 
j= l 

Let fJi k denote the angle formed by the vectors di and dk . From (2-6) , we get 

or, using (3-5) and (3-6) , we obtain 

� (xi ; - X; ) ( xik - Xk ) = �� ( xi ; - X; )
2 � � (xi k - Xk)

2 cos ( O; k ) 

so that [see (1-5)] 

(3-6) 

(3-7) 

The cosine of the angle is the sample correlation coefficient. Thus, if the two devia
tion vectors have nearly the same orientation, the sample correlation will be close to 
1 .  If the two vectors are nearly perpendicular, the sample correlation will be ap
proximately zero. If the two vectors are oriented in nearly opposite directions, the 
sample correlation will be close to -1 .  

Example 3 .4 (Ca lcu lati ng Sn and R from deviation  vectors) 

Given the deviation vectors in Example 3 .3 ,  let us compute the sample 
variance-covariance matrix Sn and sample correlation matrix R using the geo
metrical concepts just introduced. 

From Example 3 .3 , 

These vectors, translated to the origin, are shown in Figure 3.5 on page 119 .  Now, 

or s1 1  == 
13
4 • Also, 



3 
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dl ��--������ 2 I ,., 
..:: _ _ _ _ _ 

3 
4 

5 

8 or s22 = 3 .  Finally, 

2 

Figure 3.5 The deviat ion vectors d1  
and  d2 . 

dld2 = [2 -3 1 ]  [ -�] -2 = 3s1 2 

or s1 2 = ; . Consequently, 

and 

- �] 8 ' 3 
• 

The concepts of length, angle, and proj ection have provided us with a geomet
rical interpretation of the sample. We summarize as follows: 

1 The square of the length and the inner product are (n  - l ) su and ( n  - l )sib respectively, when 
the divisor n - 1 is used in the definitions of the sample variance and covariance. 
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3 .3 RANDOM SAMPLES AN D THE EXPECTED VALU ES OF TH E SAM PLE 
MEAN AN D COVARIANCE MATRIX 

In order to study the sampling variability of statistics like x and Sn with the ultimate 
aim of making inferences, we need to make assumptions about the variables whose 
observed values constitute the data set X. 

Suppose, then, that the data have not yet been observed, but we intend to col
lect n sets of measurements on p variables. Before the measurements are made, their 
values cannot, in general, be predicted exactly. Consequently, we treat them as ran
dom variables. In this context, let the (j, k ) -th entry in the data matrix be the random 
variable Xik · Each set of measurements Xi on p variables is a random vector, and 
we have the random matrix 

X1 1  X1 2 xl p X! 
X X21 X22 x2p X2 (3-8) = 

(n Xp) 
xn l Xn2 xnp X' n 

A random sample can now be defined. 
If the row vectors X1 , X2, . . .  , X� in (3-8) represent independent observations 

from a common joint distribution with density function f(x) = f( x1 , x2 , . . .  , xp ) , then 
X1 , X2 , . . .  , Xn are said to form a random sample from f(x) . Mathematically, 
X1 , X2 , . . .  , Xn form a random sample if their joint density function is given by the 
product f(x1 )f(x2 ) · · · f(xn ) ,  where f(xi) = f(xi 1 , xi2 ,  . . .  , xiP ) is the density func
tion for the jth row vector. 

Two points connected with the definition of random sample merit special attention: 

1. The measurements of the p variables in a single trial, such as Xj = 

[ Xi 1 , Xi2 , . . .  , Xi p ] , will usually be correlated. Indeed, we expect this to be the 
case. The measurements from different trials must, however, be independent. 

2. The independence of measurements from trial to trial may not hold when the 
variables are likely to drift over time, as with sets of p stock prices or p economic 
indicators. Violations of the tentative assumption of independence can have a 
serious impact on the quality of statistical inferences. 

The following examples illustrate these remarks. 

Example 3 .5  (Selecti ng a random sample) 

As a preliminary step in designing a permit system for utilizing a wilderness 
canoe area without overcrowding, a natural-resource manager took a survey 
of users. The total wilderness area was divided into subregions, and respon
dents were asked to give information on the regions visited, lengths of stay, and 
other variables. 

The method followed was to select persons randomly (perhaps using a 
random number table) from all those who entered the wilderness area during 
a particular week. All persons were equally likely to be in the sample, so the 
more popular entrances were represented by larger proportions of canoeists. 
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Here one would expect the sample observations to conform closely to the 
criterion for a random sample from the population of users or potential users. 
On the other hand, if one of the samplers had waited at a campsite far in the in
terior of the area and interviewed only canoeists who reached that spot, suc
cessive measurements would not be independent . For instance, lengths of stay 
would tend to be large. • 

Example 3.6 {A nonrandom sample) 

Because of concerns with future solid-waste disposal, a study was conducted of 
the gross weight of solid waste generated per year in the United States ("Char
acteristics of Municipal Solid Wastes in the United States, 1960-2000," Franklin 
Associates, Ltd. ) .  Estimated amounts attributed to x1 = paper and paperboard 
waste and x2 = plastic waste, in millions of tons, are given for selected years in 
Table 3 . 1 .  Should these measurements on X' = [X1 , X2] be treated as a ran
dom sample of size n = 6? No ! In fact, both variables are increasing over time. 
A drift like this would be very rare if the year-to-year values were independent 
observations from the same distribution. 

TABLE 3 . 1  SOL ID WASTE 

Year 

x1 (paper) 
x2 (plastics) 

1960 

29 .8 
.4 

1965 

37.9 
1 .4 

1970 

43 .9 
3 .0 

1975 

42.6 
4.4 

1980 

53.9 
7 .6 

1985 

61 .7 
9 .8 

• 

As we have argued heuristically in Chapter 1 ,  the notion of statistical indepen
dence has important implications for measuring distance. Euclidean distance ap
pears appropriate if the components of a vector are independent and have the same 
variances. Suppose we consider the location of the kth column 
Yk = [ X1 k , X2k , . . .  , xn k ] of X, regarded as a point in n dimensions. The location of 
this point is determined by the joint probability distribution 
f(yk ) = f(xl k ' X2k , . . .  , Xn k ) ·  When the measurements Xlk ' X2k ' . . .  , Xnk are a ran
dom sample, f(yk ) = f(x1 k , x2 k , . . .  , xn k ) = fk (x1 k )fk(x2k ) · · · fk (xn k ) and, conse
quently, each coordinate xj k contributes equally to the location through the identical 
marginal distributions fk ( x j k ) .  

If the n components are not independent or the marginal distributions are not 
identical, the influence of individual measurements (coordinates) on location is asym
metrical. We would then be led to consider a distance function in which the coordi
nates were weighted unequally, as in the "statistical" distances or quadratic forms 
introduced in Chapters 1 and 2. 

Certain conclusions can be reached concerning the sampling distributions of X 
and sn without making further assumptions regarding the form of the underlying 
joint distribution of the variables. In particular, we can see how X and Sn fare as point 
estimators of the corresponding population mean vector IL and covariance matrix I. 
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Result 3.1. Let X1 , X2 , . . . , Xn be a random sample from a joint distribution 
that has mean vector IL and covariance matrix I. Then X is an unbiased estimator 
of IL, and its covariance rna trix is 

That is, 

E(X )  = 1L 

- 1 Cov ( X ) = - I n 

For the covariance matrix Sn , 

Thus, 

(population mean vector) (population variance-covariance matrix) 
divided by sample size (3-9) 

(3-10) 

so [ nj ( n - 1 )  ] Sn is an unbiased estimator of I, while Sn is a biased estimator with 
(bias ) = E(Sn ) - I = - ( 1/n)I.  

Proof. Now, X = (X1 + X2 + · · · + Xn)fn. The repeated use of the proper
ties of expectation in (2-24) for two vectors gives 

- ( 1 1 1 ) E(X )  = E n X1 + n 
X2 + · · · + n 

Xn 

= E (� X1) + E (� X2) + 0 0 0 + E (� Xn) 
1 1 1 1 1 1 

= 
n E(X1 ) + n E(X2) + · · · + n E(Xn ) = 

n 
1L + n 1L + · · · + n 1L 

= IL 
Next, ( 1 n ) ( 1 n ) ' ( X - �-t ) ( X - �-t ) ' = 

n � (Xi - IL ) n &i (Xe - IL ) 

1 n n 
= 2 L L (Xj - IL ) (Xe - IL ) '  

n j= l €= 1 
so 

Cov( X )  = E( X - �-t ) ( X - �-t ) ' = :2 (� � E(Xi - �-t ) (Xe - �-t ) ' ) 
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For j # e, each entry in E(Xi - p.. ) (Xe - p.. ) ' is zero because the entry is the co
variance between a component of Xi and a component of Xe , and these are inde
pendent. [See Exercise 3 .17 and (2-29) .] 

Therefore, 

Cov ( X) = �2 (� E(X1 - p ) (X1 - p ) ' ) 
Since I = E(Xi - p.. ) (Xi - p.. ) ' is the common population covariance matrix for 
each Xi , we have 

Cov ( X) = � (± E(X1 - p ) (X1 - p ) ' ) = � (I + I + . . .  + I ) 
n i= l n n terms 

= _!_ (ni ) = (l) I n2 n 

To obtain the expected value of S11 , we first note that (Xi i - XJ (Xik - Xk) is 
the ( i, k )th element of (Xi - X) (Xi - X ) ' . The matrix representing sums of squares 
and cross products can then be written as 

n n ( n ) � (X1 - X )  (X1 - X ) ' = � (X1 - X )Xj + � (X1 - X )  ( -X) '  

n 
= " X -X'· - nX X' .£.,; 1 1 i= l 

n n 
since � (Xi - X)  = 0 and nX' = � Xj . Therefore, its expected value is i= l i= l 

For any random vector V with E(V) = #Lv and Cov (V) = Iv , we have E(VV' ) = 
Iv + #Lv#L'v . (See Exercise 3 . 16 .) Consequently, 

-- 1 E(Xi Xj) = I + p.. p.. ' and E(XX' )  = - I + p..p.. ' n 

Using these results, we obtain 

� -- ( 1 ) f=t E(X1Xj) - nE(XX' ) = ni - npp '  - n n I + pp '  = (n  - l )I  

and thus, since Sn = ( l/n) ( � X1Xj - nXX' ) , it follows immediately that 

• 
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n 
Result 3 .1 shows that the (i , k)th entry, ( n - 1 )-1 � (Xji - Xi) (Xj k  - Xk) , of 

j= 1  
[ n/ ( n - 1 )  ]Sn is an unbiased estimator of o-ik . However, the individual sample stan-
dard deviations �, calculated with either n or n - 1 as a divisor, are not unbiased 
estimators of the corresponding population quantities �. Moreover, the correla
tion coefficients ri k  are not unbiased estimators of the population quantities Pi k . 
However, the bias E ( �) - �' or E(rik ) - Pik ' can usually be ignored if the 
sample size n is moderately large. 

Consideration of bias motivates a slightly modified definition of the sample 
variance-covariance matrix. Result 3 . 1  provides us with an unbiased estimator S of I: 

n 
Here S ,  without a subscript, has ( i, k) th entry ( n  - 1 )-1 � (Xj i  - Xi) (Xj k  - Xk) · j= l 
This definition of sample covariance is commonly used in many multivariate test sta-
tistics. Therefore, it will replace Sn as the sample covariance matrix in most of the ma
terial throughout the rest of this book. 

3.4 GEN ERALIZED VARIANCE 

With a single variable, the sample variance is often used to describe the amount of 
variation in the measurements on that variable. When p variables are observed on 
each unit , the variation is described by the sample variance-covariance matrix 

S1 1  S1 2  

S =  S1 2  S22 

sl p  s2p 

sl p  
s2p 

sPP 

{ s; k  = � 1 :± (xj i - X; ) (xjk - Xk ) } n J = l  

The sample covariance matrix contains p variances and � p(p - 1 )  potentially dif
ferent covariances. Sometimes it is desirable to assign a single numerical value for the 
variation expressed by S. One choice for a value is the determinant of S ,  which re
duces to the usual sample variance of a single characteristic when p = 1. This de
terminant2 is called the generalized sample variance: 

2Definition 2A.24 defines "determinant" and indicates one method for calculating the value of a 
determinant. 
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Example 3 .7 (Calcu lati ng a genera l i zed variance) 

Employees (x1 ) and profits per employee (x2 ) for the 16 largest publishing 
firms in the United States are shown in Figure 1 .3 .  The sample covariance ma
trix, obtained from the data in the April 30, 1990, Forbes magazine article, is 

s 
= 
[ 252.04 -68.43] 

-68.43 123.67 

Evaluate the generalized variance. 
In this case, we compute 

l S I = (252.04) ( 123 .67 ) - ( -68.43 ) ( -68.43 ) = 26,487 • 

The generalized sample variance provides one way of writing the information 
on all variances and covariances as a single number. Of course, when p > 1 ,  some 
information about the sample is lost in the process. A geometrical interpretation of 
I S I will help us appreciate its strengths and weaknesses as a descriptive summary. 

Consider the area generated within the plane by two deviation vectors 
d1 = y1 - x11 and d2 = y2 - x21. Let Ld1 be the length of d1 and Ld2 the length of 
d2 . By elementary geometry, we have the diagram 

- - - - - - - - - - - - - - - - - - - - - - - - · 

1 Height = Ld 1 sin ( 8 )  

., 

and the area of the trapezoid is I Ld1 sin ( 0) 1Ld2 • Since cos2 ( 0) + sin2 ( 0 )  = 1 , we can 
express this area as 

From (3-5) and (3-7) , 

and 

Therefore, 

Ld1 = � � (xi 1 - X1 )
2 = v'(n - l ) s1 1  

Ld2 = � � (xi2 - X2 ) 2 = v'(n - l ) s2 2  

cos ( 0) = r1 2 
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Figure 3.6 (a) " La rge" genera l ized sample va r iance for p = 3 .  (b) "Sma l l "  
genera l ized samp le  va r iance for p = 3 .  

Also, 

If we compare (3-14) with (3-13) , we see that 

(3-14) 

Assuming now that I S I = ( n - 1 )-(p- 1 ) (volume ) 2 holds for the volume gener
ated in n space by the p - 1 deviation vectors d 1 , d2 , . . .  , dP_ 1 , we can establish the 
following general result for p deviation vectors by induction (see [1 ], p. 260) : 

Generalized sample variance = I S I = ( n - 1 )-p (volume )2 (3-15) 

Equation (3-15) says that the generalized sample variance, for a fixed set of data, is 
proportional to the square of the volume generated by the p deviation vectors3 
d 1 = Y1 - x1l, d2 = y2 - x21, . . . ,dP = yP - xPl. Figures 3 .6 (a) and (b) show 
trapezoidal regions, generated by p = 3 residual vectors, corresponding to "large" 
and "small" generalized variances. 

3 If generalized variance is defined in terms of the sample covariance matrix Sn = [ (n  - 1 )/n]S� 
then, using Result 2A. 1 1 ,  I Sn l  = I  [ ( n - 1 )/n]IPS I  = I  [ ( n - 1 )/n]Ip i i S I  = [ ( n - 1 )/nJP I S I . Conse
quently, using (3-15), we can also write the following: Generalized sample variance = I Sn I = n-P(volume )2 . 
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For a fixed sample size, it is clear from the geometry that volume, or I S  I ,  will in
crease when the length of any di = Yi - xil (or Vi;;) is increased. In addition, vol
ume will increase if the residual vectors of fixed length are moved until they are at 
right angles to one another, as in Figure 3 .6(a). On the other hand, the volume, or I S  I ,  
will be small if just one of the si i is small or one of the deviation vectors lies nearly in 
the (hyper) plane formed by the others, or both. In the second case, the trapezoid has 
very little height above the plane. This is the situation in Figure 3 .6(b ) ,  where d3 lies 
nearly in the plane formed by d1 and d2 • 

Generalized variance also has interpretations in the p-space scatter plot represen
tation of the data. The most intuitive interpretation concerns the spread of the scatter 
about the sample mean point x' = [x1 , x2 , • • •  , xp] ·  Consider the measure of distance 
given in the comment below (2-19), with x playing the role of the fixed point IL and s-1 

playing the role of A. With these choices, the coordinates x' = [x1 , x2 , • • •  , xp ] of the 
points a constant distance c from x satisfy 

(x - x) 'S-1 (x - x) = c2 (3-16) 

[When p = 1 ,  (x - x) 'S-1 (x - x) = (xl - x1 )
2/sl l is the squared distance from xl 

to .X1 in standard deviation units.] 
Equation (3-16) defines a hyperellipsoid (an ellipse if p = 2) centered at x. It 

can be shown using integral calculus that the volume of this hyperellipsoid is related 
to I S I · In particular, 

(3-17) 

or 

(Volume of ellipsoid )2 = ( constant) (generalized sample variance ) 

where the constant kP is rather formidable.4 A large volume corresponds to a large 
generalized variance. 

Although the generalized variance has some intuitively pleasing geometrical 
interpretations, it suffers from a basic weakness as a descriptive summary of the sam
ple covariance matrix S, as the following example shows. 

Example 3 .8 (I nterpreting the general ized variance) 

Figure 3 .7 gives three scatter plots with very different patterns of correlation. 
All three data sets have x' = [2 , 1 ] ,  and the covariance matrices are [5 4] [3 OJ [ 5 -4] 

S = 4 5 , r = .8 S = 
0 3 

, r = 0 S = _ 4 5 , r = - .8 

4For those who are curious, kP = 21TP12jpf(pj2 ) ,  where f(z) denotes the gamma function evalu
ated at z .  



1 28 Chapter 3 Samp le  Geometry and Random Samp l i ng 

7 

• 

• 

• 

• 

• 

• 

' . 
• 

• 

• • •
• 

• 

. .. . .. . 
• 

• 
• 

(a) 

• 

• 
• 

• 

7 
• 

• 

• • • 
• 

• • • 
• 

• • 

• • • • • 

, . • • • • 

7 

• • 

• 

• 

--r-+-��-+���+-��-+��

x l 
7 • 

• 
• 

• • • 
• 

• • 
• 

(c) 

• 
• 

• 

• 

Figure 3.7 Scatter p lots with th ree d ifferent or ientations .  
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Each covariance matrix S contains the information on the variability of the 
component variables and also the information required to calculate the corre
lation coefficient. In this sense, S captures the orientation and size of the pattern 
of scatter. 

The eigenvalues and eigenvectors extracted from S further describe the 
pattern in the scatter plot. For 

the eigenvalues satisfy 
0 = (A  - 5 )2 - 42 

= (A - 9 ) ( A - 1 ) 

and we determine the eigenvalue-eigenvector pairs A1 = 9 ,  e1 = [ 1/vl,  1/vl] 
and A2 = 1 , e2 = [ 1/vl, -1/vlJ .  
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The mean-centered ellipse, with center x' = [2 , 1 J for all three cases, is 

(x - x) 'S-1 (x - x) < c2 

To describe this ellipse, as in Section 2.3, with A = s-1 , we notice that if ( A, e )  
is an eigenvalue-eigenvector pair for S,  then ( A -l , e )  i s  an eigenvalue-eigenvector 
pair for s-1 . That is, if Se = Ae, then multiplying on the left by s-1 gives 
s-1Se = AS-1e ,  or s-1 e = A-1e .  Therefore, using the eigenvalues from S, we 
know that the ellipse extends c� in the direction of ei from x. 

In p = 2 dimensions, the choice c2 = 5 .99 will produce an ellipse that con
tains approximately 95 percent of the observations. The vectors 3 V5.99 e1 and 
V5.99 e2 are drawn in Figure 3 .8(a) . Notice how the directions are the natural 
axes for the ellipse, and observe that the lengths of these scaled eigenvectors are 
comparable to the size of the pattern in each direction. 

Next, for 

s = [� �] , the eigenvalues satisfy O = (A - 3 )2 

and we arbitrarily choose the eigenvectors so that A1 = 3, e1 = [ 1 ,  O J and 
A2 = 3, e2 = [0 ,  1 ] .  The vectors V3 V5.99 e1 and V3 V5.99 e2 are drawn in 
Figure 3 .8(b) . 

Finally, for 

[ 5 -4] 
s = 

-4 5 ' the eigenvalues satisfy 
0 = ( A - 5 )2 - ( -4 ) 2 

= (A - 9 ) ( A - 1 ) 

and we determine the eigenvalue-eigenvector pairs A1 = 9 ,  e1 = [ 1/ v2, -1/ vl] 
and A2 = 1, e2 = [ 1/vl, 1/vl] . The scaled eigenvectors 3V5.99 e1 and 
V5.99 e2 are drawn in Figure 3.8( c) . 

In two dimensions, we can often sketch the axes of the mean-centered el
lipse by eye. However, the eigenvector approach also works for high dimensions 
where the data cannot be examined visually. 

Note: Here the generalized variance I S I gives the same value, I S  I = 9, 
for all three patterns. But generalized variance does not contain any informa
tion on the orientation of the patterns. Generalized variance is easier to inter
pret when the two or more samples (patterns) being compared have nearly the 
same orientations. 

Notice that our three patterns of scatter appear to cover approximately the 
same area. The ellipses that summarize the variability 

do have exactly the same area [see (3-17) ] ,  since all have I S I = 9 . • 

As Example 3 .8 demonstrates, different correlation structures are not detected 
by I S I · The situation for p > 2 can be even more obscure. 

Consequently, it is often desirable to provide more than the single number I S I 
as a summary of S. From Exercise 2 . 12, I S I can be expressed as the product A1A2 · · · AP 
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Figure 3.8 Axes of the mean-centered 95 percent e l l i pses for the scatter p lots in F ig u re 3 .7 .  

x ,  

of the eigenvalues of S .  Moreover, the mean-centered ellipsoid based on s-1 [see 
(3-16)] has axes whose lengths are proportional to the square roots of the A/s (see Sec
tion 2.3) . These eigenvalues then provide information on the variability in all direc
tions in the p-space representation of the data. It is useful, therefore, to report their 
individual values, as well as their product. We shall pursue this topic later when we 
discuss principal components. 

Situations i n  which the Genera l ized Sample Variance Is Zero 

The generalized sample variance will be zero in certain situations. A generalized 
variance of zero is indicative of extreme degeneracy, in the sense that at least one 
column of the matrix of deviations, 
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x1 - x' X1 1  - X1 X1 2 - X2 X1 p - Xp 
x2 - x' X2 1 - X1 X22 - X2 X2p - Xp 

x� - x' Xn l - X1 Xn 2 - X2 Xn p - Xp 
X - 1 x' (3-18) (nX p) (n X l ) ( l Xp) 

can be expressed as a linear combination of the other columns. As we have shown 
geometrically, this is a case where one of the deviation vectors-for instance, di = 
[ xl i - Xi , . . .  , Xn i - Xi ]-lies in the (hyper) plane generated by dl , . . .  ,di- 1 ' 
di+ l , · · · , dp . 

Result 3.2. The generalized variance is zero when, and only when, at least 
one deviation vector lies in the (hyper) plane formed by all linear combinations of 
the others-that is, when the columns of the matrix of deviations in (3-18) are lin
early dependent. 

Proof. If the columns of the deviation matrix (X - lx' ) are linearly depen
dent, there is a linear combination of the columns such that 

0 = a 1 col 1 (X - lx' ) + · · · + aP colp (X - lx' ) 
= (X - lx' ) a for some a =I= 0 

But then, as you may verify, (n - 1 )S  = (X - lx' ) ' (X - lx' ) and 

(n - 1 )Sa = (X - lx' ) ' (X - lx' ) a = o 

so the same a corresponds to a linear dependency, a 1 col 1 (S ) + · · · + aP colp (S ) = 
Sa = 0, in the columns of S. So, by Result 2A.9, I S  I = 0. 

In the other direction, if I S I = 0, then there is some linear combination Sa of the 
columns of S such that Sa = 0. That is, 0 = (n - 1 )Sa = (X - lx' ) ' (X - lx' ) a. 
Premultiplying by a' yields 

0 = a ' (X - lx' ) ' (X - lx' ) a = L(x-lx' ) a 

and, for the length to equal zero, we must have (X - lx' ) a = 0. Thus, the columns 
of (X - lx' ) are linearly dependent. • 

Example 3 .9 (A case where the general ized variance is  zero) 

Show that I S I = 0 for 

X = [� � � ] (3 X 3 ) 4 0 4 

and determine the degeneracy. 
Here x' = [ 3 ,  1 ,  5 ] ,  so [ 1 - 3 2 - 1 

X - lx' = 4 - 3 1 - 1 
4 - 3  0 - 1 
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Fl.Q_ure 3.9 A case where the th ree
d imens iona l  vo l u me is zero ( I S I = 0 ) . 

The deviation (column) vectors are d1 = [ -2, 1 ,  1 ] , d2 = [ 1 , 0, -1 ] , and 
d3 = [0, 1, -1 ] .  Since d3 = d1 + 2d2 , there is column degeneracy. (Note that 
there is row degeneracy also.) This means that one of the deviation vectors
for example, d3-lies in the plane generated by the other two residual vectors. 
Consequently, the three-dimensional volume is zero. This case is illustrated in 
Figure 3 .9 and may be verified algebraically by showing that I S I = 0. We have 

and from Definition 2A.24, 

1 1 3 1 
l S I = 3 1 � ( - 1 )2 + ( -D  -6 � ( - 1 ) 3 + ( o ) 

2 

= 3 ( 1 - �) + (�) ( - � - o ) + o = � - � = o • 

When large data sets are sent and received electronically, investigators are some
times unpleasantly surprised to find a case of zero generalized variance, so that S 
does not have an inverse. We have encountered several such cases, with their asso
ciated difficulties, before the situation was unmasked. A singular covariance matrix 
occurs when, for instance, the data are test scores and the investigator has included 
variables that are sums of the others. For example, an algebra score and a geometry 
score could be combined to give a total math score, or class midterm and final exam 
scores summed to give total points. Once, the total weight of a number of chemicals 
was included along with that of each component. 

This common practice of creating new variables that are sums of the original 
variables and then including them in the data set has caused enough lost time that we 
emphasize the necessity of being alert to avoid these consequences. 
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Example 3 . 1 0  (Creati ng new var iab les that lead 
to a zero genera l i zed variance) 

Consider the data matrix 

1 9 10 
4 12 16 

X =  2 10 12 
5 8 13 
3 1 1  14 

where the third column is the sum of first two columns. These data could be the 
number of successful phone solicitations per day by a part-time and a full-time 
employee, respectively, so the third column is the total number of successful so
licitations per day. 

Show that the generalized variance I S I = 0, and determine the nature of 
the dependency in the data. 

We find that the mean corrected data matrix, with entries xjk - xk , is 
-2 -1  -3 

1 2 3 
X - lx' = -1  0 -1 

2 -2 0 
0 1 1 

The resulting covariance matrix is [2.5 0 2.5 ] 
s = 0 2.5 2.5 

2.5 2.5 5 .0 

We verify that, in this case, the generalized variance 

I s I = 2.52 X 5 + 0 + 0 - 2.53 - 2.53 - 0 = 0 

In general, if the three columns of the data matrix X satisfy a linear con
straint a1xj 1 + a2xj2 + a3xj 3 = c, a constant for all j, then a1x1 + a2x2 
+ a3x3 = c, so that 

al (xj l  - xl ) + a2 (xj2 - x2) + a3 ( xj 3 - x3 ) = 0 

for all j. That is, 

(X - lx' ) a = o 
and the columns of the mean corrected data matrix are linearly dependent. 
Thus, the inclusion of the third variable, which is linearly related to the first two, 
has led to the case of a zero generalized variance. 

Whenever the columns of the mean corrected data matrix are linear
ly dependent, 

(n - 1 )Sa = (X - lx' ) ' (X - lx' ) a  = (X - lx' ) O = o 
and Sa = 0 establishes the linear dependency of the columns of S. Hence, I S I = 0. 
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Since Sa = 0 = Oa, we see that a is a scaled eigenvector of S associated 
with an eigenvalue of zero. This gives rise to an important diagnostic: If we are 
unaware of any extra variables that are linear combinations of the others, we 
can find them by calculating the eigenvectors of S and identifying the one as
sociated with a zero eigenvalue. That is, if we were unaware of the dependen
cy in this example, a computer calculation would find an eigenvalue proportional 
to a '  = [ 1 ,  1 ,  -1  ] ,  since [2.5 0 

Sa =  0 2.5 

2.5 2.5 

The coefficients reveal that 

In addition, the sum of the first two variables minus the third is a constant c for 
all n units. Here the third variable is actually the sum of the first two variables, 
so the columns of the original data matrix satisfy a linear constraint with c = 0. 
Because we have the special case c = 0, the constraint establishes the fact that 
the columns of the data matrix are linearly dependent. • 

Let us summarize the important equivalent conditions for a generalized variance 
to be zero that we discussed in the preceding example. Whenever a nonzero vector 
a satisfies one of the following three conditions, it satisfies all of them: 

( 1 )  Sa = 0 ( 2)  a' ( x j - x) = 0 for all j ( 3 )  a' x j = c for all j ( c = a' x)  
a is a scaled The linear combination 
eigenvector of S of the mean corrected 
with eigenvalue 0. data, using a, is zero. 

The linear combination of 
the original data, using a, 
is a constant. 

We showed that if condition (3) is satisfied-that is, if the values for one variable can 
be expressed in terms of the others-then the generalized variance is zero because S 
has a zero eigenvalue. In the other direction, if condition (1)  holds, then the eigen
vector a gives coefficients for the linear dependency of the mean corrected data. 

In any statistical analysis, I S  I = 0 means that the measurements on some vari
ables should be removed from the study as far as the mathematical computations are 
concerned. The corresponding reduced data matrix will then lead to a covariance 
matrix of full rank and a nonzero generalized variance. The question of which mea
surements to remove in degenerate cases is not easy to answer. When there is a 
choice, one should retain measurements on a (presumed) causal variable instead of 
those on a secondary characteristic. We shall return to this subject in our discussion 
of principal components. 

At this point , we settle for delineating some simple conditions for S to be of 
full rank or of reduced rank. 
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Result 3.3. If n < p, that is, (sample size) < (number of variables), then 
I S I = 0 for all samples. 

Proof. We must show that the rank of S is less than or equal to p and then 
apply Result 2A.9 .  

For any fixed sample, the n row vectors in (3-18) sum to the zero vector. The 
existence of this linear combination means that the rank of X - lx' is less than or 
equal to n - 1 ,  which, in turn, is less than or equal to p - 1 because n < p. Since 

(n - 1 )  s = (X - lx ' ) ' (X - lx' ) (pXp) (pXn ) (n Xp) 
the kth column of S, colk ( S ) ,  can be written as a linear combination of the rows of 
(X - lx' ) ' . In particular, 

(n - 1 )  colk( S )  = (X - lx' ) '  colk (X - lx' ) 
= (xl k - xk) row1 (X - lx' ) '  + . .  · + ( xn k - xk) rown (X - lx' ) '  

Since the row vectors of (X - lx' ) ' sum to  the zero vector, we can write, for ex
ample, row1 (X - lx' ) ' as the negative of the sum of the remaining row vectors. After 
substituting for row1 (X - lx' ) '  in the peceding equation, we can express colk ( S )  as 
a linear combination of the at most n - 1 linearly independent row vectors 
row2 (X - lx' ) ' ,  . . .  , rown (X - lx' ) ' . The rank of S is therefore less than or equal to 
n - 1 ,  which-as noted at the beginning of the proof-is less than or equal to p - 1 ,  
and S is singular. This implies, from Result 2A.9, that I S  I = 0. • 

Result 3.4. Let the p X 1 vectors x1 , x2 , • • •  , xn , where xj is the jth row of the 
data matrix X, be realizations of the independent random vectors X 1 , X2 , • • •  , Xn . Then 

1. If the linear combination a 'Xj has positive variance for each constant vector 
a # 0, then, provided that p < n, S has full rank with probability 1 and I S I > 0. 

2. If, with probability 1 ,  a 'Xj is a constant (for example, c) for all j, then I S  I = 0. 

Proof. (Part 2) . If a 'Xj = a1Xj 1 + a2Xj2 + . . . + apXjp = c with probability n 
1 ,  a 'xj = c for all j, and the sample mean of this linear combination is c = :L (a1xj 1 j= l 
+ a2xj2 + . .  · + apxjp )/n = a1 x1 + a2x2 + . .  · + aPxP = a' x. Then 

[ - ] [ - ]  xl l  - xl xl p - xP 
(X - lX' )a  = a1 : _ + · · · + aP : _ 

Xn l - xl Xn p - xp [ a ' x1 � a' x] [ c � c ] 
= : = : = 0 

a ' xn - a ' x  c - c  

indicating linear dependence; the conclusion follows from Result 3 .2. 
The proof of Part (1) is difficult and can be found in [2] . • 
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Genera l i zed Variance Determi ned by I R I 
and Its Geometrical I nterpretation 

The generalized sample variance is  unduly affected by the variability of measure
ments on a single variable. For example, suppose some si i is either large or quite 
small. Then, geometrically, the corresponding deviation vector di = (yi - xil) will 
be very long or very short and will therefore clearly be an important factor in deter
mining volume. Consequently, it is sometimes useful to scale all the deviation vec
tors so that they have the same length. 

Scaling the residual vectors is equivalent to replacing each original observation 
xjk by its standardized value ( xjk - xk )j� . The sample covariance matrix of the 
standardized variables is then R, the sample correlation matrix of the original vari
ables. (See Exercise 3 .13 . )  We define 

Since the resulting vectors 

[ ( xl k - xk )/�, (x2k - xk )/�, 0 0 0 ' ( xn k - xk )/�J = (yk - xkl) '/� 

all have length Vn---=--1, the generalized sample variance of the standardized vari
ables will be large when these vectors are nearly perpendicular and will be small 
when two or more of these vectors are in almost the same direction. Employing the 
argument leading to (3 -7) ,  we readily find that the cosine of the angle (}i k between 
(yi - xil)/� and (yk - xkl)/� is the sample correlation coefficient ri k · There
fore, we can make the statement that I R I is large when all the ri k  are nearly zero and 
it is small when one or more of the ri k  are nearly + 1 or -1 .  

In sum, we have the following result : Let 

i = 1 ,  2, 0 0 0 ' p 

vs;; l l  

be the deviation vectors of the standardized variables. These deviation vectors lie 
in the direction of di , but have a squared length of n - 1 .  The volume generated in 
p-space by the deviation vectors can be related to the generalized sample variance. 
The same steps that lead to (3-15) produce (Generalized sai?ple va�iance) = I R I = (n _ 1 )-P(volume)2 of the standardized variables (3-20) 
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Figure 3.10 The vol ume generated by equa l- length deviation vectors of the 
sta ndard ized va r iab les .  

The volume generated by deviation vectors of the standardized variables is il
lustrated in Figure 3 . 10 for the two sets of deviation vectors graphed in Figure 3 .6 .  
A comparison of Figures 3 . 10 and 3 .6  reveals that the influence of the d2 vector 
(large variability in x2) on the squared volume I S  I is much greater than its influence 
on the squared volume I R I ·  

so 

The quantities I S I and I R I are connected by the relationship 

l S I = ( s1 1 s2 2 · . .  sp p ) I R I (3-21 ) 

(3-22) 

[The proof of (3-21 ) is left to the reader as Exercise 3 . 12. ] 
Interpreting (3-22) in terms of volumes, we see from (3-15) and (3-20) that the 

squared volume (n - 1 )P I S I is proportional to the squared volume (n - 1 )P I R I . 
The constant of proportionality is the product of the variances, which, in turn, is pro
portional to the product of the squares of the lengths ( n - 1 ) si i  of the di . Equation 
(3-21 ) shows, algebraically, how a change in the measurement scale of X1 , for exam
ple, will alter the relationship between the generalized variances. Since I Rtfs-based 
on standardized measurements, it is unaffected by the change in scale. However, the 
relative value of I S I will be changed whenever the multiplicative factor s1 1  changes. 

Example 3 . 1 1 (I l l ustrating the re lation  between I S  I and I R I )  

Let us illustrate the relationship in (3-21 ) for the generalized variances I S I and 
I R I when p = 3. Suppose [4 3 1 ] 

s = 3 9 2 
(3 X 3 ) 1 2 1 



1 38 Chapter 3 Samp le  Geometry and Random Samp l i ng 

Then s1 1  = 4, s22 = 9, and s3 3 = 1 .  Moreover, R = [ i ! ! ] 
Using Definition 2A.24, we obtain 

I s I = 4 
9 2 

( -1 ) 2 + 3 
3 2 

( -1  ) 3 + 1 
3 9 

( -1  ) 4 
2 1 1 1 1 2 = 4( 9  - 4) - 3 ( 3  - 2 )  + 1 ( 6  - 9 )  = 14 

1 2 1 2 1 1 
I R I = 1 � i ( -1 ? + � I i ( - 1 ? + � I � ( - 1 ) 4 3 2 2 3 

= ( 1 - $ ) - (� ) (� - � ) + (� ) (� - �) = 178 
It then follows that 

14 = I S I = s1 1 s2 2s3 3 l  R I = (4)  ( 9 )  ( 1 )  ( 178 ) = 14 (check ) 

Another Genera l i zation  of Variance 

• 

We conclude this discussion by mentioning another generalization of variance. Specif
ically, we define the total sample variance as the sum of the diagonal elements of the 
sample variance-covariance matrix S. Thus, 

Example 3 . 1 2  (Ca lcu lating the tota l sample variance) 

Calculate the total sample variance for the variance-covariance matrices S in 
Examples 3 .7 and 3 .9 .  

From Example 3 .7 .  

= [ 252.04 -68.43] 
s 

-68.43 123 .67 

and 

Total sample variance = s1 1  + s22 = 252.04 + 123 .67 = 375 .71 

From Example 3 .9 ,  

and 

[ 3 - �  o�1 J s = -� � 
2 

Total sample variance = s1 1  + s22 + s3 3 = 3 + 1 + 1 = 5 • 
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Geometrically, the total sample variance is the sum of the squared lengths of the 
p deviation vectors d1 = (y1 - x11 ) ,  . . . , dP = (yp - xp1 ) ,  divided by n - 1 .  The 
total sample variance criterion pays no attention to the orientation (correlation struc
ture) of the residual vectors. For instance, it assigns the same values to both sets of 
residual vectors (a) and (b) in Figure 3 .6 .  

3. 5 SAMPLE M EAN, COVARIANCE, AN D CORRE LATION 
AS MATRIX OPERATIONS 

We have developed geometrical representations of the data matrix X and the de
rived descriptive statistics x and S. In addition, it is possible to link algebraically the 
calculation of x and S directly to X using matrix operations. The resulting expressions, 
which depict the relation between x, S, and the full data set X concisely, are easily pro
grammed on electronic computers. 

We have it that xi = ( xl i . 1 + x2 i . 1 + . . .  + Xn i . 1 )/n = yj1jn. Therefore, 

x l y11 X1 1  X1 2 
n 

x2 y21 
1 X2 1 X22 

x = n 
n 

Xp y�1 Xp l Xp2 
n 

or 

x = _!_ X' 1 
n (3-24) 

That is, x is calculated from the transposed data matrix by postmultiplying by the 
vector 1 and then multiplying the result by the constant ljn. 

Next, we create an n X p matrix of means by transposing both sides of (3-24) 
and premultiplying by 1; that is, 

x l x2 Xp 
1 x l x2 Xp 1x' = - 11'X = (3-25) 
n 

x l x2 Xp 
Subtracting this result from X produces the n X p matrix of deviations (residuals) 

X1 1  - X1 X1 2 - X2 X1 p - Xp 
x - l 11'X = X2 1 - X1 X22 - X2 X2p - Xp (3-26) 

n 
Xn l - X1 Xn 2 - X2 Xn p - Xp 
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Now, the matrix ( n - 1 ) S representing sums of squares and cross products is just the 
transpose of the matrix (3-26) times the matrix itself, or 

( n - 1 )S = 

X 1 1  - X 1 X2 1 - X 1 
X1 2 - X2 X22 - X2 X 

X1 1 - X1 X1 2 - X2 
X2 1 - X1 X2 2  - X2 

= (X - ! ll 'X ) ' (X - ! ll'X) = X' ( 1 - ! 11 ' ) X 

since (I - _!_ 11 ' ) ' (I - _!_ 11' ) = I - _!_ 11 ' - _!_ 11 ' + __!_ 11 ' 11 ' = I - _!_ 11 ' 
n n n n n2 n 

To summarize, the matrix expressions relating x and S to the data set X are 

s = 
1 

X' (I - _!_ 11' ) X 
n - 1 n 

(3-27) 

The result for Sn is similar, except that 1/n replaces 1/ ( n - 1 ) as the first factor. 
The relations in (3-27) show clearly how matrix operations on the data matrix 

X lead to x and S. 
Once S is computed, it can be related to the sample correlation matrix R. The 

resulting expression can also be "inverted" to relate R to S .  We first define the p X p 
sample standard deviation matrix D112 and compute its inverse, (D 112) -

1 = n-112. Let 

Then 

Dll2 = (pXp) 

n-112 = (pXp) 

� 0 0 
0 Vs; 0 

0 0 

1 

� 0 0 

0 
1 

vS;; 0 

0 0 
1 

vs;; 

(3-28) 
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Since 

and 

S1 1 
� �  

R =  
Sl p 

� vs;;; 
we have 

[ s: r 
S =  : 

sl p 
S1 2 

� Vs; 
S2p 

Vs; vs;;; 

S1 2 s� P ] 
s2p sPP 

sl p 
� � 

sPP  

vs;;; vs;;; 

R = n-1/2sn-1/2 

= [ ,:p '1 2 r;P] 
r2p 

(3-29) 

Postmultiplying and premultiplying both sides of (3-29) by D112 and noting that 
n-1/2Dl/2 = Dlf2n-1/2 = I gives 

(3-30) 

That is, R can be obtained from the information in S, whereas S can be obtained from 
D112 and R. Equations (3-29) and (3-30) are sample analogs of (2-36) and (2-37). 

3.6 SAMPLE VALU ES OF LIN EAR COMBI NATIONS OF VARIABLES 

We have introduced linear combinations of p variables in Section 2.6. In many mul
tivariate procedures, we are led naturally to consider a linear combination of the form 

c 'X = c1X1 + c2X2 + · · · + cPXP 

whose observed value on the jth trial is 

j = 1 ,  2, . . .  , n 

The n derived observations in (3-31) have 

( c 'x1 + c 'x2 + .
. · + c 'xn ) 

Sample mean == ---------n 
1 

= c' (x1 + x2 + · · · + xn ) n = c' x 

Since ( c' xj - c' x) 2 = ( c ' (xj - x) ) 2 = c ' (xj - x) (xj - x) ' c, we have 

. ( c ' x1 - c' x) 2 + ( c ' x2 - c' x)2 + . . .  + ( c ' xn - c' x)2 
Sample variance = 

1 n -

(3-31) 

(3-32) 

c ' (x1 - x) (xl - x) ' c  + c' (x2 - x) (x2 - x) 'c + . . . + c' (xn - x) (xn - x) ' c  
n - 1 

' [ (xl - x) (xl - x) '  + (x2 - x) (x2 - x) '  + . . .  + (xn - x) (xn - x) ' ] 
= c c 

n - 1 
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or 

Sample variance of c 'X  = c ' S c  (3-33) 

Equations (3-32) and (3-33) are sample analogs of (2-43) .  They correspond to sub
stituting the sample quantities x and S for the "population" quantities IL and I, re
spectively, in (2-43) .  

Now consider a second linear combination 

b 'X = b1X1 + b2X2 + · · · + bPXP 

whose observed value on the jth trial is 

j = 1 ,  2, . . .  , n (3-34) 

It follows from (3-32) and (3-33) that the sample mean and variance of these derived 
observations are 

Sample mean of b 'X = b' x 
Sample variance of b 'X = b '  Sb 

Moreover, the sample covariance computed from pairs of observations on 
b 'X  and c'X is 

Sample covariance 
(b 'x1 - b' x) ( c ' x1 - c' x) + (b 'x2 - b' x) ( c ' x2 - c' x) + · · ·  + (b 'xn - b' x) ( c 'xn - c' x) 

n - 1 
b ' (xl - x) (xl - x) ' c + b ' (x2 - x) (x2 - x) 'c + . . .  + b' (xn - x) (xn - x) ' c 

n - 1 [ (xl - x) (xl - x) ' + (x2 - x) (x2 - x) ' + . . . + (xn - x) (xn - x) ' ] 
= b '  c n - 1 

or 

Sample covariance of b 'X and c ' X = b 'Sc  

In  sum, we have the following result . 

Result 3.5. The linear combinations 

b 'X = b1X1 + b2X2 + · · ·  + bPXP 
c 'X = c1X1 + c2X2 + · · · + cPXP 

have sample means, variances, and covariances that are related to x and S by 

Sample mean of b 'X  = b ' x 

Sample mean of c 'X  = c ' x 

Sample variance of b 'X = b ' Sb 

Sample variance of c 'X  = c' Sc  

Sample covariance of b 'X and c 'X  = b 'Sc  

(3-35) 

(3-36) 

• 
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Example 3 . 1 3 {Means and covariances for l i near combinations) 

We shall consider two linear combinations and their derived values for the 
n = 3 observations given in Example 3 .9 as 

and 

Consider the two linear combinations 

b 'X  = [2 2 - 1 ]  [�:] = 2Xl + 2X2 - X3 

c 'X = [ 1  -1  3 ]  [�:] = X1 - X2 + 3X3 

The means, variances, and covariance will first be evaluated directly and then 
be evaluated by (3-36) . 

Observations on these linear combinations are obtained by replacing 
X1 , X2 , and X3 with their observed values. For example, the n = 3 observa
tions on b 'X are 

b 'x1 = 2x1 1  + 2x1 2 - x1 3 = 2( 1 )  + 2(2)  - (5 )  = 1 
b ' x2 = 2x2 1 + 2x2 2 - x23 = 2(4)  + 2 ( 1 ) - (6 )  = 4 
b ' x3 = 2x3 1 + 2x3 2 - x3 3  = 2(4)  + 2 (0 )  - (4)  = 4 

The sample mean and variance of these values are, respectively, 

( 1  + 4 + 4) 
Sample mean = 

3 
== 3 

. ( 1  - 3 )2 + ( 4 - 3 )2 + ( 4 - 3 )2 
Sample variance = 

3 _ 1 
== 3 

In a similar manner, the n == 3 observations on c'X are 

and 

c 'x1 == 1x1 1  - 1x1 2 + 3x1 3 == 1 ( 1 ) - 1 (2) + 3 ( 5 )  = 14 
c 'x2 = 1 ( 4)  - 1 ( 1 )  + 3 ( 6 )  == 21 
c 'x3 == 1 ( 4)  - 1 ( 0)  + 3 (4 )  == 16 

1 -
( 1_

4
_+_

2
_
1
_
+
_

16
_) -- 17 Samp e mean == 

3 
( 14  - 17)2 + (21 - 17) 2 + ( 16  - 17 )2 

Sample variance == ------
3
-_-1

------
== 13 
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Moreover, the sample covariance, computed from the pairs of observations 
(b 'x 1 , c' x1 ) ,  (b 'x2 , c ' x2) , and (b 'x3 , c ' x3 ) ,  is 

Sample covariance 
( 1 - 3 ) ( 14 - 17 ) + (4 - 3 ) (21 - 17) + (4 - 3 ) ( 16 - 17) 9 

3 - 1 2 

Alternatively, we use the sample mean vector x and sample covariance 
matrix S derived from the original data matrix X to calculate the sample means, 
variances, and covariances for the linear combinations. Thus, if only the de
scriptive statistics are of interest, we do not even need to calculate the obser
vations b 'xj and c 'xj . 

From Example 3 .9 , [ 3] [ 3 - � OJ 
X = � and S = -� i I 

Consequently, using (3-36), we find that the two sample means for the derived 
observations are 

Sample mean of b 'X = b' X = [2 2 -1  J [ � ] = 3 

Sample mean of c' X = c' X = [ 1  - 1  3 ]  [ � ] = 17 

Using (3-36) , we also have 

Sample variance of b 'X = b ' Sb 

( check) 

(check) 

= [2 2 - 1 ]  [ -l 3 �] [ -�J - 2 
1 
1 
2 

= [2 2 - 1 ] [ -l] = 3  ( check) 

Sample variance of c' X = c ' Sc 

= [ 1 -1 3 ] [ -i -� �] [ -� ] 
= [ 1 - 1  3 ]  [ -n = 13 ( check) 
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Sample covariance of b 'X and c 'X = b '  Sc 

= [2 2 

= [2  2 
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-1 ]  [ -� 3 �] [ -� ] - 2 
1 
1 
2 

-1 ]  [ -!] = � (check ) 

As indicated, these last results check with the corresponding sample quan
tities computed directly from the observations on the linear combinations. • 

The sample mean and covariance relations in Result 3 .5 pertain to any number 
of linear combinations. Consider the q linear combinations 

ai lxl + ai 2x2 + 0 0 0 + aipxp , i = 1 ,  2, 0 0 0 ' q (3-37) 
These can be expressed in matrix notation as 

al lxl + al 2x2 + 0 0 0  + al pxp a1 1 a1 2 al p xl 
a2 lxl + a2 2x2 + 0 0 0  + a2pxp a2 1 a2 2  a2p x2 = = AX 

aq lxl + aq 2X2 + 0 0 0  + aqpxp aq l aq 2 aqp xp (3-38) 
Taking the ith row of A, ai , to be b'  and the kth row of A, ak , to be c' , we see that 
Equations (3-36) imply that the ith row of AX has sample mean aix and the ith and 
kth rows of AX have sample covariance aiSak . Note that aiSak is the ( i , k ) th ele
ment of ASA' . 

Result 3.6. The q linear combinations AX in (3-38) have sample mean vector 
Ax and sample covariance matrix ASA' .  • 

3.1. Given the data matrix 

(a) Graph the scatter plot in p = 2 dimensions. Locate the sample mean on your 
diagram. 

(b) Sketch the n = 3-dimensional representation of the data, and plot the de
viation vectors y1 - x11 and y2 - x21. 

(c) Sketch the deviation vectors in (b) emanating from the origin. Calculate the 
lengths of these vectors and the cosine of the angle between them. Relate 
these quantities to Sn and R. 
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3.2. Given the data matrix 

(a) Graph the scatter plot in p = 2 dimensions, and locate the sample mean on 
your diagram. 

(b) Sketch the n = 3-space representation of the data, and plot the deviation 
vectors y1 - .X1 1 and y2 - .X21. 

(c) Sketch the deviation vectors in (b) emanating from the origin. Calculate 
their lengths and the cosine of the angle between them. Relate these quan
tities to Sn and R. 

3.3. Perform the decomposition of y1 into .X11 and y1 - .X11 using the first column 
of the data matrix in Example 3 .9 .  

3.4. Use the six observations on the variable X1 , in units of millions, from Table 1 . 1 .  
(a) Find the projection on 1' = [ 1 ,  1 ,  1 ,  1 ,  1 ,  1 ] .  
(b) Calculate the deviation vector y1 - .X11. Relate its length to the sample 

standard deviation. 
(c) Graph (to scale) the triangle formed by y1 , .X11, and y1 - x11. Identify the 

length of each component in your graph. 
(d) Repeat Parts a-c for the variable X2 in Table 1 . 1 .  
(e) Graph (to scale) the two deviation vectors y1 - .X11 and y2 - .X21. Calcu

late the value of the angle between them. 
3.5. Calculate the generalized sample variance I S I for (a) the data matrix X in Ex

ercise 3 .1  and (b) the data matrix X in Exercise 3.2. 
3.6. Consider the data matrix 

X = [ -� ! -� ] 
5 2 3 

(a) Calculate the matrix of deviations (residuals) ,  X - lx' . Is this matrix of 
full rank? Explain. 

(b) Determine S and calculate the generalized sample variance I S I · Interpret 
the latter geometrically. 

(c) Using the results in (b) , calculate the total sample variance. [See (3-23) . ]  
3.7. Sketch the solid ellipsoids (x - x) 'S-1 (x  - x) < 1 [see (3-16)] for the three 

matrices [ 5 -4] 
s = 

-4 5 ' 

(Note that these matrices have the same generalized variance I S I · ) 
3.8. Given [ 1 0 OJ [ 1 

S = 0 1 0 and S = - f 
0 0 1 - -2 
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(a) Calculate the total sample variance for each S . Compare the results. 
(b) Calculate the generalized sample variance for each S, and compare the re

sults. Comment on the discrepancies, if any, found between Parts a and b. 
3.9. The following data matrix contains data on test scores, with x1 = score on first 

test, x2 = score on second test, and x3 = total score on the two tests: 

12 17 29 
18 20 38 

X =  14 16 30 
20 18  38 
16 19 35 

(a) Obtain the mean corrected data matrix, and verify that the columns are lin
early dependent. Specify an a' = [ a1 , a2 , a3 ]  vector that establishes the lin
ear dependence. 

(b) Obtain the sample covariance matrix S, and verify that the generalized vari
ance is zero. Also, show that Sa = 0, so a can be rescaled to be an eigen
vector corresponding to eigenvalue zero. 

(c) Verify that the third column of the data matrix is the sum of the first two 
columns. That is, show that there is linear dependence, with a1 = 1 ,  a2 = 1 ,  
and a3 = -1 .  

3.10. When the generalized variance is zero, it is the columns of the mean corrected 
data matrix Xc = X - 1i' that are linearly dependent, not necessarily those 
of the data matrix itself. Given the data 

3 1 0 
6 4 6 
4 2 2 
7 0 3 
5 3 4 

(a) Obtain the mean corrected data matrix, and verify that the columns are lin
early dependent. Specify an a' = [ a 1 , a2 , a3 ] vector that establishes the de
pendence. 

(b) Obtain the sample covariance matrix S, and verify that the generalized vari
ance is zero. 

(c) Show that the columns of the data matrix are linearly independent in this case. 
3.11. Use the sample covariance obtained in Example 3.7 to verify (3-29) and (3-30) , 

which state that R = n-112SD-112 and D112RD112 = S. 

3.12. Show that I S I = ( s1 1 s2 2  · · · spp ) l R 1 .  
Hint: From Equation (3-30), S = D112RD112. Taking determinants gives I S I = 
I D112 l l  R I I  D 112 1 .  (See Result 2A.1 1 . ) Now examine I D 112 1 .  

3.13. Given a data matrix X and the resulting sample correlation matrix R, 
consider the standardized observations ( x1 k - xk)/� , k = 1 ,  2, . . .  , p, 

j = 1, 2, . . . , n. Show that these standardized quantities have sample covari
ance matrix R. 
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3.14. Consider the data matrix X in Exercise 3 . 1 .  We have n = 3 observations on 
p = 2 variables X1 and X2 • Form the linear combinations 

c' X = [ -1  2] [ �J = -X1 + 2x2 

b 'X = [2 3 ]  [�J = 2X1 + 3X2 

(a) Evaluate the sample means, variances, and covariance of b 'X and c 'X from 
first principles. That is, calculate the observed values of b 'X and c 'X, and 
then use the sample mean, variance, and covariance formulas. 

(b) Calculate the sample means, variances, and covariance of b 'X and c 'X using 
(3-36) . Compare the results in (a) and (b) . 

3.15. Repeat Exercise 3 .14 using the data matrix X = [� � �] 
8 3 3 

and the linear combinations 

and 

b 'X = [ 1  1 1 ]  [�:] 
c 'X = [ 1 2 -3 ] [�:] 

3.16. Let V be a vector random variable with mean vector E(V) = #Lv and covari
ance matrix E(V - JLv) (V - JLv) '  = Iv · Show that E(VV' ) = Iv + JLviLv · 

3.17. Show that, if X and z are independent, then each component of X is 
(pX l ) (qX l ) 

independent of each component of Z. 
Hint: P[Xl < xl , x2 < x2 , . . .  ' xp < Xp and zl < Zr , . . .  ' Zq < Zq ] = P[Xl < xl , x2 < x2 , . . .  ' xp < xp] . P[Zl < Zr , . . .  ' Zq < Zq ] 
by independence. Let x2 , . . . , xP and z2 , . . .  , Zq tend to infinity, to obtain 

P[X1 < x1 and Z1 < z1 ] = P[X1 < x1 ] • P[Z1 < z1 ] 
for all xl ' Zl · So xl and zl are independent . Repeat for other pairs. 
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CHAPTER 

4 
The Multivariate Normal Distribution 

4. 1 I NTRODUCTION 

A generalization of the familiar bell-shaped normal density to several dimensions plays 
a fundamental role in multivariate analysis. In fact, most of the techniques encountered 
in this book are based on the assumption that the data were generated from a multivariate 
normal distribution. While real data are never exactly multivariate normal, the normal 
density is often a useful approximation to the "true" population distribution. 

One advantage of the multivariate normal distribution stems from the fact that 
it is mathematically tractable and "nice" results can be obtained. This is frequently 
not the case for other data-generating distributions. Of course, mathematical at
tractiveness per se is of little use to the practitioner. It turns out, however, that nor
mal distributions are useful in practice for two reasons: First, the normal distribution 
serves as a bona fide population model in some instances; second, the sampling dis
tributions of many multivariate statistics are approximately normal, regardless of the 
form of the parent population, because of a central limit effect. 

To summarize, many real-world problems fall naturally within the framework 
of normal theory. The importance of the normal distribution rests on its dual role as 
both population model for certain natural phenomena and approximate sampling 
distribution for many statistics. 

4.2 TH E MULTIVARIATE NORMAL DENS ITY AND ITS PROPERTI ES 

The multivariate normal density is a generalization of the univariate normal density 
to p > 2 dimensions. Recall that the univariate normal distribution, with mean JL 
and variance a-2, has the probability density function 

- 00  < X < 00 (4-1) 

149 
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I I 
I I 

:-+--- .683 �: 

p - 2cr p - er  f.1 f.1 + cr  f.1 + 2cr 

Figure 4.1 A normal  dens ity with 
mean J.L and va ria nce a2 and sel ected 
a reas u n der the cu rve. 

A plot of this function yields the familiar bell-shaped curve shown in Figure 4.1 .  Also 
shown in the figure are approximate areas under the curve within ±1  standard devi
ations and ±2 standard deviations of the mean. These areas represent probabilities, 
and thus, for the normal random variable X, 

P (J.L - a- < X < J.L + a-) - .68 

P (J.L - 2a- < X < J.L + 2a-) - .95 

It is convenient to denote the normal density function with mean J.L and variance 
a-2 by N (J.L, a-2) .  Therefore, N( 10, 4 )  refers to the function in (4-1) with J.L = 10 and 
a- = 2. This notation will be extended to the multivariate case later. 

The term 

(4-2) 

in the exponent of the univariate normal density function measures the square of the 
distance from x to J.L in standard deviation units. This can be generalized for a p X 1 
vector x of observations on several variables as 

(4-3) 

The p X 1 vector IL represents the expected value of the random vector X, and the 
p X p matrix I is the variance-covariance matrix of X. [See (2-30) and (2-31 ) . ]  We 
shall assume that the symmetric matrix I is positive definite, so the expression in 
( 4-3) is the square of the generalized distance from x to JL .  

The multivariate normal density is obtained by replacing the univariate dis
tance in ( 4-2) by the multivariate generalized distance of ( 4-3) in the density function 
of ( 4-1 ) .  When this replacement is made, the univariate normalizing constant 
(27T )-112 ( a-2) -

112 must be changed to a more general constant that makes the volume 
under the surface of the multivariate density function unity for any p. This is neces
sary because, in the multivariate case, probabilities are represented by volumes under 
the surface over regions defined by intervals of the xi values. It can be shown (see 
[1 ]) that this constant is (27T )-P/2 1 I l -112, and consequently, a p-dimensional normal 
density for the random vector X' = [X1 , X2 , • • •  , Xp] has the form 

1 I 1 

f ( x ) = e- ( x- JL) I- ( x - JL) 12 
(27T ) P/2 1 I 1 1/2 

(4-4) 

where - oo < xi < oo , i = 1, 2, . . . , p. We shall denote this p-dimensional normal 
density by Np ( /L, I) ,  which is analogous to the normal density in the univariate case. 
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Example 4. 1 {Bivariate normal density) 

Let us evaluate the p = 2-variate normal density in terms of the individual pa
rameters JL1 = E(X1 ) , JL2 = E(X2) , o-1 1 = Var (X1 ) , o-22 = Var (X2) , and P1 2 = o-1 2/ (�ya:;;) = Corr (X1 , X2) . Using Result 2A.8, we find that the inverse of the covariance matrix 

IS 

Introducing the correlation coefficient p1 2 by writing a-1 2 = p1 2 � vo:;;, we 
obtain o-1 1o-22 - a-i2 = o-1 1o-22 ( 1 - PI2) , and the squared distance becomes 

[ o-22 -P1 2� ya:;;J [x1 - JL1] 
-P1 2� ya:;; o-1 1 X2 - JL2 

lT22(x1 - JL1 )2 + lT1 1 (x2 - JL2)2 - 2pl 2 � ya:;; ( xl - JL1 ) (x2 - JL2) 
lT l llT 2 2 ( 1 - PI 2) 

1 [ (x1 - JL1 )2 (x2 - JL2)2 (x1 - JL1 ) (x2 - JL2) ] = 1 - Pi2 � + ya:;; - Zp1 2 � ya:;; (4-5) 

The last expression is written in terms of the standardized values ( x1 - JL1 ) / � 
and (x2 - JL2)jvo:;; . 

Next, since I I I = o-1 1o-22 - a-i2 = o-1 1o-2 2 ( 1 - PI2 ) , we can substitute for 
I -l and I I I in ( 4-4) to get the expression for the bivariate ( p = 2 ) normal den
sity involving the individual parameters JL1 , JL2 , o-1 1 , o-22 , and p1 2 : 

1 f(xl , x2) = ( 4-6) 21TV lTl llT22( 1 - PI2) 
X exp { - 2( 1 � Pi2 ) [ ( x�l y + ( x�2 y 

_ Zp1 2
(X1 - JL1 ) (x� - JL2) ] } � v;;:;; 

The expression in ( 4-6) is somewhat unwieldy, and the compact general form in 
( 4-4) is more informative in many ways. On the other hand, the expression 
in ( 4-6) is useful for discussing certain properties of the normal distribution. 
For example, if the random variables X1 and X2 are uncorrelated, so that p1 2 = 0, 
the joint density can be written as the product of two univariate normal densities 



1 52 Chapter 4 The M u lt iva r iate Norma l  D istr ibut ion 

each of the form of (4-1) .  That is, f(x1 � x2) = f(x1 )f (x2) and X1 and X2 are 
independent. [See (2-28) .] This result is true in general. (See Result 4.5.) 

Two bivariate distributions with o-1 1  = o-22 are shown in Figure 4.2. In 
Figure 4.2(a), X1 and X2 are independent (p1 2 = 0 ) .  In Figure 4.2(b ) ,  p1 2 = .75. 
Notice how the presence of correlation causes the probability to concentrate 
along a line. • 

(a) 

(b) 

Figure 4.2 Two biva r iate normal  d istr ibut ions .  (a) a1 1  = a2 2 and  p1 2 = 0.  
(b) a 1 1 = a2 2 and p 1 2 = . 75 . 
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From the expression in (4-4) for the density of a p-dimensional normal vari
able, it should be clear that the paths of x values yielding a constant height for the den
sity are ellipsoids. That is, the multivariate normal density is constant on surfaces 
where the square of the distance ( x - p, ) ' I-1 ( x - p, ) is constant. These paths are 
called contours: 

Constant probability density contour = {all x such that ( x - p, ) ' I-1 ( x - p, ) = c2} 
= surface of an ellipsoid centered at p, 

The axes of each ellipsoid of constant density are in the direction of the eigen
vectors of I-1 , and their lengths are proportional to the reciprocals of the square 
roots of the eigenvalues of I-1 . Fortunately, we can avoid the calculation of I-1 when 
determining the axes, since these ellipsoids are also determined by the eigenvalues and 
eigenvectors of I. We state the correspondence formally for later reference. 

Result 4.1. If I is positive definite, so that I-1 exists, then 

Ie = Ae implies I-1e = (�) e 
so ( A, e )  is an eigenvalue-eigenvector pair for I corresponding to the pair ( 1/ A, e )  
for I-1 • Also, I-1 i s  positive definite. 

Proof. For I positive definite and e i=- 0 an eigenvector, we have 0 < e 'Ie 
= e ' (Ie)  = e ' (Ae )  = Ae ' e  = A. Moreover, e = I-1 (Ie) = I-1 (Ae ) , or e  = AI-1e, 

and division by A > 0 gives I-1 e = ( 1/A)e. Thus, ( 1/A, e )  is an eigenvalue
eigenvector pair for I-1 . Also, for any p X 1 x, by (2-21) 

x' I-1x = x' ( �  (!)eiej ) x l= l Al 

= � (!) (x' ei )2 > 0 i = l Ai 
since each term Aj1 (x '  ez) 2 is nonnegative. In addition, x' ei = 0 for all i only if 

p x = 0. So x =I= 0 implies that � ( 1/ Ai ) (x' ei )2 > 0, and it follows that I-1 is posii= l 
tive definite. • 

The following summarizes these concepts: 
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A contour of constant density for a bivariate normal distribution with o-1 1 = o-22 
is obtained in the following example. 

Example 4.2 (Contours of the bivariate normal density) 

We shall obtain the axes of constant probability density contours for a bivari
ate normal distribution when o-1 1 = o-22 . From ( 4-7) ,  these axes are given by the 
eigenvalues and eigenvectors of I. Here I I - AI I = 0 becomes 

0 = o-1 1 - A 
lT1 2 

= ( A - o-1 1 - o-1 2) ( A. - o-1 1 + o-1 2 ) 

Consequently, the eigenvalues are A.1 = o-1 1 + o-1 2 and A2 = o-1 1 - o-1 2 . The 
eigenvector e 1 is determined from 

or 
o-1 1  e 1 + o-1 2 e2 = ( o-1 1  + o-1 2 ) e 1 
lT1 2e1 + o-1 1 e2 = ( o-1 1 + lT1 2 )e2 

These equations imply that e1 = e2 , and after normalization, the first 
eigenvalue-eigenvector pair is 

1 
v'2 
1 

v'2 

Similarly, A2 = o-1 1 - o-1 2 yields the eigenvector e2 = [ 1/v'2, -ljv'2] . 
When the covariance o-1 2 (or correlation p1 2) is positive, A1 = o-1 1 + o-1 2 is 

the largest eigenvalue, and its associated eigenvector e1  = [ 1/v'2, 1/v'2] lies 
along the 45° line through the point IL ' = [JL1 , JL2] .  This is true for any positive 
value of the covariance (correlation) . Since the axes of the constant-density el
lipses are given by ±eVA;" e1 and ±eVA; e2 [see (4-7)] , and the eigenvectors 
each have length unity, the major axis will be associated with the largest eigen
value. For positively correlated normal random variables, then, the major axis of 
the constant-density ellipses will be along the 45° line through IL · (See Figure 4.3 .) 

Figure 4.3 A consta nt-dens ity 
contour  for a biva r iate normal  
d i str ibut ion with a1 1 = a2 2  and 
a 1 2 > O (or p1 2 > 0). 
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When the covariance (correlation) is negative, A.2 = a1 1 - a1 2 will be the largest 
eigenvalue, and the major axes of the constant-density ellipses will lie along a 
line at right angles to the 45° line through IL .  (These results are true only for 
a1 1 = a22 ·) 

To summarize, the axes of the ellipses of constant density for a bivariate 
normal distribution with a 1 1 = a22 are determined by 

1 1 
- -

v1 v1 ±cVa1 1 + a1 2 1 
and ±cYa1 1 - a1 2 - 1  

- -

v1 v1 • 

We show in Result 4.7 that the choice c2 = x�( a) , where x�( a)  is the upper 
( 100a ) th percentile of a chi-square distribution with p degrees of freedom, leads to 
contours that contain ( 1  - a) X 100% of the probability. Specifically, the following 
is true for a p-dimensional normal distribution: 

The constant-density contours containing 50% and 90% of the probability under 
the bivariate normal surfaces in Figure 4.2 are pictured in Figure 4.4. 

112  112 
- - - � 

111 xl /11 xl 

Figure 4.4 The 50% and 90% contou rs for the bivar iate normal  d istri but ions 
in F i gu re 4 .2 .  

The p-variate normal density in (4-4) has a maximum value when the squared 
distance in ( 4-3) is zero-that is, when x = IL · Thus, IL is the point of maximum den
sity, or mode, as well as the expected value of X, or mean . The fact that IL is the mean 
of the multivariate normal distribution follows from the symmetry exhibited by the 
constant-density contours : These contours are centered, or balanced, at IL · 
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Additional  Properties of the Multivariate 
Normal D istri bution 

Certain properties of the normal distribution will be needed repeatedly in our ex
planations of statistical models and methods. These properties make it possible to 
manipulate normal distributions easily and, as we suggested in Section 4 . 1 , are 
partly responsible for the popularity of the normal distribution. The key proper
ties, which we shall soon discuss in some mathematical detail, can be stated rather 
simply. 

The following are true for a random vector X having a multivariate normal 
distribution: 

1. Linear combinations of the components of X are normally distributed. 
2. All subsets of the components of X have a (multivariate) normal distribution. 
3. Zero covariance implies that the corresponding components are independently 

distributed. 
4. The conditional distributions of the components are (multivariate) normal. 

These statements are reproduced mathematically in the results that follow. Many of 
these results are illustrated with examples. The proofs that are included should help 
improve your understanding of matrix manipulations and also lead you to an appre
ciation for the manner in which the results successively build on themselves. 

Result 4.2 can be taken as a working definition of the normal distribution. With 
this in hand, the subsequent properties are almost immediate. Our partial proof of 
Result 4.2 indicates how the linear combination definition of a normal density re
lates to the multivariate density in ( 4-4) . 

Result 4.2. If X is distributed as Np( JL , I ) ,  then any linear combination of 
variables a '  X == a1X1 + a2X2 + .

. · + aPXP is distributed as N(a'  JL, a' Ia ) .  Also, if 
a' X is distributed as N(a '  JL, a' Ia) for every a, then X must be Np( JL , I ) .  

Proof. The expected value and variance of a '  X follow from (2-43) .  Proving 
that a' X is normally distributed if X is multivariate normal is more difficult. You can 
find a proof in [1 ] .  The second part of result 4.2 is also demonstrated in [1] . • 

Example 4.3 {The d istribution of a l i near combination of the components 
of a normal random vector) 

Consider the linear combination a' X of a multivariate normal random vector 
determined by the choice a' == [ 1 ,  0, . . .  , O J .  Since 

xl 
x2 a' X == [ 1 , o, . . .  , O J  == X1 
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and 

we have 

I-Ll JL2 a' 1L == [ 1 , 0, . . .  , O J  == JL1 

JLp 

lTl l lT1 2 lTl p 
a' Ia == [ 1 , 0, . . .  , O J  lT1 2 lT22 lT2p 

lTlp lT2p lTpp 

1 
0 

== lTl l 
0 

and it follows from Result 4.2 that X1 is distributed as N (JL1 , o-1 1 ) . More generally, the marginal distribution of any component Xi of X is N(JLi , o-i i ) · • 

The next result considers several linear combinations of a multivariate normal 
vector X. 

Result 4.3. If X is distributed as Np ( JL , I) ,  the q linear combinations 

A X == (qXp ) (pX l ) 

al lxl + . . .  + al pxp 
a2 lxl + . . . + a2pxp 

are distributed as Nq(AJL, AIA ' ) .  Also, X + d , where d is a vector of con-
stants, is distributed as Np( IL + d, I ) .  (px l ) (px l ) 

Proof. The expected value E(AX) and the covariance matrix of AX follow 
from (2-45) .  Any linear combination b '  (AX) is a linear combination of X, of the 
form a '  X with a == A' b. Thus, the conclusion concerning AX follows directly from 
Result 4.2. 

The second part of the result can be obtained by considering a' (X + d) == 
a 'X + (a '  d) , where a' X is distributed as N(a '  JL, a 'Ia) .  It is known from the uni
variate case that adding a constant a' d to the random variable a' X leaves the variance 
unchanged and translates the mean to a' IL + a' d == a' ( IL + d) . Since a was 
arbitrary, X + d is distributed as Np ( IL + d, I) .  • 
Example 4.4 (The d istri bution of two l i near combi nations of the 

components of a normal random vector) 

For X distributed as N3 ( JL , I ) ,  find the distribution of 

-1  
1 
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By Result 4.3, the distribution of AX is multivariate normal with mean 

and covariance matrix 

Alternatively, the mean vector AIL and covariance matrix AIA' may be verified by direct calculation of the means and covariances of the two random vari
ables Y1 = xl - x2 and Y2 = x2 - x3 . • 

We have mentioned that all subsets of a multivariate normal random vector X 
are themselves normally distributed. We state this property formally as Result 4.4. 

Result 4.4. All subsets of X are normally distributed. If we respectively par
tition X, its mean vector IL, and its covariance matrix I as 

and 

[ X1 ] (qX l ) X = - - - - - - - - - - - - - - - -(px l ) x2 ((p-q) X l ) 

[ IL1 ] ( q X l ) IL = - - - - - - - - - - - - - - -(px l ) IL2 ( (p-q) X l ) 

I (pxp) 

I 
I I1 1 ! I1 2 (qxq) : (qx (p-q ) ) 
I - - - - - - - - - - - - - - - - r - - - - - - - - - - - - - - - - - - - - - -

I2 1 l I22 ( (p-q) Xq ) l ( ( p-q ) X (p-q) ) 
then xl is distributed as Nq( #Ll , Il l ) · 

Proof. Set A = [ 1 
0 J in Result 4.3, and the conclusion follows. (qXp) (qXq) (qX (p-q ) ) 

To apply Result 4 .4 to an arbitrary subset of the components of X, we simply relabel 
the subset of interest as X1 and select the corresponding component means and covariances as IL 1 and I1 1 , respectively. • 
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Example 4.5 (The d istribution of a subset of a normal random vector) 

If X is distributed as N5 ( 1L , I) , find the distribution of [ �:] . We set 
and note that with this assignment, X, JL, and I can respectively be rearranged 
and partitioned as 

x2 
x4 

X =  xl 
x3 
X5 

or 

X =  

' 

xl (2X l ) 
x2 (3 X 1 ) 

JL =  

Thus, from Result 4.4, for 

we have the distribution 

J.L2 
J.L4 
J.Ll ' 

J.L3 
J.L5 

JL =  

I = 

IL1 (2 X l ) 
IL2 ( 3 X l ) 

a-22 a-24 i (I 1 2 a-23 a-25 
-� �-� - - - -� � � _ l _ _ c:__l_ �- - - -� � -� - - - -�-� ?_ a-1 2 a-1 4 i (Il l  a-1 3 a-1 5 
a-23 a-34 ! a-1 3 a-3 3 a-3 5 
a-25 a-45 ! a-1 5 a-3 5 a-55 

It is clear from this example that the normal distribution for any subset can be 
expressed by simply selecting the appropriate means and covariances from the 
original IL and I. The formal process of relabeling and partitioning is unnecessary. • 

We are now in a position to state that zero correlation between normal random 
variables or sets of normal random variables is equivalent to statistical independence. 

Result 4.5. 

(a) If X1 and X2 are independent, then Cov (X1 , X2) = 0, a q1 X q2 matrix of (q1 x l ) (q2 x l ) zeros. 
(b) If [ �J is Nq1 +qz( [:-;J , [�;-;-i - -i!�] ) , then X1 and X2 are independent if and only if I1 2 = 0. 
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(c) If X1 and X2 are independent and are distributed as Nq1 ( p.1 , I1 1 ) and 
Nq2 ( p,2 , I22) , respectively, then [i�J has the multivariate normal distribution 

Nq! +qz ( [-:;-] ' [t�-�+!:J) 
Proof. (See Exercise 4014 for partial proofs based upon factoring the density 

function when I12 = Oo) • 

Example 4.6 (The equ iva lence of zero covariance and i ndependence 
for normal variables) 

Let X be N3 ( p. , I ) with (3X 1) [ 4 1 OJ I = 1 3 o 
0 0 2 

Are X1 and X2 independent? What about ( X1 , X2) and X3? Since X1 and X2 have covariance o-1 2 = 1 , they are not independent. However, partitioning X and I as 

X =  [1!- l I = 1 3 ! o = _(�->:�� i-��->:-�L [4 1 l OJ [ I1 1 l I1 2 ] - - -- - -- - - - - ;- - - - - I2 1 : I22 0 0 i 2 ( 1 X2) i ( l X l ) 

we see that X1 = [�:] and X3 have covariance matrix I1 2 = [ � J . Therefore, 
( X1 , X2) and X3 are independent by Result 405 0 This implies X3 is independent 
of xl and also of x2 0 • 

We pointed out in our discussion of the bivariate normal distribution that 
p1 2 = 0 (zero correlation) implied independence because the joint density function 
[see ( 4-6)] could then be written as the product of the marginal (normal) densities of 
X1 and X2 0 This fact, which we encouraged you to verify directly, is simply a special case of Result 405 with q1 = q2 = 1 0  

Result 4.6. Let X = [�;-] be distributed as Np(p, , I) with p, = [-:;] , 
I = [� �-! - - � -� �-?] , and I I22 l > 00 Then the conditional distribution of X1 , given that """2 1 : """22 X2 = x2 , is normal and has 
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Note that the covariance does not depend on the value x2 of the conditioning variable. 
Proof. We shall give an indirect proof. (See Exercise 4.13 , which uses the den

sities directly.) Take 

so 

[ I : � �-1 ] : - """ 1 2...,.2 2 (qXq) i q X (p-q) A = - - - - - - - - - - - - - - �- - - - - - - - - - - - - - - - - - -

(pxp) 0 ! I (p-q ) Xq : (p-q) X (p-q ) 

is jointly normal with covariance matrix AIA' given by 

Since X1 - IL1 - I1 2I2i (X2 - IL2) and X2 - IL2 have zero covariance, they are independent. Moreover, the quantity X1 - 1L1 - I1 2I2i (X2 - IL2) has distribution Nq(O, I1 1 - I1 2I2ii2 1 ) . Given that X2 = x2 , IL1 + I1 2I2i (x2 - 1L2) is a constant. Because X1 - 1L1 - I1 2I2i (X2 - IL2 ) and X2 - 1L2 are independent , the conditional distribution of X1 - ILl - I12I2i (x2 - IL2) is the same as the unconditional distribution of X1 - 1L1 - I1 2I2i (X2 - 1L2) . Since X1 - 1L1 - I1 2I2i (X2 - 1L2) is Nq(O, I1 1 - I1 2I2ii2 1 ) , so is the random vector X1 - IL1 - I1 2I2i (x2 - 1L2) when X2 has the particular value x2 . Equivalently, given that X2 = x2 , X1 is distrib-uted as Nq( ILl + I1 2I2i (x2 - 1L2) , I1 1 - I1 2I2i I2 1 ) . • 

Example 4.7 (The conditional  dens ity of a bivariate normal d istri bution) 

The conditional density of xl ' given that x2 = x2 for any bivariate distribution, is defined by 

where f ( x2) is the marginal distribution of X2 . If f ( x1 , x2 ) is the bivariate normal density, show that f(x1 I x2) is 
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Here o-1 1 - a-i2/o-22 = o-1 1 ( 1 - PI2) . The two terms involving x1 - JL1 in the exponent of the bivariate normal density [see Equation (4-6)] become, apart 
from the multiplicative constant -1/2 ( 1 - PI2 ) , 

Because p1 2 = o-1 2/ya:;; vo=;;:, or p1 2 va:;;; vo=;;: = o-1 2/o-22 , the complete exponent is 

The constant term 2TTv' o-1 1o-22 ( 1 - PI2) also factors as 

Dividing the joint density of X1 and X2 by the marginal density 

and canceling terms yields the conditional density 

Thus, with our customary notation, the conditional distribution of X1 given that x2 = x2 is N(JLl + ( lT1 2/ lT22) ( x2 - JL2) , lTl l ( 1 - PI2 ) ) . Now, Il l - Il 2I2i I2 1 == o-1 1 - a-i2/o-22 == o-1 1 ( l - PI2) and I1 2I2i = o-1 2/o-22 , agreeing with Result 4.6� 
which we obtained by an indirect method. • 
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For the multivariate normal situation, it is worth emphasizing the following: 
1. All conditional distributions are (multivariate) normal. 
2. The conditional mean is of the form 

where the {3's are defined by 

f3l, q+ l f3l, q+2 
f32, q+ 1 f32, q +2 

f3l, p 
f32, p 

/3q, q+ l /3q, q+2 /3q,p 

(4-9) 

3. The conditional covariance, I1 1  - I1 2I2ii2 1 , does not depend upon the value(s) of the conditioning variable (s) . 
We conclude this section by presenting two final properties of multivariate nor

mal random vectors. One has to do with the probability content of the ellipsoids of 
constant density. The other discusses the distribution of another form of linear com
binations. 

The chi-square distribution determines the variability of the sample variance 
s2 = s1 1  for samples from a univariate normal population. It also plays a basic role in the multivariate case. 

Result 4. 7. Let X be distributed as Np( JL, I )  with I I I > 0. Then 
(a) (X - JL ) ' I-1 (X - JL )  is distributed as x� , where x� denotes the chi-square 
distribution with p degrees of freedom. 

(b) The Np( JL, I )  distribution assigns probability 1 - a to the solid ellipsoid 
{x :  (x - JL ) ' I-1 (x - JL )  < x� (a ) } , where x� (a ) denotes the upper ( 100a)th 
percentile of the x� distribution. 

Proof. We know that x� is defined as the distribution of the sum 
Zi + Z� + · · ·  + Z� , where Z1 , Z2 , . . •  , ZP are independent N(O, 1 ) random vari
ables. Next, by the spectral decomposition [see Equations (2-16) and (2-21) with p 1 
A =  I, and see Result 4.1 ] , I-1 = L - eiei , where Iei = Aiei , so I-1ei = 

i= l  Ai p 
( 1/A.Jei . Consequently, (X - JL ) ' I-1 (X - JL )  = L ( 1/A.J (X - JL ) ' eiei (X - JL ) = 

i= l  p 2 p 2 p 
L ( 1/ Ai ) ( ei (X - IL ) )  = L [ ( 1/\/A;) ei (X - IL ) ]  = L Z[ , for instance. Now, 
i= l  i= l  i= l we can write Z = A(X - IL ) , where 
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z == (pX l ) A == (pXp) 

and X - IL is distributed as Np( 0, I) . Therefore, by Result 4.3, Z == A(X - IL ) is 
distributed as Np(O, AIA' ) , where 

By Result 4.5, Z1 , Z2 , . . .  , ZP are independent standard normal variables, and we con
clude that (X - 1L) 'I-1 (X - 1L) has a x�-distribution. 

For Part b, we note that P[ (X - JL ) ' I-1 (X - JL ) < c2 ] is the probability as
signed to the ellipsoid (X - �-t ) ' I-1 (X - JL) < c2 by the density Np(JL , I) . But from Part a, P[ (X - JL ) ' I-1 (X - JL ) < x�(a) ] == 1 - a, and Part b holds. • 

Remark: (Interpretation of statistical distance) Result 4.7 provides an in
terpretation of a squared statistical distance. When X is distributed as Np(JL , I) , 

is the squared statistical distance from X to the population mean vector IL· If one component has a much larger variance than another, it will contribute less to the 
squared distance. Moreover, two highly correlated random variables will contribute 
less than two variables that are nearly uncorrelated. Essentially, the use of the inverse 
of the covariance matrix, (1) standardizes all of the variables and (2) eliminates the 
effects of correlation. From the proof of Result 4.7, 

(X - JL ) ' I-1 (X - JL) == Zt + Z� + · · · + Z� 
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1 1 In terms of I -2 (see (2-22)), Z = I -2 (X - IL ) has a Np(O, Ip) distribution, and 
1 1 

(X - JL ) ' I-1 (X - JL )  = (X - JL ) ' I -2 I -2 (X - JL)  
= z '  z = zi + z� + · · · + z� 

The squared statistical distance is calculated as if, first, the random vector X were 
transformed to p independent standard normal random variables and then the usual 
squared distance, the sum of the squares of the variables, were applied. 

Next, consider the linear combination of vector random variables 
c1X1 + c2X2 + · · · + cnXn = [X1 l X2 ! · · · ! Xn ] c 

(pXn ) (n x l ) 
( 4-10) 

This linear combination differs from the linear combinations considered earlier in 
that it defines a p X 1 vector random variable that is a linear combination of vectors. 
Previously, we discussed a single random variable that could be written as a linear com
bination of other univariate random variables. 

Result 4.8. Let X1 , X2 , . . .  , Xn be mutually independent with Xj distributed 
as Np(#Lj , I) . (Note that each Xj has the same covariance matrix I.) Then 

is distributed as Np(� Cjf.Lj , (� cJ ):t) . Moreover, vl and v2 = blXl + b2X2 
+ · · · + bnXn are jointly multivariate normal with covariance matrix 

(� cJ):t (b ' c ) I  

(b ' c) I  (� bJ):t 

n 
Consequently, vl and v2 are independent if b' c = L cj bj = 0. 

j= l 

Proof. By Result 4.5(c) , the np component vector 

is multivariate normal. In particular, X is distributed as Nnp (JL , Ix) , where (npX l ) 

IL1 I 0 0 
IL2 and Ix 

0 I 0 IL (npX l ) (npXnp) 
#Ln 0 0 I 
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The choice 
A _ [ e11 e2I enl] 

(2pXnp) b1 I b2l bnl 

where I is the p X p identity matrix, gives 

AX = 

n 
"" e -X · £,; 1 1 j= l  
n 

"" b -X . £,; 1 1 j= l  
and AX i s normal N2p(AJL,  AixA' ) by Result 4.3 . Straightforward block multipli
cation shows that AixA' has the first block diagonal term 

[ eli , e2I, . . . , eni J [ ell, e21, . . . , eni J ' = ( ± cJ)I 
1= 1  

The off-diagonal term is 
[ eli, e2I, . . .  , eni J  [b1I, b2I, . . .  , bni J ' = ( ± cA)I 

1= 1  
n 

This term is the covariance matrix for V1 , V2 . Consequently, when � ejbj = 

b' c = 0, so that ( ± cjbj):t = 0 , V1 and V2 are independent by Result .fS (b) . • 
j= l  (pXp) 

For sums of the type in ( 4-10) , the property of zero correlation is equivalent to 
requiring the coefficient vectors b and c to be perpendicular. 
Example 4.8 (Linear combinations of random vectors) 

Let X1 , X2 , X3 , and X4 be independent and identically distributed 3 X 1 ran
dom vectors with 

� = [ -:] and :t = [ -: -� �] 
We first consider a linear combination a 'X1 of the three components of X1 . 

This is a random variable with mean 

and variance 
a 'Ia = 3ai + a� + 2a� - 2a1a2 + 2a1a3 

That is, a linear combination a 'X1 of the components of a random vector is a single random variable consisting of a sum of terms that are each a constant times 
a variable. This is very different from a linear combination of random vectors, say, 

e1X1 + e2X2 + e3X3 + e4X4 
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which is itself a random vector. Here each term in the sum is a constant times 
a random vector. 

Now consider two linear combinations of random vectors 

and 
X1 + X2 + x3 - 3X4 

Find the mean vector and covariance matrix for each linear combination of vec
tors and also the covariance between them. 

By Result 4.8 with c1 = c2 = c3 = c4 = 1/2, the first linear combination 
has mean vector 

and covariance matrix 

( ci + d + d + d) I = 1 X I = [ -� -1  1 ] 
1 0 
0 2 

For the second linear combination of random vectors, we apply Result 4.8 with 
b1 = b2 = b3 = 1 and b4 = -3 to get mean vector 

(b1 + b2 + b3 + b4) 1L = OIL = [ �] 
and covariance matrix 

( bi + b� + b� + b�) I = 12 x I = [ -�� -�� 1�] 
12 0 24 

Finally, the covariance matrix for the two linear combinations of random vec
tors is 

Every component of the first linear combination of random vectors has zero co
variance with every component of the second linear combination of random 
vectors. 

If, in addition, each X has a trivariate normal distribution, then the two lin
ear combinations have a joint six-variate normal distribution, and the two linear 
combinations of vectors are independent. • 
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4.3 SAMPLI NG FROM A M U LTIVARIATE NORMAL D ISTRI BUTION 
AN D MAXI M U M  LI KEL IHOOD ESTI MATION 

We discussed sampling and selecting random samples briefly in Chapter 3. In this sec
tion, we shall be concerned with samples from a multivariate normal population-in 
particular, with the sampling distribution of X and S. 

The Mu ltivariate Normal L ike l ihood 

Let us assume that the p X 1 vectors X1 , X2 , . . .  , Xn represent a random sample from a multivariate normal population with mean vector IL and covariance matrix I. Since 
X1 , X2 , . . .  , Xn are mutually independent and each has distribution Np(JL ,  I ) , the 
joint density function of all the observations is the product of the marginal normal 
densities: { Joint density } fi { 1 

e-(x;-P-) 'l-l (x; -P-)/2 } of xl ' X2 , . . .  ' Xn -
j= l  ( 21T )PI2 1 I 1 112 

= 1 1 
e-,�/x; -P-) 'l-l (x; -P-)/2 (21T ) np/2 1 I l n/2 

( 4-1 1) 
When the numerical values of the observations become available, they may be 

substituted for the xj in Equation ( 4-1 1) . The resulting expression, now considered 
as a function of IL and I for the fixed set of observations x1 , x2 , . . .  , xn , is called the 
likelihood. 

Many good statistical procedures employ values for the population parameters 
that "best" explain the observed data. One meaning of best is to select the parame
ter values that maximize the joint density evaluated at the observations. This tech
nique is called maximum likelihood estimation, and the maximizing parameter values 
are called maximum likelihood estimates. 

At this point, we shall consider maximum likelihood estimation of the para
meters IL and I for a multivariate normal population. To do so, we take the obser
vations x1 , x2 , . . .  , xn as fixed and consider the joint density of Equation ( 4-1 1 ) evaluated at these values. The result is the likelihood function. In order to simplify 
matters, we rewrite the likelihood function in another form. We shall need some ad
ditional properties for the trace of a square matrix. (The trace of a matrix is the sum 
of its diagonal elements, and the properties of the trace are discussed in Definition 
2A.28 and Result 2A.12.) 

Result 4.9. Let A be a k X k symmetric matrix and x be a k X 1 vector. Then 
(a) x' Ax = tr (x' Ax) = tr (Axx' ) 

k 
(b) tr (A) = � A.i , where the A.i are the eigenvalues of A. i= l  

Proof. For Part a , we note that x' Ax is a scalar, so x' Ax = tr (x ' Ax) . We 
pointed out in Result 2A. 12 that tr (BC) = tr (CB) for any two matrices B and C of k 
dimensions m X k and k X m, respectively. This follows because BC has � bijcj i as m ( k ) j= l  its ith diagonal element, so tr (BC) = � � b;h; . Similarly, the jth diagonal 
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element of CB is � C · ·b · · so tr (CB ) = � ( � c . .  b . .  ) = � ( � b c - ) = .£,; 1 l l 1 ' .£,; .£,; 1 l l 1 .£,; .L.J l 1 1 l i = 1 j= 1 i= 1 i= 1 j= 1 tr (BC) . Let x' be the matrix B with m = 1 , and let Ax play the role of the matrix C. 
Then tr ( x' (Ax) ) = tr ( (Ax )x' ) , and the result follows. 

Part b is proved by using the spectral decomposition of (2-20) to write 
A = P' AP, where PP' = I and A is a diagonal matrix with entries A.1 , A.2 , • • • , "-k · Therefore, tr (A) = tr (P ' AP) = tr ( APP ' ) = tr ( A ) = A1 + A2 + · · ·  + "-k · • 

Now the exponent in the joint density in ( 4-1 1) can be simplified. By Result 
4.9(a), 

Next, 

( x j - It ) ' I -1 ( x j - It)  = tr [ ( x j - It ) ' I -1 ( x j - p,) ] 
= tr [I -1 ( x j - p,) ( x j - p,) ' ] ( 4-12) 

n n 
� ( x j - IL) 'I -1 ( x j - It )  = � tr [ ( x j - It )  ' I -1 ( x j - It)  ] j= 1 j= 1 

n 
= � tr [I -1 ( x j - It )  ( x j - It )  ' ] j= 1 

since the trace of a sum of matrices is equal to the sum of the traces of the matrices, 
n according to Result 2A. 12(b) . We can add and subtract x = ( 1/n) � xj in each term 

n j= 1 ( x j - p,) in � ( x j - p,) ( x j - p,) ' to give j= 1 
n 
� (xj - x + x - p, ) (xj - x + x - p, ) ' j= 1 

n n 
= � (xj - x) (xj - x) ' + � ( x - JL ) ( x - IL ) ' j= 1 j= 1 

n 
= � (xj - x) (xj - x) ' + n( x - p,) (x - p,) ' (4-14) j= 1 

n n because the cross-product terms, � (xj - x) (x - p, ) ' and � ( x  - IL ) (xj - x) ' , j= 1 j= 1 are both matrices of zeros. (See Exercise 4.15.) Consequently, using Equations ( 4-13) 
and (4-14) , we can write the joint density of a random sample from a multivariate 
normal population as 
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Substituting the observed values x1 , x2 , . . .  , xn into the joint density yields the likelihood function. We shall denote this function by L(JL , I) , to stress the fact that it is 
a function of the (unknown) population parameters IL and I. Thus, when the vectors 
xj contain the specific numbers actually observed, we have 

L( IL I )  = 1 e-tr [l-'(t (xJ - X) (xi- X) ' +n (X-1'-) (X-IL) ')l/2 ' (21T ) np/2 1 I l n/2 ' ( 4-16) 

It will be convenient in later sections of this book to express the exponent in the 
likelihood function ( 4-16) in different ways. In particular, we shall make use of the 
identity 

tr [ I-1(� (xi - X) (xi - X) ' + n (X - p,) ( X - p, ) ') ] 
= tr [ I-1( � (xi - X) ( xi - X) ') ] + n tr [I-1 ( X  - p, ) ( X - p, ) ' ] 

= tr [ I-1( � (xi - X) ( xi - X) ') ] + n (X  - p, ) 'I-1 (X  - p, )  ( 4-17) 

Maximum Like l ihood Esti mation of IL and I 
The next result will eventually allow us to obtain the maximum likelihood estimators 
of IL and I. 

Result 4.10. Given a p X p symmetric positive definite matrix B and a scalar 
b > 0, it follows that 

I
� lb e-tr (l-lB)/2 < 

I
� lb ( 2b )Pbe-bp 

for all positive definite I , with equality holding only for I = ( 1/2b )B. (pxp) 
Proof. Let B112 be the symmetric square root of B [see Equation (2-22) ] ,  

s o B112B112 = B, B112B-112 = I , and B-112B-112 = B-1 . Then tr (I-1B )  = 
tr [ (I-1 B112 )B112 J = tr [B112 (I-1 B112 ) ] . Let TJ be an eigenvalue of B112I-1 B112 . This 
matrix is positive definite because y' B112I-1B112y = (B112y) 'I-1 (B112y) > 0 if 
B112y # 0 or, equivalently, y # 0. Thus, the eigenvalues TJi of B112I-1 B112 are positive 
by Exercise 2.17. Result 4.9(b) then gives 

p 

p tr (I-1 B) = tr (B112I-1 B112 ) = :L TJi 
i= 1  

and I B112I-1 B112 1 = IT TJi by Exercise 2.12. From the properties of determinants in 
i= 1  Result 2A. 11 ,  we can write 

I B1f2I-1 B1/2 1 = I B1/2 1 1  I-1 1 1  B1/2 1 = I I-1 I I  B1/2 1 1  B1/2 1 

= I I-1 I I  B I = -
1 

I B I 
I I I 
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1 
I I I  

I B1f2I-1 B1/2 1 
I B I 

p II TJi i = 1 
= --

I B I 
Combining the results for the trace and the determinant yields 

1 -1 ( I) 1]; y p 1 p 

I I l b e
-tr [:t B J/2 = ' I� l b e-:�, YJ./2 = I B l b D 7Jf e-YJ,/2 

But the function TJbe-TJ/2 has a maximum, with respect to TJ, of (2b)be-b, occurring at 
TJ = 2b. The choice TJi = 2b, for each i, therefore gives 

I
� 

l b e
-tr (r'B)/2 < I� l b (2b )Ph e-bp 

The upper bound is uniquely attained when I = ( 1/2b )B, since, for this choice, 
8112I-1 81;2 = 8112 (2b )B-1 8112 = (2b) I 

(pXp) 
and 

Moreover, 
1 I B1f2I-1 B1/2 1 
I I I  I B I 

I (2b )I I 
I B I 

( 2b)P 

I B I 
Straightforward substitution for tr[I-1 B J and 1/ l I l b yields the bound asserted. • 

The maximum likelihood estimates of IL and I are those values-denoted by 
jL and i-that maximize the function L(JL ,  I) in (4-16) . The estimates jL and i will 
depend on the observed values x 1 , x2 , . . .  , xn through the summary statistics x and S. 

Result 4.11. Let X 1 , X2 , . . .  , Xn be a random sample from a normal population with mean IL and covariance I. Then 
and A 1 � _ _ , ( n  - 1 ) I = - � (Xj - X ) (Xj - X ) = S n j= 1  n 

are the maximum likelihood estimators of IL and I, respectively. Their observed 
n 

values, x and ( 1/n) L (xj - x) (xj - x) ' , are called the maximum likelihood esti
mates of IL and I. j= 1  

Proof. The exponent in the likelihood function [see Equation (4-16)] , apart 
from the multiplicative factor - � , is [see ( 4-17)] 

tr [ I-1(� (xj - X) (xj - x) ') ] + n ( X - p ) 'I-1 ( X - p )  
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By Result 4.1 , I-1 is positive definite, so the distance (x - IL ) 'I-1 ( x - IL ) > 0 un
less IL = x. Thus, the likelihood is maximized with respect to IL at j:t = x. It re
mains to maximize 

n over I. By Result 4.10 with b = n/2 and B = � (xj - x) (xj - x) ' , the maximum 
A 

n j = 1 occurs at i = ( 1/n ) � (xj - x) (xj - x) ' , as stated. j= 1 The maximum likelihood estimators are random quantities. They are obtained 
by replacing the observations x1 , x2 , • • •  , xn in the expressions for jL and i with the corresponding random vectors, X1 , X2, • • •  , Xn . • 

We note that the maximum likelihood estimator X is a random vector and the 
A maximum likelihood estimator I is a random matrix. The maximum likelihood es-timates are their particular values for the given data set. In addition, the maximum 

of the likelihood is 

A or, since I I I = [ ( n - 1 )/n JP I S I , 

L( jL , i) = constant X (generalized variance )-n/2 

( 4-18) 

( 4-19) 

The generalized variance determines the "peakedness" of the likelihood function 
and, consequently, is a natural measure of variability when the parent population is 
multivariate normal. 

A Maximum likelihood estimators possess an invariance property. Let 6 be the 
maximum likelihood estimator of 6, and consider estimating the parameter h( 6 ) ,  
which is a function of 6 .  Then the maximum likelihood estimate of 

h( 6 )  is given by h( 0)  
( a  function of (J) ( same function of {)) 

(See [1] and [14] . )  For example, 
(4-20) 

1. The maximum likelihood estimator of JL' I-1 JL is [L ':i-1 [L, where jL = X and 
i = ( ( n - 1 ) / n) S are the maximum likelihood estimators of IL and I, respectively. 

2. The maximum likelihood estimator of � is �, where 
A 1 �

n - 2 a-· . = - (X· . - X- ) l l  l 1 l n j= 1 
is the maximum likelihood estimator of a-i i  = Var (Xi) · 
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From expression ( 4-15) , the joint density depends on the whole set of observations 
x1 , x2 , . . .  , xn only through the sample mean x and the sum-of-squares-and-cross-

n 
products matrix L (xi - x) (xi - x) '  = ( n  - 1 )S . We express this fact by saying 

i= 1 that x and ( n - 1 )S  (or S) are sufficient statistics: 

The importance of sufficient statistics for normal populations is that all of the 
information about � and I in the data matrix X is contained in x and S, regardless 
of the sample size n. This generally is not true for nonnormal populations. Since 
many multivariate techniques begin with sample means and covariances, it is pru
dent to check on the adequacy of the multivariate normal assumption. (See Section 
4.6 .) If the data cannot be regarded as multivariate normal, techniques that depend 
solely on x and S may be ignoring other useful sample information. 

4.4 TH E SAM PLING D ISTRIBUTION OF X AN D S 

The tentative assumption that x1 ' x2 , . . .  ' xn constitute a random sample from a normal population with mean � and covariance I completely determines the sampling 
distributions of X and S . Here we present the results on the sampling distributions 
of X and S by drawing a parallel with the familiar univariate conclusions. 

In the univariate case (p = 1 ) , we know that X is normal with mean JL = (pop
ulation mean) and variance 

1 population variance _(]"2 = --------

n sample size 
The result for the multivariate case (p > 2) is analogous in that X has a normal dis
tribution with mean � and covariance matrix ( 1/n )I .  

n 
For the sample variance, recall that ( n - 1 )s2 = L (Xi - X)2 is distributed as i= 1 

u2 times a chi-square variable having n - 1 degrees of freedom (d.f.) . In turn, this 
chi-square is the distribution of a sum of squares of independent standard normal 
random variables. That is, ( n - 1 )s2 is distributed as u2(Zi + · · · + Z�_1 ) = (uZ1 )2 + · · · + ( uZn_ 1 ) 2. The individual terms uZi are independently distributed as 
N(O, u2) . It is this latter form that is suitably generalized to the basic sampling dis
tribution for the sample covariance matrix. 
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The sampling distribution of the sample covariance matrix is called the Wishart 
distribution, after its discoverer; it is defined as the sum of independent products of 
multivariate normal random vectors. Specifically, 

Wm( · I I)  = Wishart distribution with m d.f. 
m 

= distribution of � zjzJ 
j= l  

where the Z j are each independently distributed as Np( 0, I ) . 
We summarize the sampling distribution results as follows: 

( 4-22) 

Because I is unknown, the distribution of X cannot be used directly to make 
inferences about IL · However, S provides independent information about I, and the 
distribution of S does not depend on IL ·  This allows us to construct a statistic for 
making inferences about /L,  as we shall see in Chapter 5. 

For the present, we record some further results from multivariable distribution 
theory. The following properties of the Wishart distribution are derived directly from 
its definition as a sum of the independent products, Z jZj . Proofs can be found in [1 ] .  

Properties of the Wishart Distribution 

1. If A l is distributed as wml (Al I I)  independently of A2 , which is distributed as 
Wm2 (A2 1 I) , then A 1 + A2 is distributed as Wm1 +m2 (A 1 + A2 1 I) .  That is, the 
degrees of freedom add. ( 4-24) 

2. If A is distributed as Wm (A I I) , then CAC ' is distributed as 
Wm (CAC' I CIC' ) . 

Although we do not have any particular need for the probability density func
tion of the Wishart distribution, it may be of some interest to see its rather complicated 
form. The density does not exist unless the sample size n is greater than the number 
of variables p. When it does exist, its value at the positive definite matrix A is 

I A l ( n-p-2)/2e-tr [AI-1 ]/2 
wn_ 1 (A I I)  = P , A positive definite 

2p(n- 1 )/21Tp(p- 1 )/4 1 I l (n- 1 )/2 II r(� (n - i ) ) i = l  

where r ( ·) is the gamma function. (See [1] .) (4-25) 
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4.5 LARG E-SAMPLE BEHAVIOR OFX AN D S 
Suppose the quantity X is determined by a large number of independent causes 
Vi ,  v;, . . .  , Vn , where the random variables Vi representing the causes have approxi
mately the same variability. If X is the sum 

X = Vi + Vi + · · · + Vn 

then the central limit theorem applies, and we conclude that X has a distribution that 
is nearly normal. This is true for virtually any parent distribution of the Vj's, provid
ed that n is large enough. 

The univariate central limit theorem also tells us that the sampling distribution 
of the sample mean,X, for a large sample size is nearly normal, whatever the form of 
the underlying population distribution. A similar result holds for many other 
important univariate statistics. 

It turns out that certain multivariate statistics, like X and S, have large-sample 
properties analogous to their univariate counterparts. As the sample size is increased 
without bound, certain regularities govern the sampling variation in X and S, irre
spective of the form of the parent population. Therefore, the conclusions presented 
in this section do not require multivariate normal populations. The only require
ments are that the parent population, whatever its form, have a mean IL and a finite 
covariance I. 

Result 4.12 (Law of large numbers) . Let Yi ,  }2, . . . , Yn be independent obser
vations from a population with mean E(Yi) = J.L. Then 

- Yi + Y2 + · · · + Yn y = --------------n 

converges in probability to J.L as n increases without bound. That is, for any prescribed 
accuracy s > 0, P[ -s < Y - J.L < s J approaches unity as n � oo . 

Proof. See [9] . • 

As a direct consequence of the law of large numbers, which says that each Xi 
converges in probability to J.Li , i = 1 , 2, . . .  , p, 

X converges in probability to IL ( 4-26) 

Also, each sample covariance si k  converges in probability to O"i k ' i, k = 1, 2, . . .  , p, 

and 

S ( or i = Sn ) converges in probability to I ( 4-27) 
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Statement ( 4-27) follows from writing 

n 
( n  - l ) si k  = L (Xji - Xi) (Xj k  - Xk) 

j= 1  
n 

= L (Xji - JLi + JLi - Xi) (Xj k  - JLk + JLk - Xk) j= 1 
n 

= L (Xji - JLJ (Xjk  - JLk ) + n (Xi - JLi ) (Xk - JLk ) j= 1 

Letting lj = (Xj i - JLJ (Xjk - JLk ) , with E(lj) = a-ik ' we see that the first term in st A 
converges to a-ik and the second term converges to zero, by applying the law of large 
numbers. 

The practical interpretation of statements ( 4-26) and ( 4-27) is that, with high 
probability, X will be close to IL and S will be close to I whenever the sample size is 
large. The statement concerning X is made even more precise by a multivariate ver
sion of the central limit theorem. 

Result 4.13 (The central limit theorem). Let X1 , X2 , . . .  , Xn be independent 
observations from any population with mean IL and finite covariance I. Then 

Vn (X - IL )  has an approximate Np( 0, I) distribution 

for large sample sizes. Here n should also be large relative to p. 

Proof. See [1] . • 

The approximation provided by the central limit theorem applies to dis
crete, as well as continuous, multivariate populations. Mathematically, the limit 
is exact, and the approach to normality is often fairly rapid. Moreover, from the 
results in Section 4.4, we know that X is exactly normally distributed when the un
derlying population is normal. Thus, we would expect the central limit theorem 
approximation to be quite good for moderate n when the parent population is 
nearly normal. 

As we have seen, when n is large, S is close to I with high probability. Conse
quently, replacing I by S in the approximating normal distribution for X will have a 
negligible effect on subsequent probability calculations. 

Result 4.7 can be used to show that n (X  - IL ) 'I-1 (X  - IL )  has a x� distribution 

when X is distributed as NP( /L, � I) or, equivalently, when Vn ( X  - IL ) has an 

Np(O, I) distribution. The x� distribution is approximately the sampling distribution 
of n (X - IL ) ' I-1 ( X  - IL ) when X is approximately normally distributed. Replac
ing I-1 by s-1 does not seriously affect this approximation for n large and much 
greater than p. 
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We summarize the major conclusions of this section as follows: 

In the next three sections, we consider ways of verifying the assumption of nor
mality and methods for transforming nonnormal observations into observations that 
are approximately normal. 

4.6 ASSESS ING TH E ASSU MPTION OF NORMALITY 

As we have pointed out, most of the statistical techniques discussed in subsequent 
chapters assume that each vector observation Xi comes from a multivariate normal 
distribution. On the other hand, in situations where the sample size is large and the 
techniques depend solely on the behavior of X, or distances involving X of the form 
n (X - JL ) ' S-1 (X - JL ) , the assumption of normality for the individual observations 
is less crucial. But to some degree, the quality of inferences made by these methods 
depends on how closely the true parent population resembles the multivariate nor
mal form. It is imperative, then, that procedures exist for detecting cases where the 
data exhibit moderate to extreme departures from what is expected under multi
variate normality. 

We want to answer this question: Do the observations Xi appear to violate the 
assumption that they came from a normal population? Based on the properties of 
normal distributions, we know that all linear combinations of normal variables are nor
mal and the contours of the multivariate normal density are ellipsoids. Therefore, we 
address these questions : 

1. Do the marginal distributions of the elements of X appear to be normal? What 
about a few linear combinations of the components Xi ? 

2. Do the scatter plots of pairs of observations on different characteristics give 
the elliptical appearance expected from normal populations? 

3. Are there any "wild" observations that should be checked for accuracy? 

It will become clear that our investigations of normality will concentrate on the 
behavior of the observations in one or two dimensions (for example, marginal dis
tributions and scatter plots) . As might be expected, it has proved difficult to con
struct a "good" overall test of joint normality in more than two dimensions because 
of the large number of things that can go wrong. To some extent, we must pay a price 
for concentrating on univariate and bivariate examinations of normality: We can 
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never be sure that we have not missed some feature that is revealed only in higher 
dimensions. (It is possible, for example, to construct a nonnormal bivariate distrib
ution with normal marginals. [See Exercise 4.8 . ]) Yet many types of nonnormality 
are often reflected in the marginal distributions and scatter plots. Moreover, for most 
practical work, one-dimensional and two-dimensional investigations are ordinarily 
sufficient. Fortunately, pathological data sets that are normal in lower dimensional 
representations, but nonnormal in higher dimensions, are not frequently encountered 
in practice. 

Eva l uati ng the Normal ity of the Un ivariate Marg ina l  Distr ibutions 

Dot diagrams for smaller n and histograms for n > 25 or so help reveal situations 
where one tail of a univariate distribution is much longer than the other. If the his
togram for a variable Xi appears reasonably symmetric, we can check further by 
counting the number of observations in certain intervals. A univariate normal dis
tribution assigns probability . 683 to the interval (JLi - �' JLi + �) and proba
bility .954 to the interval (JLi - 2�, JLi + 2�) . Consequently, with a large 
sample size n, we expect the observed proportion Pi I of the observations lying in the 
interval ( xi - �' xi + �) to be about .683 . Similarly, the observed proportion 
Pi2 of the observations in ( xi - 2�, xi + 2�) should be about . 954. Using the 
normal approximation to the sampling distribution of Pi (see [9] ) ,  we observe that 
either 

I Pi l - .683 1 > 3 
( .683 ) ( .317 ) 1 .396 

n Vn 

or 

I Pi 2 - . 954 1 > 3 
( .954) ( .046 ) .628 ( 4-29) n Vn 

would indicate departures from an assumed normal distribution for the ith charac
teristic. When the observed proportions are too small, parent distributions with thick
er tails than the normal are suggested. 

Plots are always useful devices in any data analysis. Special plots called Q-Q 
plots can be used to assess the assumption of normality. These plots can be made for 
the marginal distributions of the sample observations on each variable. They are, in 
effect, plots of the sample quantile versus the quantile one would expect to observe 
if the observations actually were normally distributed. When the points lie very near
ly along a straight line, the normality assumption remains tenable. Normality is sus
pect if the points deviate from a straight line. Moreover, the pattern of the deviations 
can provide clues about the nature of the nonnormality. Once the reasons for the non
normality are identified, corrective action is often possible. (See Section 4.8 .) 

To simplify notation, let x1 , x2 , • • •  , xn represent n observations on any single 
characteristic Xi . Let x( l ) < x(2) < · · · < x(n ) represent these observations after they 
are ordered according to magnitude. For example, x(2) is the second smallest obser
vation and x(n ) is the largest observation. The xu) 's are the sample quantiles. When 
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the xu) are distinct , exactly j observations are less than or equal to xu) . (This is the
oretically always true when the observations are of the continuous type, which we 
usually assume.) The proportion jfn of the sample at or to the left of xu) is often 
approximated by (j - �)/n for analytical convenience. 1 

For a standard normal distribution, the quantiles q(j) are defined by the relation iq(j) 1 2 j - � P[Z < q( · ) ]  = -- e-z l2 dz = P( · ) = --1 
oo V2ii I n (4-30) 

(See Table 1 in the appendix) . Here PU) is the probability of getting a value less than 
or equal to q(j ) in a single drawing from a standard normal population. 

The idea is to look at the pairs of quantiles ( q(j) , xu) ) with the same associated 
cumulative probability (j - �)fn. If the data arise from a normal population, the 
pairs ( q(j) , xu) ) will be approximately linearly related, since o-q(j) + J.L is nearly the ex
pected sample quantile. 2 

Example 4.9 {Constructing a Q-Q plot) 

A sample of n = 10 observations gives the values in the following table : 

Ordered 
observations 

xu) 
-1 .00 
- .10 

.16 

.41 

.62 

.80 
1 .26 
1 .54 
1 .71 
2.30 

Probability levels (j - �)/n 
.05 
. 15 
.25 
.35 
.45 
.55 
.65 
.75 
.85 
.95 

Standard normal 
quantiles q(j) 

- 1 .645 
-1 .036 
- .674 
- .385 
- .125 

.125 

.385 

.674 
1 .036 
1 .645 

1.385 1 2 Here, for example, P[Z < .385 ] = " �  e-z 12 dz = .65. [See (4-30) .] 
00 v 2'1T 

Let us now construct the Q-Q plot and comment on its appearance. The 
Q-Q plot for the foregoing data, which is a plot of the ordered data xu) against 

1The � in the numerator of (j - �)In is a "continuity" correction. Some authors (see [5] and [10]) 
have suggested replacing (j - �)In by (j - � )l (n + � ) .  

2 A better procedure is to  plot (m(; ) , x(; ) ) ,  where m(j) = E(z(; ) )  is the expected value of  the jth
order statistic in a sample of size n from a standard normal distribution. (See [12] for further discussion.) 
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• 

• • 
• 

• 

Figure 4.5 A 0-0 plot for the data 
in Examp le  4.9 .  

the normal quantiles q(j) , is shown in Figure 4.5 . The pairs of points ( q(j ) , xu) ) 
lie very nearly along a straight line, and we would not rej ect the notion that 
these data are normally distributed-particularly with a sample size as small as n = 10. • 

The calculations required for Q-Q plots are easily programmed for electronic 
computers. Many statistical programs available commercially are capable of pro
ducing such plots. 

The steps leading to a Q-Q plot are as follows: 

1. Order the original observations to get x( l ) , X(z) , • . •  , x(n � and their correspond
ing probability values ( 1 - �)fn, ( 2 - �)/n, . . .  , ( n - �J/n; 

2. Calculate the standard normal quantiles q( l ) , q(2 ) , • • •  , q(n ) ; and 

3. Plot the pairs of observations ( q( l ) , x( l ) ) , ( q(2) , x(2) ) ,  . . .  , ( q(n ) , x(n ) ) , and exam
ine the "straightness" of the outcome. 

Q-Q plots are not particularly informative unless the sample size is moderate 
to large-for instance, n > 20. There can be quite a bit of variability in the straight
ness of the Q-Q plot for small samples, even when the observations are known to 
come from a normal population. 

Example 4. 1 0  {A Q-Q p lot for rad iation data) 

The quality-control department of a manufacturer of microwave ovens is re
quired by the federal government to monitor the amount of radiation emitted 
when the doors of the ovens are closed. Observations of the radiation emitted 
through closed doors of n = 42 randomly selected ovens were made. The data 
are listed in Table 4.1 on page 181 .  

In order to determine the probability of exceeding a prespecified tolerance 
level, a probability distribution for the radiation emitted was needed. Can we 
regard the observations here as being normally distributed? 

A computer was used to assemble the pairs ( q(j) ' xu) ) and construct the 
Q-Q plot , pictured in Figure 4.6 on page 181 . It appears from the plot that the 
data as a whole are not normally distributed. The points indicated by the cir
cled locations in the figure are outliers-values that are too large relative to 
the rest of the observations. 
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TABLE 4. 1 RAD IATION DATA (DOOR CLOSED) 

Oven Oven Oven 
no. Radiation no. Radiation no. Radiation 

1 .15 16 .10 31 .10 
2 .09 17 .02 32 .20 
3 . 18 18  .10 33 .11 
4 .10 19 .01 34 .30 
5 .05 20 .40 35 .02 
6 .12 21 .10 36 .20 
7 .08 22 .05 37 .20 
8 .05 23 .03 38 .30 
9 .08 24 .05 39 .30 

10 .10 25 .15 40 .40 
1 1  .07 26 .10 41 .30 
12 .02 27 .15 42 .05 
13 .01 28 .09 
14 .10 29 .08 
15 .10 30 .18 

Source: Data courtesy of  J. D. Cryer . 
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9 • •  
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e 3 
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2 3 

.00 q(j) 
-2.0 - 1 .0 .0 1 .0 2.0 3.0 

Figure 4.6 A 0-0 p lot of the radiation data (door c losed) from Examp le  4. 1 0 .  
(The i ntegers in the p lot i nd icate the n u mber of poi nts occupyi ng the same 
location . )  

For the radiation data, several observations are equal. When this occurs, 
those observations with like values are associated with the same normal quan
tile. This quantile is calculated using the average of the quantiles the tied ob
servations would have if they all differed slightly. • 
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The straightness of the Q-Q plot can be measured by calculating the correla
tion coefficient of the points in the plot. The correlation coefficient for the Q-Q plot 
is defined by 

n 
2: ( xu) - x) ( qU) - q) j= 1 r Q = ----;:==============---;:=============== �� ( x (j) - i)2 �� (%l - zd 

( 4-31 ) 

and a powerful test of normality can be based on it. (See [5] , [10] , and [11 ] . )  Formally� 
we rej ect the hypothesis of normality at level of significance a if rQ falls below the ap
propriate value in Table 4.2. 

TABLE 4.2 CR ITICAL POI NTS FOR 
TH E Q-Q PLOT CORRELATION 
COEFF IC I ENT TEST FOR NORMALITY 

Sample size Significance levels a 

n .01 .05 .10 
5 .8299 .8788 .9032 

10 .8801 .9198 .9351 
15 .9126 .9389 .9503 
20 .9269 .9508 .9604 
25 .9410 .9591 .9665 
30 .9479 .9652 .9715 
35 .9538 .9682 .9740 
40 .9599 .9726 .9771 
45 .9632 .9749 .9792 
50 .9671 .9768 .9809 
55 .9695 .9787 .9822 
60 .9720 .9801 .9836 
75 .9771 .9838 .9866 

100 .9822 .9873 .9895 
150 .9879 .9913 .9928 
200 .9905 .9931 .9942 
300 .9935 .9953 .9960 

Example 4. 1 1  (A correlation coefficient test for norma l ity) 

Let us calculate the correlation coefficient rQ from the Q-Q plot of Example 4.9 
(see Figure 4.5) and test for normality. 

Using the information from Example 4.9, we have x = .770 and 

10 10 10 
2: ( x(j ) - x)q(j) = 8.584, 2: ( x(j) - x)2 = 8.472, and 2: q(j) = 8.795 
j = 1 j= 1 j= 1 
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Since always, q = 0, 

rQ = 8.584 = . 994 V8.472 V8.795 
A test of normality at the 10% level of significance is provided by referring 
rQ == .994 to the entry in Table 4.2 corresponding to n == 10 and a == . 10 .  This 
entry is .9351 .  Since rQ > .9351 ,  we do not reject the hypothesis of normality. • 

Instead of rQ , some software packages evaluate the original statistic proposed 
by Shapiro and Wilk [11] . Its correlation form corresponds to replacing q(J) by a func
tion of the expected value of standard normal-order statistics and their covariances. 
We prefer rQ because it corresponds directly to the points in the normal-scores plot. 
For large sample sizes, the two statistics are nearly the same (see [12] ) ,  so either can 
be used to judge lack of fit . 

Linear combinations of more than one characteristic can be investigated. Many 
statisticians suggest plotting 

in which A1 is the largest eigenvalue of S. Here xj == [ xj 1 , xj 2 , . • •  , xj p] is the jth ob
servation on the p variables X1 , X2 , • • •  , XP . The linear combination e�xj corre
sponding to the smallest eigenvalue is also frequently singled out for inspection. (See 
Chapter 8 and [ 6] for further details. ) 

Eva luating Bivariate Normal ity 

We would like to check on the assumption of normality for all distributions of 
2, 3 , . . .  , p dimensions. However, as we have pointed out, for practical work it is usu
ally sufficient to investigate the univariate and bivariate distributions. We consid
ered univariate marginal distributions earlier. It is now of interest to examine the 
bivariate case. 

In Chapter 1, we described scatter plots for pairs of characteristics. If the ob
servations were generated from a multivariate normal distribution, each bivariate 
distribution would be normal, and the contours of constant density would be ellipses. 
The scatter plot should conform to this structure by exhibiting an overall pattern that 
is nearly elliptical. 

Moreover, by Result 4.7, the set of bivariate outcomes x such that 

has probability .5 . Thus, we should expect roughly the same percentage, 50%, of sam
ple observations to lie in the ellipse given by 

{all x such that (x - x) 'S-1 (x - x) < x�( .5) } 

where we have replaced IL by its estimate x and I-1 by its estimate s-1 .  If not, the 
normality assumption is suspect. 
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Example 4. 1 2  (Checking bivariate normal ity) 

Although not a random sample, data consisting of the pairs of observations 
( x1 == sales, x2 == profits ) for the 10 largest U.S. industrial corporations are list
ed in Exercise 1 .4. These data give 

so 

- == 
[62,309] X 2927 ' S == 

[10,005.20 255.76] 
X 105 255 .76 14.30 

_1 _ 1 [ 14.30 -255 .76] 
X 10_5 s - 77,661 .18 -255 .76 10,005 .20 

== [ .000184 - .003293 ] X 10_5 - .003293 .128831 
From Table 3 in the appendix, x�( . 5 ) == 1 .39. Thus, any observation 
x' == [ x1 , x2 ] satisfying [x1 - 62,309] ' [ .000184 - .003293] [x1 - 62,309] X 10_5 < 1 .39 

x2 - 2927 -.003293 .128831 x2 - 2927 
is on or inside the estimated 50% contour. Otherwise the observation is outside 
this contour. The first pair of observations in Exercise 1 .4 is [ x1 , x2 ] '  == 

[ 126,97 4, 4224 J .  In this case 

[126,974 - 62,309] ' [ .000184 - .003293 ] [126,974 - 62,309] 
X 10_5 4224 - 2927 - .003293 .128831 4224 - 2927 

== 4.34 > 1 .39 
and this point falls outside the 50% contour. The remaining nine points have 
generalized distances from x of 1 .20, .59, .83, 1 .88, 1 .01 , 1 .02, 5.33, .81 , and .97, 
respectively. Since seven of these distances are less than 1 .39, a proportion, .70, 
of the data falls within the 50% contour. If the observations were normally dis
tributed, we would expect about half, or 5, of them to be within this contour. This 
large a difference in proportions would ordinarily provide evidence for rej ect
ing the notion of bivariate normality; however, our sample size of 10 is too small 
to reach this conclusion. (See also Example 4.13 . ) li 

Computing the fraction of the points within a contour and subjectively com
paring it with the theoretical probability is a useful, but rather rough, procedure. A 
somewhat more formal method for judging the joint normality of a data set is based 
on the squared generalized distances 

d2 _ ( -) 's-1 ( -) j - Xj - X Xj - X , j == 1 , 2, . . . , n ( 4-32) 
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where x1 , x2 , . . .  , xn are the sample observations. The procedure we are about to de
scribe is not limited to the bivariate case; it can be used for all p > 2. 

When the parent population is multivariate normal and both n and n - p are 
greater than 25 or 30, each of the squared distances di , d� , . . .  , d� should behave like 
a chi-square random variable. [See Result 4.7 and Equations ( 4-26) and ( 4-27) . ] Al
though these distances are not independent or exactly chi-square distributed, it is 
helpful to plot them as if they were. The resulting plot is called a chi-square plot or 
gamma plot, because the chi-square distribution is a special case of the more gener
al gamma distribution. (See [6] .) 

To construct the chi-square plot, 

1. Order the squared distances In ( 4-32) from smallest to largest as 
d2 < d2 < . . . < d2 

( 1 ) - (2) - - ( n ) • 

2. Gra)Jh the pairs ( qcj (j - Din ) ,  dfn ) ,  where qc, p ( (j - Din) is the 
100 �j - �)In quantile of the chi-square distribution with p degrees of freedom. 

Quantiles are specified in terms of proportions, whereas percentiles are speci
fied in terms of percentages. 

The quantiles qc, p ( (j - �)/n ) are related to the upper percentiles of a chi
squared distribution. In particular, qc, p ( (j - �)In ) = x�( (n - j + �)In ) .  

The plot should resemble a straight line through the origin having slope 1 .  A 
systematic curved pattern suggests lack of normality. One or two points far above the 
line indicate large distances, or outlying observations, that merit further attention. 

Example 4. 1 3  (Constructi ng a chi-square plot) 

Let us construct a chi-square plot of the generalized distances given in Exam
ple 4.12. The ordered distances and the corresponding chi-square percentiles 
for p = 2 and n = 10 are listed in the following table: 

c 1 ) 
dJn 

1 - 2 
1 qc, 2 1Q 

1 .59 . 10 
2 .81 .33 
3 .83 .58 
4 .97 .86 
5 1 .01 1 .20 
6 1 .02 1 .60 
7 1 .20 2.10 
8 1 . 88 2.77 
9 4.34 3 .79 

10 5 .33 5 .99 
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• 

• 

• 

• 

• • • • • 

• 
1..-..L-------L-------L----'-----'-----'-----� qc,2 (( j- ! )  /10) 

0 1 2 3 4 5 6 
Figure 4.7 A ch i-sq uare p lot of the ordered d i stances in Examp le  4. 1 3 . 

A graph of the pairs ( qc, 2 ( (j - � )/10 ) , d(n )  is shown in Figure 4.7. 
The points in Figure 4.7 do not lie along the line with slope 1. The small

est distances appear to be too large and the middle distances appear to be too 
small, relative to the distances expected from bivariate normal populations for 
samples of size 10. These data do not appear to be bivariate normal; however, 
the sample size is small, and it is difficult to reach a definitive conclusion. If 
further analysis of the data were required, it might be reasonable to transform 
them to observations more nearly bivariate normal. Appropriate transforma
tions are discussed in Section 4.8. • 

In addition to inspecting univariate plots and scatter plots, we should check 
multivariate normality by constructing a chi-squared or d2 plot. Figure 4.8 on page 
187 contains d2 plots based on two computer-generated samples of 30 four-variate nor
mal random vectors. As expected, the plots have a straight-line pattern, but the top 
two or three ordered squared distances are quite variable. 

The next example contains a real data set comparable to the simulated data set 
that produced the plots in Figure 4.8 . 
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dJ) d&) 
1 0  1 0  • • 
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Figure 4.8 Ch i-sq ua re p lots for two s imu l ated fou r-va r iate normal  data sets with n = 30. 

Example 4. 1 4  (Eva l uating mu ltivariate normal ity for a fou r-var iab le 
data set) 

The data in Table 4.3 were obtained by taking four different measures of stiff-
ness, x1 , x2 , x3 , and x4 , of each of n = 30 boards. The first measurement in-
volves sending a shock wave down the board, the second measurement is 
determined while vibrating the board, and the last two measurements are ob-
tained from static tests. The squared distances dy = (xj - x) 'S-1 (xj - x) are 
also presented in the table. 

TABLE 4.3 FOUR  M EASUREM ENTS OF STI FFN ESS 

Observation Observation 
no. xl x2 x3 x4 d2 no. xl x2 x3 x4 d2 

1 1889 1651 1561 1778 .60 16 1954 2149 1180 1281 16 .85 
2 2403 2048 2087 2197 5.48 17 1325 1170 1002 1176 3 .50 
3 2119 1700 1815 2222 7.62 18 1419 1371 1252 1308 3 .99 
4 1645 1627 1110 1533 5.21 19 1828 1634 1602 1755 1 .36 
5 1976 1916 1614 1883 1 .40 20 1725 1594 1313 1646 1 .46 
6 1712 1712 1439 1546 2.22 21 2276 2189 1547 21 11 9 .90 
7 1943 1685 1271 1671 4.99 22 1899 1614 1422 1477 5.06 
8 2104 1820 1717 1874 1 .49 23 1633 1513 1290 1516 .80 
9 2983 2794 2412 2581 12.26 24 2061 1867 1646 2037 2.54 

10 1745 1600 1384 1508 .77 25 1856 1493 1356 1533 4.58 
11 1710 1591 1518 1667 1 . 93 26 1727 1412 1238 1469 3 .40 
12 2046 1907 1627 1898 .46 27 2168 1896 1701 1834 2.38 
13 1840 1841 1595 1741 2.70 28 1655 1675 1414 1597 3 .00 
14 1867 1685 1493 1678 . 13 29 2326 2301 2065 2234 6.28 
15 1859 1649 1389 1714 1 .08 30 1490 1382 1214 1284 2.58 

Source: Data courtesy of William Galligan. 
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Figure 4.9 A ch i-sq uare p lot for the data i n  Examp le  4. 1 4. 

1 2  

The marginal distributions appear quite normal (see Exercise 4.33) , with 
the possible exception of specimen (board) 9 .  

To further evaluate multivariate normality, we constructed the chi-square 
plot shown in Figure 4.9 . The two specimens with the largest squared distances 
are clearly removed from the straight-line pattern. Together, with the next 
largest point or two, they make the plot appear curved at the upper end. We will 
return to a discussion of this plot in Example 4 .15 .  • 

We have discussed some rather simple techniques for checking the multivariate 
normality assumption. Specifically, we advocate calculating the dJ , j = 1 ,  2, . . .  , n 
[see Equation ( 4-32)] and comparing the results with x2 quantiles. For example, 
p-variate normality is indicated if 

1. Roughly half of the dJ are less than or equal to qc, p ( .50 ) .  

2. :. pt�
t

:
of)�h: , p

o(�e:er)����:: (!s:T),

s 

r:s�e:i:�;�,: ��=�:�l st:::::: 
line having slope 1 and that passes through the origin. 

(See [6] for a more complete exposition of methods for assessing normality.) 
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We close this section by noting that all measures of goodness of fit suffer the 
same serious drawback. When the sample size is small, only the most aberrant be
havior will be identified as lack of fit . On the other hand, very large samples in
variably produce statistically significant lack of fit. Yet the departure from the 
specified distribution may be very small and technically unimportant to the infer
ential conclusions. 

4.7 DETECTING OUTLI ERS AND CLEAN I NG DATA 

Most data sets contain one or a few unusual observations that do not seem to be
long to the pattern of variability produced by the other observations. With data 
on a single characteristic, unusual observations are those that are either very large 
or very small relative to the others. The situation can be more complicated with 
multivariate data. Before we address the issue of identifying these outliers, we 
must emphasize that not all outliers are wrong numbers. They may, justifiably, be 
part of the group and may lead to a better understanding of the phenomena being 
studied. 

Outliers are best detected visually whenever this is possible. When the num
ber of observations n is large, dot plots are not feasible. When the number of char
acteristics p is large, the large number of scatter plots p(p - 1 )/2 may prevent 
viewing them all . Even so, we suggest first visually inspecting the data whenever 
possible. 

What should we look for? For a single random variable, the problem is one di
mensional, and we look for observations that are far from the others. For instance, 
the dot diagram 

• •  
• • 

•• •• • 
• • •• • •••• ••• ••• • • • • •  
�------------------�---------------------r� x 

reveals a single large observation. 
In the bivariate case, the situation is more complicated. Figure 4 .10 on page 

190 as shows a situation with two unusual observations. 
The data point circled in the upper right corner of the figure is removed from 

the pattern, and its second coordinate is large relative to the rest of the x2 measure
ments, as shown by the vertical dot diagram. The second outlier, also circled, is far 
from the elliptical pattern of the rest of the points, but, separately, each of its com
ponents has a typical value. This outlier cannot be detected by inspecting the mar
ginal dot diagrams. 

In higher dimensions, there can be outliers that cannot be detected from the 
univariate plots or even the bivariate scatter plots. Here a large value of 
(xj - x) 'S-1 (xj - x) will suggest an unusual observation, even though it cannot be 
seen visually. 
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Figure 4. 1 0  Two outl iers; o n e  u n ivar iate and  o n e  biva riate. 

Steps for Detecti ng Outl iers 

1. Make a dot plot for each variable. 
2. Make a scatter plot for each pair of variables. 
3. Calculate the standardized values Zj k  = ( xj k  - xk )/� for j = 1 , 2, . . . , n and 

each column k = 1 ,  2, . . .  , p. Examine these standardized values for large or 
small values. 

4. Calculate the generalized squared distances (xj - x) 'S-1 (xj - x) . Examine 
these distances for unusually large values. In a chi-square plot, these would be 
the points farthest from the origin. 

In step 3, "large" must be interpreted relative to the sample size and number of 
variables. There are n X p standardized values. When n = 100 and p = 5, there are 
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500 values. You expect 1 or 2 of these to  exceed 3 or be  less than -3 ,  even if the data 
came from a multivariate distribution that is exactly normal. As a guideline, 3.5 might 
be considered large for moderate sample sizes. 

In step 4, "large" is measured by an appropriate percentile of the chi-square 
distribution with p degrees of freedom. If the sample size is n = 100, we would ex
pect 5 observations to have values of dy that exceed the upper fifth percentile of the 
chi-square distribution. A more extreme percentile must serve to determine obser
vations that do not fit the pattern of the remaining data. 

The data we presented in Table 4 .3 concerning lumber have already been 
cleaned up somewhat. Similar data sets from the same study also contained data on 
x5 = tensile strength. Nine observation vectors, out of the total of 112, are given as 
rows in the following table, along with their standardized values. 

xl x2 x3 x4 Xs Z1 Z2 Z3 Z4 Zs 

1631 1528 1452 1559 1602 .06 - . 15 .05 .28 - . 12 
1770 1677 1707 1738 1785 .64 .43 1 .07 .94 .60 
1376 1190 723 1285 2791 -1 .01 - 1 .47 -2.87 - .73 @]) 
1705 1577 1332 1703 1664 .37 .04 - .43 .81 . 13 
1643 1535 1510 1494 1582 . 11  - .12 .28 .04 - .20 
1567 1510 1301 1405 1553 - .21 - .22 - .56 - .28 - .31 
1528 1591 1714 1685 1698 - .38 .10 1 . 10 .75 .26 
1803 1826 1748 2746 1764 .78 1 .01 1 .23 @)) .52 
1587 1554 1352 1554 1551 - . 13 - .05 - .35 .26 - .32 

The standardized values are based on the sample mean and variance, calculat
ed from all 112 observations. There are two extreme standardized values. Both are 
too large with standardized values over 4.5. During their investigation, the researchers 
recorded measurements by hand in a logbook and then performed calculations that 
produced the values given in the table. When they checked their records regarding 
the values pinpointed by this analysis, errors were discovered. The value x5 = 2791 
was corrected to 1241 ,  and x4 = 2746 was corrected to 1670. Incorrect readings on 
an individual variable are quickly detected by locating a large leading digit for the 
standardized value. 

The next example returns to the data on lumber discussed in Example 4.14. 

Example 4. 1 5 (Detect ing outl iers in the data on l um ber) 

Table 4.4 on page 192 contains the data in Table 4.3, along with the standard
ized observations. These data consist of four different measures of stiffness 
x1 , x2 , x3 , and x4 , on each of n = 30 boards. Recall that the first measurement 
involves sending a shock wave down the board, the second measurement is de
termined while vibrating the board, and the last two measurements are obtained 
from static tests. The standardized measurements are 
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TABLE 4.4 FOUR  M EASUREMENTS OF STI FFN ESS WITH STAN DARD IZED VALUES 

xl x2 
1889 1651 
2403 2048 
2119 1700 
1645 1627 
1976 1916 
1712 1712 
1943 1685 
2104 1820 
2983 2794 
1745 1600 
1710 1591 
2046 1907 
1840 1841 
1867 1685 
1859 1649 
1954 2149 
1325 1 170 
1419 1371 
1828 1634 
1725 1594 
2276 2189 
1899 1614 
1633 1513 
2061 1867 
1856 1493 
1727 1412 
2168 1896 
1655 1675 
2326 2301 
1490 1382 

x3 x4 Observation no. z1 Z2 Z3 Z4 d2 

1561 1778 1 - .1 - .3 .2 .2 .60 
2087 2197 2 1 .5 .9 1 .9 1 .5 5 .48 
1815 2222 3 .7 - .2 1 .0 1 .5 7.62 
1110 1533 4 - .8 - .4 -1 .3 - .6 5 .21 
1614 1883 5 .2 .5 .3 .5 1 .40 
1439 1546 6 - .6 - .1 - .2 - .6 2.22 
1271 1671 7 . 1 - .2 - .8 - .2 4.99 
1717 1874 8 .6 .2 .7 .5 1 .49 
2412 2581 9 3 .3 3 .3 3 .0 2.7 c@§) 
1384 1508 10 - .5 - .5 - .4 - .7 .77 
1518 1667 11 - .6 - .5 .0 - .2 1 .93 
1627 1898 12 .4 .5 .4 .5 .46 
1595 1741 13 - .2 .3 .3 .0 2.70 
1493 1678 14 - .1 - .2 - . 1  - .1 .13 
1389 1714 15 - .1 - .3 - .4 - .0 1 .08 
1180 1281 16 . 1 1 .3 -1 . 1 -1 .4 � 
1002 1176 17 -1 .8 -1 .8 - 1 .7 - 1 .7 3 .50 
1252 1308 18 -1 .5 -1 .2 - .8 -1.3 3 .99 
1602 1755 19 - .2 - .4 .3 .1 1 .36 
1313 1646 20 - .6 - .5 - .6 - .2 1 .46 
1547 21 1 1  21 1 . 1  1 .4 .1 1 .2 9 .90 
1422 1477 22 - .0 - .4 - .3 - .8 5 .06 
1290 1516 23 - .8 - .7 - .7 - .6 .80 
1646 2037 24 .5 .4 .5 1 .0 2.54 
1356 1533 25 - .2 - .8 - .5 - .6 4.58 
1238 1469 26 - .6 -1 . 1  - .9 - .8 3 .40 
1701 1834 27 .8 .5 .6 .3 2.38 
1414 1597 28 - .8 - .2 - .3 - .4 3 .00 
2065 2234 29 1 .3 1 .7 1 .8 1 .6 6.28 
1214 1284 30 -1 .3 - 1 .2 -1 .0 -1 .4 2.58 

k = 1, 2, 3 ,  4; j = 1, 2, . . . ' 30 

and the squares of the distances are dy = (xj - x) 'S-1 (xj - x) . 
The last column in Table 4.4 reveals that specimen 16 is a multivariate 

outlier, since x�( .005 ) = 14.86; yet all of the individual measurements are well 
within their respective univariate scatters. Specimen 9 also has a large d2 value. 

The two specimens (9 and 16) with large squared distances stand out as 
clearly different from the rest of the pattern in Figure 4.9 . Once these two 
points are removed, the remaining pattern conforms to the expected straight
line relation. Scatter plots for the lumber stiffness measurements are given in 
Figure 4. 11 on page 193. The solid dots in these figures correspond to specimens 
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Figure 4.1 1 Scatter p lots for the l u m ber  st iffness data with speci mens 9 and  1 6  p lotted as sol id 
dots. 

9 and 16 . Although the dot for specimen 16 stands out in all the plots, the dot 
for specimen 9 is "hidden" in the scatterplot of x3 versus x4 and nearly hidden 
in that of x1 versus x3 • However, specimen 9 is clearly identified as a multi
variate outlier when all four variables are considered. 

Scientists specializing in the properties of wood conjectured that speci
men 9 was unusually clear and therefore very stiff and strong. It would also 
appear that specimen 16 is a bit unusual, since both of its dynamic measure
ments are above average and the two static measurements are low. Unfortu
nately, it was not possible to investigate this specimen further because the 
material was no longer available. • 
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If outliers are identified, they should be examined for content, as was done in 
the case of the data on lumber stiffness in Example 4.15 . Depending upon the nature 
of the outliers and the objectives of the investigation, outliers may be deleted or ap
propriately "weighted" in a subsequent analysis. 

Even though many statistical techniques assume normal populations, those 
based on the sample mean vectors usually will not be disturbed by a few moderate 
outliers. Hawkins [7] gives an extensive treatment of the subject of outliers. 

4.8 TRANSFORMATIONS TO N EAR NORMALITY 

If normality is not a viable assumption, what is the next step? One alternative is to 
ignore the findings of a normality check and proceed as if the data were normally 
distributed. This practice is not recommended, since, in many instances, it could lead 
to incorrect conclusions. A second alternative is to make nonnormal data more "nor
mal looking" by considering transformations of the data. Normal-theory analyses 
can then be carried out with the suitably transformed data. 

Transformations are nothing more than a reexpression of the data in different 
units. For example, when a histogram of positive observations exhibits a long right
hand tail, transforming the observations by taking their logarithms or square roots will 
often markedly improve the symmetry about the mean and the approximation to a 
normal distribution. It frequently happens that the new units provide more natural 
expressions of the characteristics being studied. 

Appropriate transformations are suggested by (1) theoretical considerations 
or (2) the data themselves (or both) . It has been shown theoretically that data that 
are counts can often be made more normal by taking their square roots. Similarly, the 
logit transformation applied to proportions and Fisher's z-transformation applied to 
correlation coefficients yield quantities that are approximately normally distributed. 

In many instances, the choice of a transformation to improve the approximation 
to normality is not obvious. For such cases, it is convenient to let the data suggest a 
transformation. A useful family of transformations for this purpose is the family of 
power transformations. 

Power transformations are defined only for positive variables. However, this is 
not as restrictive as it seems, because a single constant can be added to each obser
vation in the data set if some of the values are negative. 
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Let x represent an arbitrary observation. The power family of transformations 
is indexed by a parameter A. A given value for A implies a particular transformation. 
For example, consider xA with A = -1 .  Since x-1 = 1/ x, this choice of A corresponds 
to the reciprocal transformation. We can trace the family of transformations as A 
ranges from negative to positive powers of x. For A = 0, we define x0 == ln x. A se
quence of possible transformations is 

. . . , x-1 = l , xo = ln x, xl/4 = �, xl/2 = Vx, 
X 

shrinks large values of x increases large 
values of x 

To select a power transformation, an investigator looks at the marginal dot di
agram or histogram and decides whether large values have to be "pulled in" or 
"pushed out" to improve the symmetry about the mean. Trial-and-error calculations 
with a few of the foregoing transformations should produce an improvement . The 
final choice should always be examined by a Q-Q plot or other checks to see whether 
the tentative normal assumption is satisfactory. 

The transformations we have been discussing are data based in the sense that 
it is only the appearance of the data themselves that influences the choice of an ap
propriate transformation. There are no external considerations involved, although the 
transformation actually used is often determined by some mix of information supplied 
by the data and extra-data factors, such as simplicity or ease of interpretation. 

A convenient analytical method is available for choosing a power transforma
tion. We begin by focusing our attention on the univariate case. 

Box and Cox [3] consider the slightly modified family of power transformations { XA - 1 
x(A) = A 

ln x 

A =I= O 
( 4-34) 

A = O  

which is continuous in A for x > 0. (See [8] . )  Given the observations x1 , x2 , • • •  , xn , 
the Box-Cox solution for the choice of an appropriate power A is the solution that 
maximizes the expression 

C (A )  = - � ln [� � ( x?l - x(Al ) 2] + (A  - 1 ) � ln x1 
We note that x)A) is defined in (4-34) and 

W - _!_ � ( A ) - _!_ � ( xJ - 1 ) 
X - £./ X · - £./ 

n j= l I n j = l A 

( 4-35) 

( 4-36) 

is the arithmetic average of the transformed observations. The first term in ( 4-35) is, 
apart from a constant , the logarithm of a normal likelihood function, after maximiz
ing it with respect to the population mean and variance parameters. 
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The calculation of f(A) for many values of A is an easy task for a computer. It 
is helpful to have a graph of e (A)  versus A, as well as a tabular disp]ay of the pairs 
( A, f (A )  ) , in order to study the behavior near the maximi�ing value A. For instance, 
if either A = 0 (logarithm) or A = � (square root) is near A, one of these may be pre
ferred because of its simplicity. 

Rather than program the calculation of ( 4-35), some statisticians recommend the 
equivalent procedure of fixing A, creating the new variable 

X� - 1 
j = 1 ,  . . . , n ( 4-37) 

and then calculating the sample variance. The minimum of the variance occurs at 
the same A that maximizes ( 4-35) .  

Comment. It i s  now understood that the transformation obtained by maximiz
ing f (A )  usually improves the approximation to normality. However, there is no guar
antee that even the best choice of A will produce a transformed set of values that 
adequately conform to a normal distribution. The outcomes produced by a trans
formation selected according to ( 4-35) should always be carefully examined for pos
sible violations of the tentative assumption of normality. This warning applies with 
equal force to transformations selected by any other technique. 

Example 4. 1 6  (Determ in ing a power transformation for un ivariate data) 

We gave readings of the microwave radiation emitted through the closed doors 
of n = 42 ovens in Example 4.10. The Q-Q plot of these data in Figure 4.6 in
dicates that the observations deviate from what would be expected if they were 
normally distributed. Since all the observations are positive, let us perform a 
power transformation of the data which, we hope, will produce results that are 
more nearly normal. Restricting our attention to the family of transformations 
in (4-34) , we must find that value of A maximizing the function f (A) in (4-35) . 

The pairs ( A, e ( A) )  are listed in the following table for several values of A: 

A f (A )  

-1 .00 70.52 
- .90 75.65 
- .80 80.46 
- .70 84.94 
- .60 89.06 
- .50 92.79 
- .40 96.10 
- .30 98.97 
- .20 101.39 
- .10 103.35 

.00 104.83 

.10 105 .84 

.20 106.39 
(30 106.51) 

A f (A) 

.40 106.20 

.50 105.50 

.60 104.43 

.70 103 .03 

.80 101.33 

.90 99.34 
1 .00 97. 10 
1 . 10 94.64 
1 .20 91 .96 
1 . 30 89 .10 
1 .40 86.07 
1 .50 82.88 
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0. 1 0.2 
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0.3 
A = 0.28 

0.4 

Figure 4.1 2  P lot of f(A) versus A for rad iat ion data (door c losed). 

0.5 

" 

The curve of f (A )  versus A that allows the more exact determination A = .28 is 
shown in Figure 4.12 . ,... 

It is evident from both the table and the plot ,...that a value of A around .30 
maximizes f (A ) . For convenience, we choose A = .25. The data xj were 
reexpressed as 

1/4 - 1 ( 1/4) _ Xj xj - --1--
4 

j = 1 ,  2, . . .  ' 42 

and a Q-Q plot was constructed from the transformed quantities. This plot is shown 
in Figure 4.13 on page 198. The quantile pairs fall very close to a straight line, and we 
would conclude from this evidence that the xY14) are approximately normal. • 
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X ( 1 /4) ( j ) 

- .50 

- 1 .00 

- 1 . 50 

- 2.00 

- 2.50 

- 3 .00 
---'------'---------'-----�------'-------'---- q(j ) 

- 2.0 - 1 .0 .0 1 .0 2.0 3.0 

Figure 4.13  A 0-0 p lot of the transformed radiat ion data {door c losed). (The 
i ntegers i n  the p lot i nd icate the number of points occupy ing the same location . )  

Transforming Mu ltivariate Observations 

With multivariate observations, a power transformation must be selected for each of 

the variables. Let A1 , A2 , . . .  , AP be the power transformations for the p measured 
characteristics. Each Ak can be selected by maximizing 

( 4-38) 

where x1 k , x2k , . . .  , xn k are the n observations on the kth variable, k = 1 ,  2, . . . , p.  
Here 

( 4-39) 

is the arithmetic average of the transformed observations. The jth transformed mul 
tivariate observation is 
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" 

x1t - 1 
A1 

x1i - 1 
:\2 

where A1 , A2 , . . •  , AP are the values that individually maximize ( 4-38) . 
The procedure just described is equivalent to making each marginal distribution 

approximately normal. Although normal marginals are not sufficient to ensure that 
the joint distribution is normal, in practical applications this may be good enough. If 
not, we could start with the values A1 , A2 , . . .  , AP obtained from the preceding trans
formations and iterate toward the set of values A' = [ A1 , A2 , . . .  , Ap ] ,  which collec
tively maximizes 

f ( A1 , A2 , . . .  , Ap) 

n n n 
= - - lnl S (A )  I + ( A1 - 1 ) :L ln xj 1 + (A2 - 1 )  :L ln xj2 2 j= l j= l 

n 
+ . . · + ( AP - 1 )  :L ln xj P j= l 

where S (A )  is the sample covariance matrix computed from 

j = 1 ,  2, . . .  , n 

AP 

(4-40) 

Maximizing ( 4-40) not only is substantially more difficult than maximizing the in
dividual expressions in ( 4-38), but also is unlikely to yield remarkably better results. The 
selection method based on Equation ( 4-40) is equivalent to maximizing a multivariate 
likelihood over JL ,  I and A, whereas the method based on (4-38) corresponds to maxi
mizing the kth univariate likelihood over J.Lk , a-k k , and Ak . The latter likelihood is gener
ated by pretending there is some Ak for which the observations ( x1Z - 1 )  / Ak , 
j = 1 ,  2, . . . , n have a normal distribution. See [3] and [2] for detailed discussions of the 
univariate and multivariate cases, respectively. (Also, see [8] .) 
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Example  4. 1 7  (Determin ing power transformations 
for b ivariate data) 

Radiation measurements were also recorded through the open doors of the 
n = 42 microwave ovens introduced in Example 4.10 . The amount of radia
tion emitted through the open doors of these ovens is listed in Table 4.5 . 

In accordance with the procedure outlined in Example 4. 16, a power trans
formation for these data was seleActed by maximizing f ( A) in ( 4-35) .  The ap
proximate maximizing value was A = .30. Figure 4.14 on page 201 shows Q-Q 
plots of the untransformed and transformed door-open radiation data. (These 
data were actually transformed by taking the fourth root, as in Example 4 .16 . ) 
It is clear from the figure that the transformed data are more nearly normal, al
though the normal approximation is not as good as it was for the door-closed 
data. 

Let us denote the door-closed data by x1 1 , x 21 , . . .  , x42, 1 and the door-open 
data by x1 2 , x2 2 , • . • , x42, 2 • Choosing a power transformation for each set by 
maximizing the expression in ( 4-35) is equivalent to maximizing e k ( A) in ( 4-38) 
with k = 1 ,  2. TQ.us, using theA outcomes from Example 4.16 and the foregoing 
results, we have A1 = .30 and A2 = .30. These powers were determined for the 
marginal distributions of x1 and x2 • 

We can consider the joint distribution of x1 and x2 and simultaneously de
termine the pair of powers ( A1 , A2 ) that makes this joint distribution approxi
mately bivariate normal. To do this, we must maximize e ( A1 , A2 ) in ( 4-40) with 
respect to both A1 and A2 • 

TABLE 4.5 RAD IAT ION DATA (DOOR OPEN) 

Oven Oven Oven 
no. Radiation no. Radiation no. Radiation 

1 .30 16 .20 31 .10 
2 .09 17 .04 32 .10 
3 .30 18 .10 33 .10 
4 . 10 19 .01 34 .30 
5 . 10 20 .60 35 .12 
6 .12 21 .12 36 .25 
7 .09 22 .10 37 .20 
8 .10 23 .05 38 .40 
9 .09 24 .05 39 .33 
10 .10 25 .15 40 .32 
1 1  .07 26 .30 41 .12 
12 .05 27 .15 42 .12 
13 .01 28 .09 
14 .45 29 .09 
15 .12 30 .28 

Source: Data courtesy of J. D. Cryer. 
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Figure 4.14 Q-Q p lots of (a) the or ig i na l  and  (b) the transformed radiat ion 
data (with door open) .  (The integers i n  the p lot i nd i cate the n u mber of poi nts 
occu pyi ng the same locat ion . )  

We computed f ( A1 , A2 ) for a grid of A1 , A2 values covering 0 < A1 < .50 
and 0 < A2 < .50, and we constructed the contour plot �ho:vn in Figure 4.15 on 
page 202. We see that the maximum occurs at about ( A1 , A2 ) = ( .16 , . 16 ) . 

The "best" power transformations for this bivariate case do not differ sub-
stantially from those obtained by considering each marginal distribution. • 
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EXERCISES 
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Figure 4.1 5  Contour p lot of f(A1 , A2 ) for the radiat ion data. 

0.5 
As we saw in Example 4.17, making each marginal distribution approximately 

normal is roughly equivalent to addressing the bivariate distribution directly and 
making it approximately normal. It is generally easier to select appropriate trans
formations for the marginal distributions than for the joint distributions. 

If the data includes some large negative values, a more general transformation 
(see Yeo and Johnson [13]) should be applied. 

{ (x + 1 ) A - 1 }/A 
log (x  + 1 ) 
- { ( -x + 1 )2- A - 1 }/ (2 - A) 
-log ( -x + 1 )  

X > 0, A =F 0 
X > 0, A =  0 
X < 0, A =F 2 
X <  0, A =  2 

4.1. Consider a bivariate normal distribution with JL1 = 1 ,  JL2 = 3 ,  o-1 1  = 2, o-22 = 1 
and p12 = - .8 .  
(a) Write out the bivariate normal density. 
(b) Write out the squared statistical distance expression (x - p, ) ' I-1 (x - p. )  

as a quadratic function of x1 and x2 • 
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4.2. Consider a bivariate normal population with JL1 = 0, JL2 = 2, o-1 1  = 2, o-22 = 1 ,  
and p1 2 = .5 . 
(a) Write out the bivariate normal density. 
(b) Write out the squared generalized distance expression (x - IL) ' I-1 (x - IL ) 

as a function of x1 and x2 • 
(c) Determine (and sketch) the constant-density contour that contains 50% of 

the probability. 
4.3. Let X be N3(JL ,  I)  with IL ' = [ -3,  1 ,  4] and 

I =  [ -� -� �] 
Which of the following random variables are independent? Explain. 
(a) xl and x2 
(b) x2 and x3 
(c) (X1 , X2) and X3 

xl + x2 (d) 2 and x3 
(e) x2 and x2 - �xl - x3 

4.4. Let X be N3 (JL ,  I)  with IL ' = [2, -3, 1 ]  and 

I = [ � � �] 
1 2 2 

(a) Find the distribution of 3X1 - 2X2 + X3 • 

(b) Relabel the variables if necessary, and find a 2 X 1 vector a such that X2 
and x2 - a{ �J are independent. 

4.5. Specify each of the following. 
(a) The conditional distribution of xl ' given that x2 = x2 for the joint distrib

ution in Exercise 4.2. 
(b) The conditional distribution of x2 ' given that xl = xl and x3 = x3 for the 

joint distribution in Exercise 4.3 . 
(c) The conditional distribution of x3 '  given that xl = xl and x2 = x2 for the 

joint distribution in Exercise 4.4. 
4.6. Let X be distributed as N3 (JL , I) ,  where IL ' = [ 1 ,  -1 ,  2 ] and 

I =  [ � � -�] 
-1  0 2 

Which of the following random variables are independent? Explain. 
(a) xl and x2 
(b) xl and x3 
(c) x2 and x3 
(d) (X1 , X3 ) and X2 
(e) X1 and X1 + 3X2 - 2X3 
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4.7. Refer to Exercise 4.6 and specify each of the following. 
(a) The conditional distribution of xl ' given that x3 = x3 . 
(b) The conditional distribution of xl ' given that x2 = x2 and x3 = x3 . 

4.8. (Example of a nonnormal bivariate distribution with normal marginals. ) Let X1 
be N(O, 1 ) ,  and let { -X1 if -1  < X1 < 1 

x2 = 
xl otherwise 

Show each of the following. 
(a) X2 also has an N(O, 1 ) distribution. 
(b) X1 and X2 do not have a bivariate normal distribution. 
Hint: 
(a) Since xl is N(O, 1 ) ,  P[ -1 < xl < x] = P[ -x < xl < 1 ] for any X .  

When -1 < x2 < 1 ,  P[X2 < x2 ] = P[X2 < - 1 ]  + P[ -1 < X2 < x2 ] == 

P[X1 < - 1 ] + P[ -1 < -X1 < x2 ] = P[X1 < - 1 ]  + P[ -x2 < X1 < 1 ] .  
But P [ -x2 < X1 < 1 J = P [  -1  < X1 < x2] from the symmetry argument 
in the first line of this hint. Thus, P[  X2 < x2 J = P[ X1 < -1 ]  + 
P[ - 1 < X1 < x2] = P[X1 < x2 ] ,  which is a standard normal probability. 

(b) Consider the linear combination X1 - X2 , which equals zero with proba
bility P[ I X1 1 > 1 ] = .3174. 

4.9. Refer to Exercise 4.8, but modify the construction by replacing the break point 
1 by c so that { -X1 if -c < X1 < c 

X2 = 
xl elsewhere 

Show that c can be chosen so that Cov ( X1 , X2 ) = 0, but that the two random 
variables are not independent. 
Hint: 
For c = 0, evaluate Cov (X1 , X2 ) = E[X1 (X1 ) ]  
For c very large, evaluate Cov ( X1 , X2 ) . E [ X1 ( -X1 ) ] .  

4.10. Show each of the following. 
(a) 

(b) � �  � �  = I A I I B I for I A I * 0 

Hint: lA 0 1 lA O I I I 0 1 . . I I 0 1 (a) = . Expanding the determinant by the 
0' B 0' I 0' B 0'  B 

first row (see Definition 2A.24) gives 1 times a determinant of the same 
form, with the order of I reduced by one. This procedure is repeated until 

1 x I B I is obta_:ed
O 

Similarly, expanding the determinant I � � I by the 

last row gives l o ' 1 I = 1 A I · 
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(b) � � � �  = � �  ! I I :, K:C I · But expanding the determinant 1 :, A:C I I I A-1c l by the last row gives 0 , I = 1 .  Now use the result in Part a. 

4.11. Show that, if A is square, 

I A I = I A22 l l  A1 1  - A1 2A2iA2 1 I for I A22 l # 0 

= I A1 1 I I A22 - A2 1A!iA1 2 I for I A1 1 I # 0 

Hint: Partition A and verify that [OI, -A1 2A2�] [A1 1  A1 2] [ !1 OJ 
= 
[Au - A1,2A2"�A2 1 

0 J I A2 1 A22 -A22A2 1 I 0 A22 
Take determinants on both sides of this equality. Use Exercise 4 .10 for the first 
and third determinants on the left and for the determinant on the right. The sec
ond equality for I A I follows by considering 

4.12. Show that, for A symmetric, 

Kl = 
[ 

_ A
:
�A2 1 � J [ (Au - A��A2�A2 1f1 :2"J [ :, -A1;A2� J 

Thus, (A1 1  - A1 2A2iA2 1 ) -1 is the upper left-hand block of A-1 . 
Hint: Premultiply the expression in the hint to Exercise 4 . 1 1  by I -A1 2A22 . I 0 

. 
[ -1 ]-1 [ J-1 

0, I and postmultiply by 
_ A;-iA2 1 I . 

Take mverses of the 

resulting expression. 

4.13. Show the following if I I I # 0. 
(a) Check that I I I = I I22 l l I1 1  - I1 2I2ii2 1 I . (Note that I I I can be factored 

into the product of contributions from the marginal and conditional distri
butions. ) 

(b) Check that 

(x - 1L ) ' I-1 (x - 1L ) = [x1 - 1L1 - I1 2I2i (x2 - 1L2) J ' 
X (I1 1 - I1 2I2ii2 1 )-1 [x1 - IL1 - I1 2I2i (x2 - 1L2) ]  
+ (x2 - IL2) ' I2i (x2 - IL2) 

(Thus, the joint density exponent can be written as the sum of two terms 
corresponding to contributions from the conditional and marginal distrib
utions.) 

(c) Given the results in Parts a and b, identify the marginal distribution of X2 
and the conditional distribution of X1 1 X2 = x2 • 
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Hint: 
(a) Apply Exercise 4. 11 .  
(b) Note from Exercise 4 . 12 that we can write (x - IL ) ' I-1 (x - IL ) as 

If we group the product so that 

[
0
1, -I1ziZi] [x1 - 1L1] = [x1 - 1L1 - I1 2I2i (x2 - 1L2) ] 

I X2 - IL2 X2 - IL2 
the result follows. 

4.14. If X is distributed as Np( IL , I) with I I I # 0, show that the joint density can be 
written as the product of marginal densities for 

X1 and X2 if I1 2 = o 
(qX l ) ( (p- q) X l ) (qX (p- q) ) 

Hint: Show by block multiplication that 
[I1i 0 J . h . f � [I1 1  0 J 0 , 

I2i 
Is t e Inverse o � = 0, 

I22 
Then write 

( ) , �-1 ( ) _ [ (  ) '  ( ) ' ]  [I1i 0 J [x1 - IL1] x - IL � x - IL - xl - ILl x2 - IL2 0 '  I2i x2 - IL2 
= (xl - 1Ll ) ' I1i (xl - ILl ) + (x2 - IL2) ' I2i (x2 - IL2) 

Note that I I I = I I1 1 l l I22 l from Exercise 4.10(a) . Now factor the joint density. 
n n 

4.15. Show that � (xj - x) ( x - IL ) ' and � ( x - IL ) (xj - x) ' are both p x p 
j= l  j= l 

matrices of zeros. Here x; = [ xj 1 , xj 2 , • • •  , xj p] ,  j = 1 ,  2, . . .  , n , and 

1 n 
x = - � xj n j= l 

4.16. Let X1 , X2 , X3 , and X4 be independent Np(IL , I )  random vectors. 
(a) Find the marginal distributions for each of the random vectors 

and 

1 1 1 x 1 x V1 = 4X1 - 4X2 + 4 3 - 4 4 

1 1 1 1 V2 = 4X1 + 4X2 - 4X3 - 4X4 
(b) Find the joint density of the random vectors V1 and V2 defined in (a). 

4.17. Let X1 , X2 , X3 , X4 , and X5 be independent and identically distributed randon1 
vectors with mean vector IL and covariance matrix I. Find the mean vector and 
covariance matrices for each of the two linear combinations of random vectors 

1 1 1 1 1 sX1 + sX2 + sX3 + 5X4 + 5Xs 
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X1 - X2 + X3 - X4 + X5 
in terms of IL and I. Also, obtain the covariance between the two linear com
binations of random vectors. 

4.18. Find the maximum likelihood estimates of the 2 X 1 mean vector IL and the 
2 X 2 covariance matrix I based on the random sample 

X = 

from a bivariate normal population. 

3 6 
4 4 
5 7 
4 7 

4.19. Let X1 , X2 , . . .  , X20 be a random sample of size n = 20 from an N6( /L, I ) pop
ulation. Specify each of the following completely. 
(a) The distribution of (X1 - �-L ) ' I-1 (X1 - IL ) 
(b) The distributions of X and Vn(X - IL ) 
(c) The distribution of ( n - 1 )  S 

4.20. For the random variables X1 , X2 , . . .  , X20 in Exercise 4 .19 ,  specify the distrib
ution of B ( 19S )B ' in each case. 

(a) B = [ � �� �� 0� �� n 
(b) B = [ 1 0 0 0 0 OJ 

0 0 1 0 0 0 
4.21. Let Xr ,  . . .  , X60  be a random sample of size 60 from a four-variate normal distri

bution having mean IL and covariance I. Specify each of the following completely. 
(a) The distribution of X 
(b) The distribution of (X1 - IL ) ' I-1 (X1 - IL ) 
(c) The distribution of n (X  - IL ) 'I-1 (X - IL ) 
(d) The approximate distribution of n (X  - IL ) ' S-1 (X  - IL ) 

4.22. Let X1 , X2 . . . , X7 5  be a random sample from a population distribution with 
mean IL and covariance matrix I. What is the approximate distribution of each 
of the following? 
(a) X 
(b) n (X - 1L ) 'S-1 (X  - 1L )  

4.23. Consider the annual rates of return (including dividends) on the Dow-Jones 
industrial average for the years 1963-1972. These data, multiplied by 100, are 
20.6 , 18.7, 14.2, - 15.7, 19 .0, 7.7, -11 .6, 8.8, 9 .8 , and 18 .2. Use these 10 observa
tions to complete the following. 
(a) Construct a Q-Q plot. Do the data seem to be normally distributed? Explain. 
(b) Carry out a test of normality based on the correlation coefficient rQ . [See 

( 4-31) . ]  Let the significance level be a = .1 0. 
4.24. Exercise 1 .4 contains data on three variables for the 10 largest industrial cor

porations as of April 1990. For the sales ( x1 ) and profits ( x2 ) data: 
(a) Construct Q-Q plots. Do these data appear to be normally distributed? 

Explain. 
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(b) Carry out a test of normality based on the correlation coefficient rQ. [See 
(4-31) . ]  Set the significance level at a = . 10 .  Do the results of these tests 
corroborate the results in Part a? 

4.25. Refer to the data for the 10 largest industrial corporations in Exercise 1 .4. Con
struct a chi-square plot using all three variables. The chi-square quantiles are 
0.3518  0.7978 1 .2125 1 .6416 2.1095 2.6430 3 .2831 4.1083 5 .3170 7 .8 147 

4.26. Exercise 1 .2 gives the age x1 , measured in years, as well as the selling price x2 , 
measured in thousands of dollars, for n = 10 used cars. These data are repro
duced as follows: 

3 5 5 7 7 7 8 9 10 1 1  

x2 2.30 1 .90 1 .00 .70 .30 1 .00 1 .05 .45 .70 .30 

(a) Use the results of Exercise 1 .2 to calculate the squared statistical distances 
(xj - x) ' S-1 (xj - x) , j = 1, 2, . . .  , 10, where xj = [xj l ' Xj 2 J .  

(b) Using the distances in Part a, determine the proportion of the observations 
falling within the estimated 50% probability contour of a bivariate normal 
distribution. 

(c) Order the distances in Part a and construct a chi-square plot. 
(d) Given the results in Parts b and c, are these data approximately bivariate 

normal? Explain. 
4.27. Consider the radiation data (with door closed) in Example 4.10. Construct a 

Q-Q plot for the natural logarithms of these data. [Note that the natural
logarithm transformation corresponds to the value A = 0 in ( 4-34) .] Do the nat
ural logarithms appear to be normally distributed? Compare your results with 
Figure 4 .13 .  Does the choice A = � or A = 0 make much difference in this case? 

The following exercises may require a computer. 
4.28. Consider the air-pollution data given in Table 1 .5 .  Construct a Q-Q plot for the 

solar radiation measurements and carry out a test for normality based on the 
correlation coefficient r Q [see ( 4-31 ) ] .  Let a = .05 and use the entry corre
sponding to n = 40 in Table 4.2. 

4.29. Given the air-pollution data in Table 1 .5 ,  examine the pairs X5 = N02 and 
x6 = 03 for bivariate normality. 
(a) Calculate statistical distances (xj - x) ' S-1 (xj - x) , j = 1 ,  2, . . .  , 42, where 

xj = [ xj s , xj 6 ] .  
(b) Determine the proportion of observations xj = [xj 5 , xj 6 ] ,  j = 1 ,  2 ,  . . .  , 42 , 

falling within the approximate 50% probability contour of a bivariate nor
mal distribution. 

(c) Construct a chi-square plot of the ordered distances in Part a. 
4.30. Consider the used-car data in Exercise 4.26. 

(a) Determine the power transformation A1 that makes the x1 values approxi
mately normal. Construct a Q-Q plot for the transformed data. 

(b) Determine the power transformations A2 that makes the x2 values approx
imately normal. Construct a Q-Q plot for the transformed data. 

(c) Determine the power transformations A' = [ A1 , A2 ] that make the [ x1 , x2 ] 
values jointly normal using ( 4-40). Compare the results with those obtained 
in Parts a and b. 
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4.31. Examine the marginal normality of the observations on variables X1 , X2 , • • •  , X5 
for the multiple-sclerosis data in Table 1 .6. Treat the non-multiple-sclerosis and 
multiple-sclerosis groups separately. Use whatever methodology, including 
transformations, you feel is appropriate. 

4.32. Examine the marginal normality of the observations on variables X1 , X2 , • • •  , X6 
for the radiotherapy data in Table 1 .7 . Use whatever methodology, including 
transformations, you feel is appropriate. 

4.33. Examine the marginal and bivariate normality of the observations on variables 
X1 , X2 , X3 , and X4 for the data in Table 4.3 . 

4.34. Examine the data on bone mineral content in Table 1 .8 for marginal and bi
variate normality. 

4.35. Examine the data on paper-quality measurements in Table 1 .2 for marginal and 
multivariate normality. 

4.36. Examine the data on women's national track records in Table 1 . 9  for marginal 
and multivariate normality. 

4.37. Refer to Exercise 1 . 1 8 . Convert the women's track records in Table 1 . 9  to 
speeds measured in meters per second. Examine the data on speeds for mar
ginal and multivariate normality. 

4.38. Examine the data on bulls in Table 1 .10 for marginal and multivariate normality. 
Consider only the variables YrHgt, FtFrBody, PrctFFB, BkFat, SaleHt, and Sale Wt. 
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CHAPTER 

5 
Inferences about a Mean Vector 

5 . 1  I NTRODUCTION 

This chapter is  the first of the methodological sections of the book. We shall now use 
the concepts and results set forth in Chapters 1 through 4 to develop techniques for an
alyzing data. A large part of any analysis is concerned with inference-that is, reach
ing valid conclusions concerning a population on the basis of information from a sample. 

At this point, we shall concentrate on inferences about a population mean vec
tor and its component parts. Although we introduce statistical inference through ini
tial discussions of tests of hypotheses, our ultimate aim is to present a full statistical 
analysis of the component means based on simultaneous confidence statements. 

One of the central messages of multivariate analysis is that p correlated vari
ables must be analyzed jointly. This principle is exemplified by the methods pre
sen ted in this chapter. 

5.2 TH E PLAUSIB I LITY OF 1-Lo AS A VALU E FOR A NORMAL 
POPU LATION MEAN 

21 0 

Let us start by recalling the univariate theory for determining whether a specific value 
JLo is a plausible value for the population mean JL· From the point of view of hypothe
sis testing, this problem can be formulated as a test of the competing hypotheses 

Here H0 is the null hypothesis and H1 is the (two-sided) alternative hypothesis. If 
X1 , X2 , • • •  , Xn denote a random sample from a normal population, the appropriate 
test statistic is 

(X - JLo ) - 1 � 2 1 � - 2 t = where X = - £.J Xj and s = 
_ 

£.J ( Xj - X )  
sjVn ' n j= l  n 1 j = l  
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This test statistic has a student's !-distribution with n - 1 degrees of freedom ( d.f. ) .  
We reject H0 , that JLo i s  a plausible value of  JL, i f  the observed I t I exceeds a specified 
percentage point of a !-distribution with n - 1 d.f. 

Rejecting H0 when I t I is large is equivalent to rejecting H0 if its square, 
- 2 

2 (X - JLo ) - 2 -1 -t = = n (X - JLo ) ( s  ) (X - JLo ) (5-1) 
s2jn 

is large. The variable t2 in (5-1) is the square of the distance from the sample mean 
X to the test value JLo · The units of distance are expressed in terms of sjVn, or es
timated standard deviations of X. Once X and s2 are observed, the test becomes: 
Reject H0 in favor of H1 , at significance level a, if 

(5-2) 

where tn_ 1 (aj2) denotes the upper 100 (a/2)th percentile of the !-distribution with 
n - 1 d.f. 

If H0 is not rejected, we conclude that JLo is a plausible value for the normal 
population mean. Are there other values of JL which are also consistent with the 
data? The answer is yes !  In fact, there is always a set of plausible values for a normal 
population mean. From the well-known correspondence between acceptance regions 
for tests of H0 : JL = JLo versus H1 : JL # JLo and confidence intervals for JL, we have 

{Do not reject H0 : JL = JLo at level a} or 
x - JLo 
sjVn 

is equivalent to 

or 

{tLo lies in the 100 ( 1  - a)% confidence interval X ±  tn_ 1 (a/2) .:n} 
(5-3) 

The confidence interval consists of all those values JLo that would not be rejected by 
the level a test of H0 : JL = JLo . 

Before the sample is selected, the 100 ( 1  - a)% confidence interval in (5-3) is a 
random interval because the endpoints depend upon the random variables X and s. 
The probability that the interval contains JL is 1 - a; among large numbers of such 
independent intervals, approximately 100 ( 1  - a)% of them will contain JL. 

Consider now the problem of determining whether a given p X 1 vector JLo is 
a plausible value for the mean of a multivariate normal distribution. We shall pro
ceed by analogy to the univariate development just presented. 

A natural generalization of the squared distance in (5-1) is its multivariate analog 
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where 

M1 o 
- 1 n 
X = - � x . 1 � - - I M20 S = _ l .£.J (Xj - X ) (Xj - X) , and /Lo = .£.J 1 '  (px 1 ) n j= 1  (pxp) n j= l (px 1 ) 

JLpo 
The statistic T2 is called Hotelling 's T2 in honor of Harold Hotelling, a pioneer in 
multivariate analysis, who first obtained its sampling distribution. Here ( 1/n ) S is the 

estimated covariance matrix of X. (See Result 3 . 1 . )  
If  the observed statistical distance T2 is too large-that is, if x is "too far" from 

�Lo-the hypothesis H0 : IL = /Lo is rejected. It turns out that special tables of T2 per
centage points are not required for formal tests of hypotheses. This is true because 

T2 . d' 'b d 
( n - 1 )p

F (5 5) I S  1stn ute as (n _ p) p, n -p -

where Fp,n -p denotes a random variable with an F-distribution with p and n - p d.f. 
To summarize, we have the following: 

Statement (5-6) leads immediately to a test of the hypothesis H0 : IL = /Lo versus 
H1 : IL #- /Lo . At the a level of significance, we reject H0 in favor of H1 if the observed 

T2 - ( - ) I s-1 ( - ) 
( n - 1 ) p 

F ( ) (5-7) - n X - ILo X - ILo > ( n _ p) p, n-p a 

It is informative to discuss the nature of the T2-distribution briefly and its corre
spondence with the univariate test statistic. In Section 4.4, we described the manner 
in which the Wishart distribution generalizes the chi-square distribution. We can write ( ± (Xj - X ) (Xj - X) ' )-1 

T2 = Vn (X - p,0 ) ' j
�
l 

n _ 
l Vn (X  - ILo ) 

which combines a normal, NP ( 0, I) , random vector and a Wishart, W p, n _ 1  (I ) ,  random 
matrix in the form 
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( )-1 Wishart random 

T2 = (multivariate normal) ' matrix (multivariate normal) 
p, n - 1 random vector d.f. random vector 

[ 1 ]-1 = Np(O , I ) ' 
n 

_ 1 Wp, n- 1 (I )  Np(O, I )  

This is analogous to 

or 
( ( scaled) chi-square ) -1 

2 _ ( normal ) random variable ( normal ) tn - 1 
- random variable d.f. random variable 

2 1 3  

(5-8) 

for the univariate case. Since the multivariate normal and Wishart random variables 
are independently distributed [see ( 4-23)] ,  their joint density function is the product 
of the marginal normal and Wishart distributions. Using calculus, the distribution 
(5-5) of T2 as given previously can be derived from this joint distribution and the rep
resentation (5-8) . 

It is rare, in multivariate situations, to be content with a test of H0 : IL = #Lo , 
where all of the mean vector components are specified under the null hypothesis. 
Ordinarily, it is preferable to find regions of IL values that are plausible in light of the 
observed data. We shall return to this issue in Section 5.4. 

Example 5 . 1  (Eva l uati ng T2) 
Let the data matrix for a random sample of size n = 3 from a bivariate normal 
population be 

X =
[
l:O � ] 

Evaluate the observed T2 for #La = [ 9 ,  5 ] .  What is the sampling distribution of 
T2 in this case? We find 

and 

6 + 10 + 8 
3 

9 + 6 + 3 
3 

( 6 - 8 )2 + ( 10 - 8 )2 + ( 8  - 8 )2 
s1 1  = = 4 2 

( 6 - 8) ( 9  - 6 )  + ( 10 - 8 ) ( 6 - 6) + ( 8  - 8 ) ( 3  - 6 ) 
s1 2 = == -3 

2 
( 9  - 6) 2 + ( 6 - 6 ) 2 + ( 3  - 6)2 

s22 = ------------- = 9 2 
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so 

Thus, 

s = [ 4 -3] 
-3 9 

-1 -
1 [9 3] - [� s - (4) ( 9 ) - ( -3 ) ( -3 )  3 4 

- � 
and, from (5-4) , [.!. .!. J [8 - 9] T2 = 3 [ 8  - 9, 6 - 5 ]  � 

2
� 

6 _ 5 
= 3 [  -1 ,  

Before the sample is selected, T2 has the distribution of a 

(3  - 1 )2 
( 3  _ 2 )  F2, 3_2 = 4F2, l 

random variable. 

2t] 

• 

The next example illustrates a test of the hypothesis H0 : IL = ILo using data col
lected as part of a search for new diagnostic techniques at the University of Wiscon
sin Medical School. 

Example 5.2 (Testing a mu ltivariate mean vector with T2) 
Perspiration from 20 healthy females was analyzed. Three components, 
X1 = sweat rate, X2 = sodium content, and X3 = potassium content, were mea
sured, and the results, which we call the sweat data, are presented in Table 5.1 . 

Test the hypothesis H0 : IL ' = [ 4, 50, 10] against H1 : IL ' # [ 4, 50, 10] at 
level of significance a = . 1  0. 

and 

Computer calculations provide [ 4.640] 
x = 45.400 , 

9 . 965 

[ 2.879 10.010 -1 .810] 
s = 10.010 199 .788 -5.640 

-1 .810 -5.640 3 .628 

8-1 = [ - :��� - :��� - :���] 
.258 - .002 .402 

We evaluate 

.258 ] [ 4.640 - 4 ] 
- .002 45.400 - 50 

.402 9.965 - 10 

[ .586 - .022 
20[ 4.640 - 4, 45.400 - 50, 9. 965 - 10] - .022 .006 

.258 - .002 

= 20[ .640, -4.600, 
[ .467 ] 

- .035 ] - .042 = 9.74 
.160 
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TABLE 5 . 1  SWEAT DATA 

xl x2 x3 
Individual (Sweat rate) (Sodium) (Potassium) 

1 3 .7 48.5 9.3 
2 5.7 65.1 8 .0 
3 3 .8 47.2 10.9 
4 3.2 53.2 12.0 
5 3 .1 55.5 9.7 
6 4.6 36.1 7.9 
7 2.4 24.8 14.0 
8 7.2 33 .1 7 .6 
9 6.7 47.4 8.5 

10 5.4 54. 1  11 . 3  
11  3 .9 36 .9 12.7 
12 4.5 58.8 12.3 
13 3 .5 27 .8 9 .8 
14 4.5 40.2 8.4 
15 1 .5 13 .5 10 .1 
16 8.5 56.4 7 . 1  
17 4.5 71 .6 8 .2 
18 6.5 52.8 10 .9 
19 4.1 44.1 1 1 .2 
20 5.5 40.9 9.4 

Source: Courtesy of Dr.  Gerald Bargman. 

Comparing the observed T2 = 9.74 with the critical value 

( n - 1 )p 19 ( 3 ) ( n _ p) Fp, n -p ( . 10) = 17 F3, 17 ( . 10 ) = 3 .353 (2.44) = 8 .18 

21 5 

we see that T2 = 9.74 > 8.18 , and consequently, we reject H0 at the 10% level 
of significance. 

We note that H0 will be rejected if one or more of the component means, 
or some combination of means, differs too much from the hypothesized values 
[ 4, 50, 10] . At this point, we have no idea which of these hypothesized val
ues may not be supported by the data. 

We have assumed that the sweat data are multivariate normal. The Q-Q 
plots constructed from the marginal distributions of xl ' x2 ' and x3 all ap
proximate straight lines. Moreover, scatter plots for pairs of observations have 
approximate elliptical shapes, and we conclude that the normality assumption 
was reasonable in this case. (See Exercise 5.4.) • 

One feature of the T2-statistic is that it is invariant (unchanged) under changes 
in the units of measurements for X of the form 
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Y = C X + d ,  (pX l ) (pXp) (pX l ) (pX l ) C nonsingular (5 -9) 
A transformation of the observations of this kind arises when a constant bi is sub
tracted from the ith variable to form Xi - bi and the result is multiplied by a constant 
ai > 0 to get ai (Xi - bi ) · Premultiplication of the centered and scaled quantities 
ai (Xi - bi ) by any nonsingular matrix will yield Equation (5-9) .  As an example, the 
operations involved in changing Xi to ai (Xi - bi ) correspond exactly to the process 
of converting temperature from a Fahrenheit to a Celsius reading. 

Given observations x1 , x2 , . . .  , xn and the transformation in (5-9) ,  it immedi
ately follows from Result 3 .6 that 

1 n 
y = CX + d and Sy = _ 1 :L (yj - y) (yj - y) ' = CSC ' 

n j= l 
Moreover, by (2-24) and (2-45) ,  

JLy = E(Y ) = E(CX + d) = E(CX) + E(d) = CJL + d 
Therefore, T2 computed with the y's and a hypothesized value ILY,o = CJLo + d is 

T2 = n (y - ILY, o ) ' S;1 ( Y - ILY,o ) 

= n ( C ( x - ILo ) ) ' ( CSC ' ) -l ( C ( x - ILo ) ) 

= n (x - 1Lo ) 'C ' ( CSC ' )-1C ( x - JLo ) 
= n (x - 1Lo ) 'C ' (C ' )-1 S-1C-1C ( x - ILo ) = n (x - 1Lo ) 'S-1 ( x - JLo ) 

The last expression is recognized as the value of T2 computed with the x's. 

5 .3 HOTELLI NG'S T2 AND L IKEL IHOOD RATIO TESTS 

We introduced the T2-statistic by analogy with the univariate squared distance t2 .  
There is a general principle for constructing test procedures called the likelihood 
ratio method, and the T2-statistic can be derived as the likelihood ratio test of H0 : 
IL = ILo . The general theory of likelihood ratio tests is beyond the scope of this book. 
(See [3] for a treatment of the topic.) Likelihood ratio tests have several optimal 
properties for reasonably large samples, and they are particularly convenient for hy
potheses formulated in terms of multivariate normal parameters. 

We know from ( 4-18) that the maximum of the multivariate normal likelihood 
as IL and I are varied over their possible values is given by 

where 

1 
max L( JL ,  I )  = A e-np/2 
p,, l ( 21T ) np/2 1 I l n/2 

A 1 n 1 n 
I = - :L (xj - x) (xj - x) ' and jL = x = - :L xj n j = l n j= l 

(5-10) 

are the maximum likelihood estimates. Recall that jL and i are those choices for � 
and I that best explain the observed values of the random sample. 
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Under the hypothesis H0 : IL = JLo , the normal likelihood specializes to 

I - 1 ( 1 � 'I-1 ) L(#Lo , ) - (21rYP/2 1 I l n/2 exp - 2 t't (xi - ILo) (xi - ILo) 

The mean ILo is now fixed, but I can be varied to find the value that is "most likely" 
to have led, with #La fixed, to the observed sample. This value is obtained by maxi
mizing L(JLo , I )  with respect to I. 

Following the steps in (4-13) , the exponent in L(JLo , I )  may be written as 

1 n 1 n [ J - -2 � (xj - JLo) 'I-1 (xj - JLo) = - -2 � tr I-1 (xj - JLo) (xj - JLo) ' 
j = l j = l 

= - � tr [ I-1(� (xi - P-o) (xi - ILo) ' ) ] n 
Applying Result 4.10 with B = � (xj - JLo) (xj - JLo) ' and b = n/2, we have 

j= l 

with 

A 1 n 
Io = - � (xj - JLo) (xj - ILo) ' 

n j= l  

(5-1 1) 

To determine whether ILo is a plausible value of JL,  the maximum of L( ILo , I )  is com
pared with the unrestricted maximum of L(JL , I) . The resulting ratio is called the 
likelihood ratio statistic. 

Using Equations (5-10) and (5-1 1) ,  we get 
max L(JL0 , I ) ( I I I )n/2 

Likelihood ratio = A = :t ( I)  
= 

-A-max L JL, 1 Io 1 p,,I 
(5-12) 

The equivalent statistic A 2/n = I i 1 / 1 io I is called Wilks ' lambda. If the ob
served value of this likelihood ratio is too small, the hypothesis H0 : IL = ILo is unlikely 
to be true and is, therefore, rejected. Specifically, the likelihood ratio test of 
H0 : IL = ILo against H1 : IL # JLo rej ects H0 if n 

� (xj - x) (xj - x) ' j= l  n 
� (xj - ILo) (xj - ILo) ' j= l 

n/2 
(5-13) 

where ca is the lower ( lOOa ) th percentile of the distribution of A. (Note that the 
likelihood ratio test statistic is a power of the ratio of generalized variances.) Fortu
nately, because of the following relation between T2 and A,  we do not need the dis
tribution of the latter to carry out the test. 
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Result 5.1. Let X1 , X2 , . . •  , Xn be a random sample from an Np( #L, I) popu
lation. Then the test in (5-7) based on T2 is equivalent to the likelihood ratio test of 
H0 :  IL == #Lo versus H1 : IL # #Lo because 

A2fn == 1 + ---( T2 )-1 
(n - 1 ) 

Proof. Let the (p  + 1 ) X (p + 1 ) matrix 

n 
( - 1 ) :L (xj - x) (xj - x) ' + n (x - ILo ) ( x  - ILo ) ' j= 1 

= ± (xj - X) (xj - X) ' -1 - n( X - ILo ) ' ( ± (xj - X) (xj - X) ')-1 ( X - ILo ) j= 1 j= 1 
Since, by (4-14) , 

n n 
:L (xj - #Lo ) (xj - #Lo ) '  == :L (xj - x + x - #Lo) (xj - x + x - #La ) ' j= 1 j= 1 n 

== :L (xj - x) (xj - x) ' + n (x - ILo) ( x - ILo ) ' j= 1 
the foregoing equality involving determinants can be written 

n n ( T2 ) 
( - 1 ) :L (xj - P-o) (xj - ILo) ' = :L (xj - X) (xj - X) ' ( - 1 ) 1 + 

( _ 1 ) 1 = 1 1= 1 n 

or 

Thus, 

A A ( T2 ) 
I nio I = I ni I 1 + 

( n _ 1 ) 

A2fn = 
I � I = 

(
1 + T2 )-1 

I Io I ( n - 1 ) 
(5-14) 

Here H0 is rejected for small values of A 2/n or, equivalently, large values of T2• The 

critical values of T2 are determined by (5-6) . II 

Incidentally, relation (5-14) shows that T2 may be calculated from two deter
minants, thus avoiding the computation of s-1 . Solving (5-14) for T2, we have 
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( n  - 1 )  I Io \ T2 = A 
- ( n  - 1 )  I I I  

n 
( n  - 1 )  L (xj - JLo ) (xj - ILo ) '  

j = l  
= ---------- - ( n - 1 ) 

n 
L (xj - x) (xj - x) ' 
j= l  

(5-15) 

Likelihood ratio tests are common in multivariate analysis. Their optimal large
sample properties hold in very general contexts, as we shall indicate shortly. They 
are well suited for the testing situations considered in this book. Likelihood ratio 
methods yield test statistics that reduce to the familiar F- and t-statistics in univari
ate situations. 

General Li ke l i hood Ratio Method 

We shall now consider the general likelihood ratio method. Let 8 be a vector con
sisting of all the unknown population parameters, and let L( 8) be the likelihood func
tion obtained by evaluating the joint density of X 1 ,  X2 , . . . , Xn at their observed values 
xl ' x2 , . . .  ' Xn . The parameter vector 8 takes its value in the parameter set e . For 
example, in the p-dimensional multivariate normal case, 8' = [,ur , . . .  , ,up , 
lT1 b · · · , lT1 p , lT22 ' . · · , lT2P ' . . •  , lT p- l, p , lT p p ] and e COnsists Of the p-dimensional space, 
where - oo < ,u1 < oo , . . .  , - oo < ,Up < oo combined with the [p(p + 1 )/2] 
-dimensional space of variances and covariances such that I is positive definite. 
Therefore, e has dimension v = p + p(p + 1 )/2. Under the null hypothesis 
H0 : 8 = 80 , 8 is restricted to lie in a subset e0 of e . For the multivariate normal 
situation with IL = ILo and I unspecified, eo = {,ul = JL1 o , JL2 = JL2o , . . . , ,Up = ,Upo ; 
lTl b . . . ' lTl P ' lT22 ' • . .  ' lT2p ' • • •  ' lT p- l, p ' lT pp with I positive definite } ,  so eo has dimen
sion v0 = 0 + p(p + 1 )/2 = p(p + 1 )/2. 

A likelihood ratio test of Ho: 8 E eo rejects Ho in favor of Hl : 8 ft. eo if 
max L(8) 

A = 
OEeo 

< c (5-16) 
max L(8) 
0 E 8  

where c is a suitably chosen constant . Intuitively, we rej ect H0 if the maximum of the 
likelihood obtained by allowing 8 to vary over the set e0 is much smaller than 
the maximum of the likelihood obtained by varying 8 over all values in e . When the 
maximum in the numerator of expression (5-16) is much smaller than the maximum 
in the denominator, eo does not contain plausible values for 8. 

In each application of the likelihood ratio method, we must obtain the sam
pling distribution of the likelihood-ratio test statistic A .  Then c can be selected to pro
duce a test with a specified significance level a. However, when the sample size is 
large and certain regularity conditions are satisfied, the sampling distribution of 
-2 ln A is well approximated by a chi-square distribution. This attractive feature ac
counts, in part, for the popularity of likelihood ratio procedures. 
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Result 5.2. 

is, approximately, a x;-vo random variable. Here the degrees of freedom are v - v0 
= ( dimension of e ) - ( dimension of 8o) ·  • 

Statistical tests are compared on the basis of their power, which is defined as the 
curve or surface whose height is P[ test rejects H0 I 8 ] , evaluated at each parameter 
vector 8. Power measures the ability of a test to reject H0 when it is not true. In the 
rare situation where 8 = 80 is completely specified under H0 and the alternative H1 
consists of the single specified value 8 = 81 , the likelihood ratio test has the highest 
power among all tests with the same significance level a = P[ test rej ects H0 I 8 = 60 ] .  
In many single-parameter cases (8 has one component) , the likelihood ratio test is uni
formly most powerful against all alternatives to one side of H0 : (} = 00 • In other 
cases, this property holds approximately for large samples. 

We shall not give the technical details required for discussing the optimal prop
erties of likelihood ratio tests in the multivariate situation. The general import of 
these properties, for our purposes, is that they have the highest possible (average) 
power when the sample size is large. 

5.4 CONF IDENCE REG IONS AN D S IMULTAN EOUS COMPARISONS 
OF COMPONENT MEANS 

To obtain our primary method for making inferences from a sample, we need to ex
tend the concept of a univariate confidence interval to a multivariate confidence re
gion. Let 8 be a vector of unknown population parameters and @ be the set of all 
possible values of 8. A confidence region is a region of likely 8 values. This region 
is determined by the data, and for the moment, we shall denote it by R(X) , where 
X = [X 1 , X2, . . . , Xn ] '  is the data matrix. 

The region R(X) is said to be a 100 ( 1 - a)% confidence region if, before the 
sample is selected, 

P[R(X) will cover the true 8] = 1 - a (5-17) 

This probability is calculated under the true, but unknown, value of 8. 
The confidence region for the mean IL of a p-dimensional normal population 

is available from (5-6) . Before the sample is selected, 

[ _ , _1 _ (n  - 1 )p ] P n (X - IL) S ( X - IL) < 
(n  _ p) 

Fp, n-p(a )  = 1 - a 

whatever the values of the unknown IL and I. In words, X will be within 

[ ( n - 1 ) p Fp, n _ P (a )/ ( n - p) ] 1/2 
of JL, with probability 1 - a, provided that distance is defined in terms of n s- l . 
For a particular sample, x and S can be computed, and the inequality 
n ( x - JL ) 'S-1 ( x - JL ) < ( n - l )pFp, n-p (a)j (n - p) will define a region R(X) 
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within the space of all possible parameter values. In this case, the region will be an 
ellipsoid centered at i. This ellipsoid is the 100 ( 1 - a)% confidence region for p.  

To determine whether any /Lo falls within the confidence region ( i s  a 
plausible value for IL ) ,  we need to compute the generalized squared distance 
n(i - p0 ) ' S-1 ( i - p0 ) and compare it with [p (n - 1 )/ ( n - p ) ]Fp, n -p (a ) .  If the 
squared distance is larger than [p (n - 1 )/ (n - p ) ]Fp, n -p (a ) , /Lo is not in the confi
dence region. Since this is analogous to testing H0 : IL = /Lo versus H1 : IL # ILo [see 
(5-7)] ,  we see that the confidence region of (5-18) consists of all p0 vectors for which 
the T2-test would not rej ect H0 in favor of H1 at significance level a. 

For p > 4, we cannot graph the joint confidence region for p .  However, we can 
calculate the axes of the confidence ellipsoid and their relative lengths. These are 
determined from the eigenvalues Ai and eigenvectors ei of S . As in ( 4-7) , the direc
tions and lengths of the axes of 

( - ) 's-1 ( - ) z -
p ( n - 1 ) 

F ( ) n X - p x - p < c - (n  _ p) p, n -p a 

are determined by going 

� cjVn = � V p(n  - 1 )Fp, n -p (a )jn ( n  - p) 

units along the eigenvectors ei . Beginning at the center i, the axes of the confidence 
ellipsoid are 

± � p(n  - 1 ) 
n (n  _ p)  Fp, n -p(a )  ei where Sei = Aiei , i = 1 ,  2, . . .  , p (5-19) 

The ratios of the A/s will help identify relative amounts of elongation along pairs of axes. 

Example 5 .3  (Constructing a confidence el l i pse for p) 

Data for radiation from microwave ovens were introduced in Examples 4.10 
and 4.17. Let 

x1 = �measured radiation with door closed 

and 

x2 = �measured radiation with door open 
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For the n = 42 pairs of transformed observations, we find that 

[ .564] [ .0144 .01 17] 
x = .603 ' S = .0117 .0146 ' 
8_1 = [ 203 .018 -163.391 ] -163.391 200.228 

The eigenvalue and eigenvector pairs for S are 

A1 = .026, 
A2 = .002, 

e1 = [ .704, .710] 
e2 = [ - .710, .704 J 

The 95% confidence ellipse for IL consists of all values (JL1 , JL2) satisfying 

42[ .564 - .603 - J 
[ 203 .018 -163.391 ] [ .564 - i-Ll] I-Ll ' JL2 -163.391 200.228 .603 - JL2 

2(41 ) 
< 40 F2, 4o( .05 ) 

or, since F2, 40 (  .05 ) = 3 .23 , 
42 (203 .018 ) ( .564 - JL1 )2 + 42 (200.228 ) ( .603 - JL2)2 

- 84( 163.391 ) ( .564 - JLl ) ( .603 - JL2) < 6 .62 
To see whether IL ' = [ .562, .589 J is in the confidence region, we compute 

42 (203 .018 ) ( .564 - .562)2 + 42 (200.228 ) ( .603 - .589 )2 
- 84( 163 .391 ) ( .564 - .562) ( .603 - .589 ) = 1 .30 < 6 .62 

We conclude that IL ' = [ .562, .589 J is in the region. Equivalently, a test of H0 : 
[ .562] . . [ .562] IL = .589 would not be reJected In favor of H1 : IL # .589 at the a = .05 

level of significance. 
The joint confidence ellipsoid is plotted in Figure 5 . 1 . The center is at 

x' = [ .564, .603 ] , and the half-lengths of the major and minor axes are given by 

v'Ar 
and 

vx; 

p(n - 1 ) n( n _ p) Fp, n-p (a )  = Y.026 

p(n - 1 ) n (n _ p) Fp, n-p (a )  = \!.002 

2 (41 ) 
42( 40 ) (3 .23 ) = .064 

2(41 ) 
42 (40) (3 .23 ) = .018 

respectively. The axes lie along e1 = [ .704, .710] and e2 = [ - .710, .704 J when 
these vectors are plotted with x as the origin. An indication of the elongation 
of the confidence ellipse is provided by the ratio of the lengths of the major 
and minor axes. This ratio is )p(n - 1 ) 2� ( ) Fp, n-p (a )  \!A, n n - p _ � _ . 161 _ 3 6 p(n - 1 ) - VA; - .045 - · 

2v'A; n (n - p) Fp, n-p (a )  
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2 

.65 

.60 

.55 

.55 .60 
Figure 5.1 A 95% confidence e l l i pse 
for p.. based on microwave-rad iat ion 
data. 

The length of the major axis is 3 .6  times the length of the minor axis. • 

S imu ltaneous Confidence Statements 

While the confidence region n( x - IL ) ' S-1 ( x - IL ) < c2, for c a constant , correctly 
assesses the joint knowledge concerning plausible values of JL, any summary of con
clusions ordinarily includes confidence statements about the individual component 
means. In so doing, we adopt the attitude that all of the separate confidence state
ments should hold simultaneously with a specified high probability. It is the guaran
tee of a specified probability against any statement being incorrect that motivates 
the term simultaneous confidence intervals. We begin by considering simultaneous 
confidence statements which are intimately related to the joint confidence region 
based on the T2-statistic. 

Let X have an Np(JL ,  I )  distribution and form the linear combination 

Z = a1X1 + a2X2 + · · · + aPXP = a' X 

From (2-43) ,  

JLz = E(Z) = a' 1L 

and 

a-� =  Var (Z)  = a' Ia 

Moreover, by Result 4.2, Z has an N(a' JL ,  a' Ia) distribution. If a random sample 
X1 , X2 , . . •  , Xn from the Np( JL, I )  population is available, a corresponding sample of 
Z's can be created by taking linear combinations. Thus, 

z. = a1X· 1 + a2X · 2 + · · · + a x. = a' X ·  1 1 1 P 1 P 1 j = 1 ,  2, . . .  , n 

The sample mean and variance of the observed values z1 , z2 , • • •  , Zn are, by (3-36) , 

z = a ' x 
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and 
s2 = a ' Sa z 

where x and S are the sample mean vector and covariance matrix of the x/s, respectively. 
Simultaneous confidence intervals can be developed from a consideration of con

fidence intervals for a ' IL for various choices of a. The argument proceeds as follows. 
For a fixed and a-� unknown, a 100 ( 1 - a)% confidence interval for J.Lz = a' � is based on student 's t-ratio 

z - J.Lz t = ---
Sz/Vn 

Vn (a' x - a' IL )  
Va'Sa 

and leads to the statement 

or 
' -

Va'Sa 
' ' -

Va'Sa a X - tn_ 1 (a/2) Vn < a IL < a X + tn - l (a/2) Vn 

(5-20) 

(5-21 ) 
where tn_ 1 (a/2) is the upper 100(a/2)th percentile of a !-distribution with n - 1 d.f. Inequality ( 5-21) can be interpreted as a statement about the components of the 
mean vector IL· For example, with a' = [1 , 0, . . . , O J , a' IL = J.L1 , and (5-21 ) becomes the usual confidence interval for a normal population mean. (Note, in this case, that 
a' Sa = s1 1 .) Clearly, we could make several confidence statements about the components of #L, each with associated confidence coefficient 1 - a, by choosing differ
ent coefficient vectors a. However, the confidence associated with all of the 
statements taken together is not 1 - a. 

Intuitively, it would be desirable to associate a "collective" confidence coefficient 
of 1 - a with the confidence intervals that can be generated by all choices of a. How
ever, a price must be paid for the convenience of a large simultaneous confidence 
coefficient: intervals that are wider (less precise) than the interval of ( 5-21) for a spe
cific choice of a. 

Given a data set x1 , x2 , . . .  , xn and a particular a, the confidence interval in (5-21) is that set of a' IL values for which 

or, equivalently, 

Vn (a' x - a' IL ) I t I = Va'Sa < tn - l (a/2) 

n (a 'x - a ' IL )2 t2 = ------a' Sa 
n( a' (X - IL ) ) z 

< t�- J (a/2) a' Sa (5-22) 
A simultaneous confidence region is given by the set of a' IL values such that t2 is rel
atively small for all choices of a. It seems reasonable to expect that the constant 
t�_ 1 (aj2 ) in (5-22) will be replaced by a larger value, c2, when statements are developed for many choices of a. 

Considering the values of a for which t2 < c2, we are naturally led to the de
termination of 
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2 _ n(a ' ( x - JL ) ) 2 max t - max ' S a a a a 

Using the maximization lemma (2-50) with x == a, d == ( x  - IL ) , and B == S, we get 
n (a' (x - JL ) )2 [ ( a ' ( x - JL ) )2] _ , _ _ max ' S 

= n max 
' S 

= n (x - p, )  S 1 ( x - p, )  = T2 (5-23) 
a a a a a a 

with the maximum occurring for a proportional to s-1 ( x  - IL ) . 
Result 5.3. Let X1 , X2 , . . .  , Xn be a random sample from an Np(JL, I ) population with I positive definite. Then, simultaneously for all a, the interval (a'X -

p(n - 1 ) 
n (n  _ p) Fp, n -p (a)a' Sa ,  a 'X + 

p(n - 1 ) ) n (n  _ p)  Fp, n -p(a)a ' Sa 

will contain a' IL with probability 1 - a. 

Proof. From (5-23) , 
n( a' x - a' IL )2 T2 = n (X - p, ) 'S-1 (X - p, )  < c2 implies a ' Sa < c2 

for every a, or 
fa'Sa fa'Sa a ' x - c-y---;:;- < a' IL < a' x + c-y -;;--n-

for every a. Choosing c2 == p(n - 1 )Fp, n -p (a)j (n - p) [see (5-6)] gives intervals 
that will contain a' IL for all a, with probability 1 - a == P[T2 < c2] . • 

It is convenient to refer to the simultaneous intervals of Result 5.3 as 
T2-intervals , since the coverage probability is determined by the distribution of T2• 
The successive choices a '  == [ 1 , 0, . . .  , O J ,  a' == [0 , 1 ,  . . .  , O J ,  and so on through 
a' == [0, 0, . . .  , 1 J for the T2-intervals allow us to conclude that 

_ �p(n - 1 ) � _ 

X1 - (n  _ p) Fp, n -p (a) \j ---;,;- < JL1 < X1 

_ � p(n  - 1 ) (S:;:; _ x2 - ( n  _ p) Fp, n -p (a )  \j ---;,;- < JL2 < x2 
0 0 
0 0 
0 0 

�p(n - 1 ) 
+ (n  _ p) Fp, n- p(a) �p(n - 1 ) 
+ (n  _ p) Fp, n-p (a )  

- I p (n  - 1 ) (S;; - I p (n  - 1 ) (S;;
n
PP 

XP - \j ( n  _ p) Fp, n -p (a ) \j ----;; < JLp < XP + \j ( n  _ p) Fp, n -p(a )  \j ----;; 
(5-24) 

all hold simultaneously with confidence coefficient 1 - a. Note that, without mod
ifying the coefficient 1 - a, we can make statements about the differences JLi - i-Lk corresponding to a' == [0 , . . .  , 0, ai , 0, . . .  , 0, ak , 0, . . .  , O J ,  where ai == 1 and ak == -1 . 
In this case a' Sa == si i  - 2sik + sk k ' and we have the statement 
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(5-25 )  

The simultaneous T2 confidence intervals are ideal for "data snooping." The 
confidence coefficient 1 - a remains unchanged for any choice of a, so linear com
binations of the components JLi that merit inspection based upon an examination of 
the data can be estimated. 

In addition, according to the results in Supplement SA, we can include the state
ments about (JLi , JLk) belonging to the sample mean-centered ellipses 

[ S· · S· k ]-l [ X· - JL· J p(n - 1 ) 
n[ xi - JLi , xk - JLk ] l l  l 

_
l l < Fp n-p(a) (5-26) si k  sk k  xk - i-Lk n - P ' 

and still maintain the confidence coefficient ( 1 - a) for the whole set of statements. 
The simultaneous T2 confidence intervals for the individual components of a 

mean vector are just the shadows, or projections, of the confidence ellipsoid on the 
component axes. This connection between the shadows of the ellipsoid and the si
multaneous confidence intervals given by (5-24) is illustrated in the next example. 
Example 5.4 {Simu ltaneous confidence i nterva ls  as shadows 

of the confidence e l l i psoid) 

In Example 5.3, we obtained the 95% confidence ellipse for the means of the 
fourth roots of the door-closed and door-open microwave radiation measure
ments. The 95% simultaneous T2 intervals for the two component means are, 
from (5-24) , ( - jp (n - 1 ) � _ jp (n - 1 ) �) X1 - \j ( n  _ p) Fp, n-p ( .05 ) -y----;; , X1 + \j ( n  _ p) 

Fp, n -p ( .05 ) \j----;;-( 2(41 ) fN44 2(41 ) (N44) = .564 - 40 3.23 \j� · .564 + �3.23 \j� or ( .516, .612) ( - jp(n - 1 ) (S; _ jp(n - 1 ) 
fs;) X2 - \j (n _ p ) Fp, n -p ( .05 ) \j----;; • X2 + \j (n _ p ) Fp, n-p ( .05 ) -y----;; 

= 
( .603 - 2�� ) 3 .23 �, .603 + 

2�:1) 3 .23 �) or ( .555, .651 ) 
In Figure 5.2, we have redrawn the 95% confidence ellipse from Example 

5.3. The 95% simultaneous intervals are shown as shadows, or projections, of this 
ellipse on the axes of the component means. II 

Example 5 .5  {Constructing s imu ltaneous confidence interva ls  and e l l i pses) 

The scores obtained by n = 87 college students on the College Level Exami
nation Program (CLEP) subtest X1 and the College Qualification Test (CQT) subtests X2 and X3 are given in Table 5.2 on page 228 for X1 = social science 
and history, x2 = verbal, and x3 = science. These data give 
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- - - - - - - - - , - - - - - - - - - - - - - - - - - -
I I 

I 

�------�----�------�------�--�--�--�� p l  . 5 1 6  . 6 1 2  

0.500 0.552 0.604 

Figure 5.2 S imu ltaneous T2- i nterva ls for the com ponent means as shadows of the confidence 
e l l i pse on the axes-microwave rad iat ion data. [ 527.74 ] [ 5691 .34 600.51 217.25 ] 

x == 54.69 and S == 600.51 126.05 23 .37 
25.13 217.25 23.37 23. 11 

Let us compute the 95% simultaneous confidence intervals for JL1 , JL2 , and 
JL3 • We have 

p ( n - 1 ) 3 ( 87 - 1 ) 3 ( 86 ) 
n _ P Fp, n-p (a) = ( 87 _ 3 ) F3 , 84 ( .05 ) = 84 (2.7 ) = 8.29 

and we obtain the simultaneous confidence statements [see (5-24)] 
527 .74 - v'8.29 �5691.34 < f.Ll < 527 .74 + v'8.29 �5691 .34 87 87 

or 

or 

504.45 < I-Ll < 551 .03 
(IT6.05 � 126.05 54.69 - v'8.29 \j � < f.L2 < 54.69 + v'8.29 87 
51 .22 < JL2 < 58.16 

f2ill f2ill 25 .13 - v'8.29 \j ---p;J < f.L3 < 25 .13 + v'8.29 \j ---p;J 
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TABLE 5 .2 COLLEG E TEST DATA 

xl x2 x3 xl x2 x3 (Social (Social 
science and science and 

Individual history) (Verbal) (Science) Individual history) (Verbal) (Science) 
1 468 41 26 45 494 41 24 
2 428 39 26 46 541 47 25 
3 514 53 21 47 362 36 17 4 547 67 33 48 408 28 17 5 614 61 27 49 594 68 23 6 501 67 29 50 501 25 26 
7 421 46 22 51 687 75 33 
8 527 50 23 52 633 52 31 
9 527 55 19 53 647 67 29 
10 620 72 32 54 647 65 34 11 587 63 31 55 614 59 25 12 541 59 19 56 633 65 28 13 561 53 26 57 448 55 24 14 468 62 20 58 408 51 19 15 614 65 28 59 441 35 22 16 527 48 21 60 435 60 20 17 507 32 27 61 501 54 21 18 580 64 21 62 507 42 24 19 507 59 21 63 620 71 36 20 521 54 23 64 415 52 20 21 574 52 25 65 554 69 30 22 587 64 31 66 348 28 18 23 488 51 27 67 468 49 25 24 488 62 18 68 507 54 26 25 587 56 26 69 527 47 31 26 421 38 16 70 527 47 26 27 481 52 26 71 435 50 28 28 428 40 19 72 660 70 25 29 640 65 25 73 733 73 33 30 574 61 28 74 507 45 28 31 547 64 27 75 527 62 29 32 580 64 28 76 428 37 19 33 494 53 26 77 481 48 23 34 554 51 21 78 507 61 19 35 647 58 23 79 527 66 23 36 507 65 23 80 488 41 28 37 454 52 28 81 607 69 28 38 427 57 21 82 561 59 34 39 521 66 26 83 614 70 23 40 468 57 14 84 527 49 30 41 587 55 30 85 474 41 16 42 507 61 31 86 441 47 26 43 574 54 31 87 607 67 32 44 507 53 23 

Source: Data courtesy of Richard W. Johnson. 
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or 
23 .65 < J.L3 < 26 .61 

With the possible exception of the verbal scores, the marginal Q-Q plots and 
two-dimensional scatter plots do not reveal any serious departures from nor
mality for the college qualification test data. (See Exercise 5.18.) Moreover, the 
sample size is large enough to justify the methodology, even though the data are 
not quite normally distributed. (See Section 5.5.) 

The simultaneous T2-intervals above are wider than univariate intervals 
because all three must hold with 95% confidence. They may also be wider than 
necessary, because, with the same confidence, we can make statements about 
differences. 

For instance, with a' = [0, 1 , -1 J , the interval for J.L2 - J.L3 has endpoints �p(n - 1 ) �s + s - 2s ( _ _ 
_ ) ± F ( 05 ) 2 2 3 3 2 3 x2 X3 (n _ p) p, n-p · n 

/ 126.05 + 23 .11 - 2(23.37) 
= ( 54.69 - 25.13 ) ± v'8.29 \j 87 = 29.56 ± 3.12 
so (26.44, 32.68) is a 95% confidence interval for J.L2 - J.L3 • Simultaneous intervals can also be constructed for the other differences. 

Finally, we can construct confidence ellipses for pairs of means, and the 
same 95% confidence holds. For example, for the pair (J.L2 , J.L3 ) , we have 

[126.05 23 .37 ]-l [54.69 - J.L2] 87[54.69 - JL2 , 25.13 - JL3 ] 23.37 23.1 1 25.13 - JL3 
= 0.849 ( 54.69 - J.L2)2 + 4.633 (25.13 - J.L3 )2 

- 2 X 0.859 ( 54.69 - J.L2) (25.13 - J.L3 ) < 8.29 
This ellipse is shown in Figure 5.3 on page 230, along with the 95% confidence el
lipses for the other two pairs of means. The projections or shadows of these ellipses 
on the axes are also indicated, and these projections are the T2-intervals. • 

A Comparison of S imu ltaneous Confidence I nterva ls 
with One-at-a-Time I nterva ls 

An alternative approach to the construction of confidence intervals is to consider 
the components J.Li one at a time, as suggested by (5-21) with a' = [0, . . .  , 0, 
ai , 0, . . .  , O J where ai = 1. This approach ignores the covariance structure of the p variables and leads to the intervals 

X1 - tn- l (a/2) � < JL1 < X1 + tn - l (a/2 ) � 
x2 - tn- l (a/2) � < JL2 < x2 + tn - l ( a/2 ) � (5-27) 
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Figure 5.3 95% confidence e l l i pses for pa i rs of means and the s imu ltaneous T2-i nterva ls
col lege test data . 

Although prior to sampling, the ith interval has probability 1 - a of covering 
JLi , we do not know what to assert, in general, about the probability of all intervals con
taining their respective JL/S. As we have pointed out, this probability is not 1 - a. 

To shed some light on the problem, consider the special case where the obser
vations have a joint normal distribution and 

I = 

lTl l 0 0 
0 

0 0 
Since the observations on the first variable are independent of those on the second 
variable, and so on, the product rule for independent events can be applied, and be
fore the sample is selected. 

P[ all t-intervals in ( 5-27 ) contain the JL/S J ( 1 - a) ( 1 - a) · · · ( 1 - a) 
( 1 - a)P 

If 1 - a = .95 and p = 6, this probability is ( . 95) 6 = .74. 
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To guarantee a probability of 1 - a that all of the statements about the compo
nent means hold simultaneously, the individual intervals must be wider than the sepa
rate t-intervals; just how much wider depends on both p and n, as well as on 1 - a. 

For 1 - a == .95, n == 15, and p == 4, the multipliers of � in (5-24) and 
(5-27) are )p(n - 1 ) ( n _ p) Fp, n-p ( .OS )  = 

4 ( 14 ) 11 ( 3 . 36 ) == 4.14 
and tn - l ( .025 ) == 2.145, respectively. Consequently, in this case the simultaneous in
tervals are 100( 4.14 - 2.145 )/2.145 == 93% wider than those derived from the one
at-a-time t method. 

Table 5.3 gives some critical distance multipliers for one-at-a-time t-intervals 
computed according to (5-21) , as well as the corresponding simultaneous T2-intervals. 
In general, the width of the T2-intervals, relative to the t-intervals, increases for fixed n as p increases and decreases for fixed p as n increases. 

TABLE 5 .3  CRIT ICAL D I STANCE MULTI PLI ERS FOR ONE-AT-A-TIME  
t- I NTERVALS AND  T2- I NTE RVALS FOR S ELECTED n AND  p ( 1  - a == . 9 5 ) f ( n - 1 )p � ( n _ p) Fp, n-p ( .OS ) n tn - 1 ( .025 ) p == 4  p == 10 

15 2.145 4.14 11 .52 
25 2.064 3.60 6.39 
50 2.010 3.31 5.05 
100 1.970 3.19 4.61 
00 1 .960 3 .08 4.28 

The comparison implied by Table 5.3 is a bit unfair, since the confidence level 
associated with any collection of T2-intervals, for fixed n and p, is .95, and the over
all confidence associated with a collection of individual t intervals, for the same n, can, 
as we have seen, be much less than .95. The one-at-a-time t intervals are too short to 
maintain an overall confidence level for separate statements about, say, all p means. 
Nevertheless, we sometimes look at them as the best possible information concern
ing a mean, if this is the only inference to be made. Moreover, if the one-at-a-time 
intervals are calculated only when the T2-test rejects the null hypothesis, some re
searchers think they may more accurately represent the information about the means 
than the T2-intervals do. 

The T2-intervals are too wide if they are applied only to the p component means. 
To see why, consider the confidence ellipse and the simultaneous intervals shown in 
Figure 5.2. If JL1 lies in its T2-interval and JL2 lies in its T2-interval, then (JL1 , JL2) lies in the rectangle formed by these two intervals. This rectangle contains the confi
dence ellipse and more. The confidence ellipse is smaller but has probability .95 of 
covering the mean vector IL with its component means JL1 and JL2 • Consequently, the probability of covering the two individual means JL1 and JL2 will be larger than .95 for the rectangle formed by the T2-intervals. This result leads us to consider a second ap
proach to making multiple comparisons known as the Bonferroni method. 
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The Bonferroni  Method of Mu lti p le Comparisons 

Often, attention is restricted to a small number of individual confidence statements. 
In these situations it is possible to do better than the simultaneous intervals of Re
sult 5 .3 .  If the number m of specified component means JLi or linear combinations 
a' IL = a1JL1 + a2JL2 + · · · + apJLp is small, simultaneous confidence intervals can be developed that are shorter (more precise) than the simultaneous T2-intervals. The al
ternative method for multiple comparisons is called the Bonferroni method, because 
it is developed from a probability inequality carrying that name. 

Suppose that, prior to the collection of data, confidence statements about m 
linear combinations a1 1L , a2/-L,  . . .  , a'miL are required. Let Ci denote a confidence statement about the value of a; IL with P[ Ci true J = 1 - ai , i = 1, 2, . . .  , m. Now 
(see Exercise 5.6) ,  

P[ all Ci true ] == 1 - P[ at least one Ci false J 
m m 

> 1 - :L p ( ci false ) = 1 - :L ( 1 - p ( ci true ) ) 
i= l i = l  

(5-28) 
Inequality (5-28), a special case of the Bonferroni inequality, allows an investi

gator to control the overall error rate a1 + a2 + · · · + am , regardless of the correla
tion structure behind the confidence statements. There is also the flexibility of 
controlling the error rate for a group of important statements and balancing it by an
other choice for the less important statements. 

Let us develop simultaneous interval estimates for the restricted set consisting 
of the components JLi of IL · Lacking information on the relative importance of these components, we consider the individual t-intervals 

X; ± tn- 1( �i) -FE i = 1 ,  2, . . . , m 

with ai = ajm. Since P[Xi ± tn_ 1 (aj2m)� contains JLi ] = 1 - ajm, 
i == 1, 2, . . .  , m, we have, from (5-28) , 

P[ X; ± tn- 1( 2:) -FE contains f.Li , all i J > 1 - (� + � + . . · + �) 
m terms 

== 1 - a 
Therefore, with an overall confidence level greater than or equal to 1 - a, we can 
make the following m == p statements: 

(5-29) 
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The statements in (5-29) can be compared with those in (5-24). The percentage 
point tn_ 1 (aj2p) replaces v'(n - 1 )pFp, n -p (a)j (n - p) , but otherwise the intervals are of the same structure. 
Example 5 .6  (Constructing Bonferroni s imu ltaneous confidence interva ls  

and comparing them with T2-i nterva ls) 

Let us return to the microwave oven radiation data in Examples 5.3 and 5.4. We 
shall obtain the simultaneous 95% Bonferroni confidence intervals for the 
means, JL1 and JL2 , of the fourth roots of the door-closed and door-open measurements with ai = .05/2, i = 1 ,  2. We make use of the results in Example 5.3 , 
noting that n = 42 and t41 ( .05/2 (2 ) )  = t41 ( .0125 ) = 2.327, to get 

:X1 ± t41 ( .0125 ) Iff = .564 ± 2.327 -J¥ or 
- rs; fN46 x2 ± t41 ( .0125 ) \j ---;:;- = .603 ± 2.327 \j � or 

.521 < I-Ll < .607 

.560 < JL2 < .646 

Figure 5.4 shows the 95% T2 simultaneous confidence intervals for JL1 , JL2 from Figure 5 .2, along with the corresponding 95% Bonferroni intervals. For each 
component mean, the Bonferroni interval falls within the T2-interval. Conse
quently, the rectangular Uoint) region formed by the two Bonferroni intervals 
is contained in the rectangular region formed by the two T2-intervals. If we are 
interested only in the component means, the Bonferroni intervals provide more 

.65 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

.646 

.560 

I 
I 

- - ....., 

. 555 - - - - - - - - -

_ _ _ _ _ _ _ _ _  ..... 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - r -

Bonferroni 

�--���,--------�------�------�,--------� p l .5 1 6 .521 .607 .61 2 
0.500 0.552 0.604 

Figure 5.4 The 95% T2 and  95% Bonferron i  s imu ltaneous confidence i nterva ls for the 
component mea ns-microwave rad iat ion data . 
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precise estimates than the T2-intervals. On the other hand, the 95% confidence 
region for IL gives the plausible values for the pairs (JL1 , JL2) when the correlation between the measured variables is taken into account. • 

The Bonferroni intervals for linear combinations a' IL and the analogous 
T2-intervals (recall Result 5.3) have the same general form: 

a'X  ± ( critical value ) � 
Consequently, in every instance where ai = aj m, 

Length of Bonferroni interval 
Length of T2-interval )p(n - 1 ) --- Fp n-p (a)  n - p , 

(5-30) 

which does not depend on the random quantities X and S. As we have pointed out, for 
a small number m of specified parametric functions a' JL ,  the Bonferroni intervals will 
always be shorter. How much shorter is indicated in Table 5.4 for selected n and p. 

TABLE 5.4 (LENGTH OF BONFERRON I I NTERVAL)/(LENGTH 
OF T2- I NTERVAL) FOR 1 - a = .95 AND ai = .0 5/m 

m = p  
n 2 4 10 

15 .88 .69 .29 
25 .90 .75 .48 
50 .91 .78 .58 

100 .91 .80 .62 
00 .91 .81 .66 

We see from the Table 5.4 that the Bonferroni method provides shorter inter
vals when m = p. Because they are easy to apply and provide the relatively short con
fidence intervals needed for inference, we will often apply simultaneous t-intervals 
based on the Bonferroni method. 

5 .5  LARGE SAMPLE I N FERENCES ABOUT A POPULATION M EAN VECTOR 

When the sample size is large, tests of hypotheses and confidence regions for IL can 
be constructed without the assumption of a normal population. As illustrated in Ex
ercises 5 .15 ,  5 .16 ,  and 5 .17 ,  for large n, we are able to make inferences about the pop� 
ulation mean even though the parent distribution is discrete. In fact, serious 
departures from a normal population can be overcome by large sample sizes. Both 
tests of hypotheses and simultaneous confidence statements will then possess ( ap
proximately) their nominal levels. 
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The advantages associated with large samples may be partially offset by a loss 
in sample information caused by using only the summary statistics x, and S. On the 
other hand, since ( x , S ) is a sufficient summary for normal populations [see ( 4-21 )] , 
the closer the underlying population is to multivariate normal, the more efficiently 
the sample information will be utilized in making inferences. 

All large-sample inferences about IL are based on a x2-distribution. From 
(4-28) ,  we know that (X - IL) ' ( n-1S )-1 (X - IL) = n (X - �-t ) 'S-1 (X - IL) is ap
proximately x2 with p d.f. , and thus, 

P [ n (X - 1L ) 's-1 (X - 1L ) < X� (a) ] _:_ 1 - a ( 5 _ 31) 

where x� ( a) i s the upper ( 100a )th percentile of the x�-distribution. 
Equation (5-31) immediately leads to large sample tests of hypotheses and simul

taneous confidence regions. These procedures are summarized in Results 5.4 and 5.5 . 

Result 5.4. Let X1 , X2 , . . .  , Xn be a random sample from a population with mean IL and positive definite covariance matrix I. When n - p is large, the hy
pothesis H0: IL = ILo is rejected in favor of H1 : IL =I= ILo , at a level of significance approximately a, if the observed 

n ( x - ILo) 'S-1 ( x - ILo) > X� (a) 
Here x�( a) is the upper ( 100a )th percentile of a chi-square distribution with p d.f. • 

Comparing the test in Result 5.4 with the corresponding normal theory test in 
(5-7) ,  we see that the test statistics have the same structure, but the critical values are 
different. A closer examination, however, reveals that both tests yield essentially the 
same result in situations where the x2-test of Result 5 .4 is appropriate. This follows 
directly from the fact that ( n - 1 )pFp, n-p(a )j ( n - p) and x�(a) are approximately equal for n large relative to p. (See Tables 3 and 4 in the appendix.) 

Result 5.5. Let X1 , X2 , . . .  , Xn be a random sample from a population with mean IL and positive definite covariance I. If n - p is large, 
fa'S8 a 'X ± � \j -----;;---

will contain a' /-L , for every a, with probability approximately 1 - a. Consequently, 
we can make the 100 ( 1 - a)% simultaneous confidence statements 

X1 ± � � contains JL1 
contains JL2 

contains J.Lp 
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and, in addition, for all pairs (JLi , JLk ) , i, k = 1, 2, . . .  , p, the sample mean-centered 
ellipses [ J-1 [ - J si i  si k  xi - JLi 2 • n[ xi - JLi , xk - I-Lk ] _ < Xp(a )  contain (JLi , JLk ) 

si k  skk xk - JLk 

Proof. The first part follows from Result 5A.l , with c2 = x�( a ) . The proba
bility level is a consequence of (5-31 ) .  The statements for the JLi are obtained by the 
special choices a' = [0, . . . , 0, ai , 0, . . . , O J ,  where ai = 1, i = 1, 2, . . .  , p.  The ellip
soids for pairs of means follow from Result 5A.2 with c2 = x�( a ) . The overall con
fidence level of approximately 1 - a for all statements is, once again, a result of the 
large sample distribution theory summarized in (5-31) .  II 

It is good statistical practice to subject these large sample inference procedures 
to the same checks required of the normal-theory methods. Although small to mod
erate departures from normality do not cause any difficulties for n large, extreme de
viations could cause problems. Specifically, the true error rate may be far removed 
from the nominal level a. If, on the basis of Q-Q plots and other investigative devices, 
outliers and other forms of extreme departures are indicated (see, for example, [2] ) ,  
appropriate corrective actions, including transformations, are desirable. Methods for 
testing mean vectors of symmetric multivariate distributions that are relatively in
sensitive to departures from normality are discussed in [10] .  In some instances, Re
sults 5.4 and 5.5 are useful only for very large samples. 

The next example allows us to illustrate the construction of large sample si
multaneous statements for single mean components. 
Example 5 .7  {Constructi ng large sample si mu ltaneous confidence i nterva ls) 

A music educator tested thousands of Finnish students on their native musical 
ability in order to set national norms in Finland. Summary statistics for part of 
the data set are given in Table 5 .5 .  These statistics are based on a sample of 
n = 96 Finnish 12th graders. 
TABLE 5 . 5  MUS ICAL APTITUDE  PROF ILE  M EANS AND STANDARD 
D EVIAT IONS FOR 96 1 2TH-GRADE  F I NN I SH  STUDENTS PARTIC I PATI NG 
IN A STANDARDIZATION PROGRAM 

Variable 
xl = melody 
x2 = harmony x3 = tempo 
x4 = meter X5 = phrasing x6 = balance x7 = style 

Source: Data courtesy of V. Sell. 

28.1 
26.6 
35.4 
34.2 
23 .6 
22.0 
22.7 

Raw score 
Standard deviation ( �) 

5.76 
5 .85 
3 .82 
5 .12 
3.76 
3 .93 
4.03 
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Let us construct 90% simultaneous confidence intervals for the individual 
mean components JLi , i = 1 ,  2, . . .  , 7 .  

From Result 5.5 , simultaneous 90% confidence limits are given by 
X; ± v' x�( . lO) �' i = 1 ,  2, . . .  , 7 ,  where x� ( . 10 ) = 12.02. Thus, with ap-
proximately 90% confidence, 

28. 1 ± VT2.02 � contains JL1 or 26.06 < i-Ll < 30.14 
96 

VT2.02 5 .85 
26.6 ± 12.02 V% contains JL2 or 24.53 < JL2 < 28.67 

VT2.02 3 .82 
35.4 ± 12.02 V% contains JL3 or 34.05 < JL3 < 36.75 

VT2.02 5 .12 
34.2 ± 12.02 V% contains JL4 or 32.39 < JL4 < 36.01 

VT2.02 3 .76 
23 .6 ± 12.02 V% contains JLs or 22.27 < JLs < 24.93 

VT2.02 3 .93 
22.0 ± 12.02 V% contains JL6 or 20.61 < JL6 < 23 .39 

VT2.02 4.03 
22.7 ± 12.02 V% contains JL7 or 21.27 < JL7 < 24.13 

Based, perhaps, upon thousands of American students, the investigator could hy
pothesize the musical aptitude profile to be 

ILo = [ 3 1 ,  27, 34, 31 ,  23, 22, 22 ] 

We see from the simultaneous statements above that the melody, tempo, and 
meter components of ILo do not appear to be plausible values for the corresponding means of Finnish scores. • 

When the sample size is large, the one-at-a-time confidence intervals for indi
vidual means are (a) {% (a) {% X; - z 

2 
\j --:: < f.L; < X; + z 

2 
\j --:: i = 1 ,  2, . . .  ' p  

where z (  a/2 ) is the upper 100 ( a/2 )th percentile of the standard normal distribution. 
The Bonferroni simultaneous confidence intervals for the m = p statements about the 
individual means take the same form, but use the modified percentile z( aj2p) to give ( a ) {% ( a ) {% 

X; - z 
2 p 

\j --:: < f.L; < X; + z 
2 p \j --:: i = 1 ,  2, . . .  ' p 

Table 5.6 gives the individual, Bonferroni, and chi-square-based (or shadow of 
the confidence ellipsoid) intervals for the musical aptitude data in Example 5.7. 
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TABLE 5 .6 TH E LARG E-SAMPLE 95% I ND IVI DUAL, BONFERRONI ,  
AND T2- I NTERVALS FOR TH E MUS ICAL APTITUDE  DATA 

The one-at-a-time confidence intervals use z ( .025 ) = 1 .96. 
The simultaneous Bonferroni intervals use z (  .025/7 ) = 2.69. 
The simultaneous T2, or shadows of the ellipsoid, use x� ( .05 ) = 14.07 .  

One-at -a-time Bonferroni Intervals Shadow of Ellipsoid 
Variable Lower Upper Lower Upper Lower Upper 
xl == melody 26.95 29.25 26.52 29 .68 25 .90 30.30 
x2 = harmony 25 .43 27.77 24.99 28.21 24.36 28.84 
x3 = tempo 34.64 36. 1 6  34.35 36 .45 33 .94 36.86 
x4 = meter 33 .18 35.22 32.79 35.61 32.24 36 .16 
X5 = phrasing 22.85 24.35 22.57 24.63 22.16 25.04 
x6 = balance 21.21 22.79 20. 92 23.08 20.50 23 .50 
x7 = style 21.89 23 .51 21 .59 23 .81 21 . 16  24.24 

Although the sample size may be large, some statisticians prefer to retain the 
F- and t-based percentiles rather than use the chi-square or standard normal-based 
percentiles. The latter constants are the infinite sample size limits of the former con
stants. The F and t percentiles produce larger intervals and, hence, are more conser
vative. Table 5.7 gives the individual, Bonferroni, and F-based, or shadow of the 
confidence ellipsoid, intervals for the musical aptitude data. Comparing Table 5 .7 
with Table 5 .6 ,  we see that all of the intervals in Table 5 .7 are larger. However, with 
the relatively large sample size n = 96, the differences are typically in the third, or 
tenths, digit. 

TABLE 5 .7  TH E 95% I ND IVI DUAL, BONFERRON I , AND T2- I NTERVALS 
FOR TH E MUS ICAL APTITUDE DATA 

The one-at-a-time confidence intervals use t95 (  .025 ) = 1 .99 . 
The simultaneous Bonferroni intervals use t95 ( .025/7 ) = 2.75. 
The simultaneous T2, or shadows of the ellipsoid, use F7, 89 (  .05 )  = 2 . 11 .  

One-at-a-time Bonferroni Intervals Shadow of Ellipsoid 
Variable Lower Upper Lower Upper Lower Upper 
xl = melody 26.93 29.27 26.48 29.72 25.76 30.44 
x2 = harmony 25 .41 27.79 24 .96 28.24 24.23 28.97 
x3 == tempo 34.63 36.17 34.33 36 .47 33 .85 36.95 
x4 = meter 33 .16 35.24 32.76 35 .64 32.12 36.28 
X5 == phrasing 22.84 24.36 22.54 24.66 22.07 25 . 13  
x6 = balance 21 .20 22.80 20.90 23 . 10 20.41 23 .59 
x7 = style 21 .88 23.52 21 .57 23 .83 21 .07 24.33 
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5.6 M U LTIVARIATE QUALITY CONTROL CHARTS 

To improve the quality of goods and services, data need to be examined for causes of 
variation. When a manufacturing process is continuously producing items or when 
we are monitoring activities of a service, data should be collected to evaluate the ca
pabilities and stability of the process. When a process is stable, the variation is pro
duced by common causes that are always present, and no one cause is a major source 
of variation. 

The purpose of any control chart is to identify occurrences of special causes of 
variation that come from outside of the usual process. These causes of variation often 
indicate a need for a timely repair, but they can also suggest improvements to the 
process. Control charts make the variation visible and allow one to distinguish com
mon from special causes of variation. 

A control chart typically consists of data plotted in time order and horizontal 
lines, called control limits, that indicate the amount of variation due to common caus
es. One useful control chart is the X -chart (read X-bar chart) . To create an X -chart, 

1. Plot the individual observations or sample means in time order. 
2. Create and plot the centerline x, the sample mean of all of the observations. 
3. Calculate and plot the control limits given by 

Upper control limit (UCL) = x + 3 ( standard deviation ) 
Lower control limit (LCL) = x - 3 ( standard deviation ) 

The standard deviation in the control limits is the estimated standard deviation of 
the observations being plotted. For single observations, it is often the sample stan
dard deviation. If the means of subsamples of size m are plotted, then the standard 
deviation is the sample standard deviation divided by Vm. The control limits of plus 
and minus three standard deviations are chosen so that there is a very small chance, 
assuming normally distributed data, of falsely signaling an out-of-control observa
tion-that is, an observation suggesting a special cause of variation. 
Example 5 .8 (Creating a u n ivariate contro l chart) 

The Madison, Wisconsin, police department regularly monitors many of its ac
tivities as part of an ongoing quality improvement program. Table 5.8 gives the 
data on five different kinds of overtime hours. Each observation represents a 
total for 12 pay periods, or about half a year. 

We examine the stability of the legal appearances overtime hours. A com
puter calculation gives x1 = 3558. Since individual values will be plotted, x1 is 
the same as x1 . Also, the sample standard deviation is � = 607 , and the 
control limits are 

UCL = x1 + 3 ( �) = 3558 + 3 (607 ) = 5379 
LCL = x1 - 3 ( � )  = 3558 - 3 ( 607 ) = 1737 

The data, along with the centerline and control limits, are plotted as an X -chart 
in Figure 5.5 on page 240. 
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TABLE 5 .8 F IVE TYPES OF OVERTI M E  HOURS FOR TH E MADISON, 
WISCONS IN, POL ICE DEPARTMENT 

xl x2 x3 x4 Xs Legal Appearances Extraordinary Holdover COA1 Meeting 
Hours Event Hours Hours Hours Hours 
3387 2200 1 181 14,861 236 
3109 875 3532 1 1 ,367 310 
2670 957 2502 13 ,329 1 182 
3125 1758 4510 12,328 1208 
3469 868 3032 12,847 1385 
3120 398 2130 13 ,979 1053 
3671 1603 1982 13 ,528 1046 
4531 523 4675 12,699 1 100 
3678 2034 2354 13,534 1349 
3238 1 136 4606 1 1 ,609 1 150 
3135 5326 3044 14,189 1216 
5217 1658 3340 15 ,052 660 
3728 1945 21 1 1  12,236 299 
3506 344 1291 15 ,482 206 
3824 807 1365 14,900 239 
3516 1223 1 175 15,078 161 

1 Compensatory overtime allowed. 

Legal Appearances Overtime Hours 

5500 UCL = 5379 

4500 

� ::3 ca > 
ca 3500 ::3 x1 = 3558 "C1 ·> � � 

2500 

LCL = 1737 
1 500 

0 5 1 0  1 5  

Observation Number 

Figure 5.5 The X -chart for x1 = l ega l  appea ra nces overt ime hours. 
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The legal appearances overtime hours are stable over the period in which 
the data were collected. The variation in overtime hours appears to be due to 
common causes, so no special-cause variation is indicated. • 

With more than one important characteristic, a multivariate approach should be 
used to monitor process stability. Such as approach can account for correlations be
tween characteristics and will control the overall probability of falsely signaling a 
special cause of variation when one is not present. High correlations among the vari
ables can make it impossible to assess the overall error rate that is implied by a large 
number of univariate charts. 

The two most common multivariate charts are (i) the ellipse format chart and 
(ii) the T2-chart. 

Two cases that arise in practice need to be treated differently: 
1. Monitoring the stability of a given sample of multivariate observations 
2. Setting a control region for future observations 
Initially, we consider the use of multivariate control procedures for a sample of mul
tivariate observations x1 , x2 , . . .  , Xn . Later, we discuss these procedures when the ob
servations are subgroup means. 
Charts for Mon itor ing a Sample of Ind ividual  Mu ltivariate 
Observations for Stab i l ity 

We assume that X 1 , X2 , . . . , Xn are independently distributed as Np( JL, I) . By Result 4.8, 

has 

and 

X .  - X = ( 1 - _!_) X .  - _!_ X - · · · - _!_ X .  - _!_ X .  - · · · - _!_ X 1 n 1 n 1 n 1- 1 n 1 + 1 n n 

_ ( 1 ) 2 (n - 1 ) Cov (Xj - X )  = 1 - n I + (n - 1 )n-2I = 
n I 

Each Xj - X has a normal distribution but, Xj - X is not independent of the sam
ple covariance matrix S. However to set control limits we approximate that 
(Xj - X) ' S-1 (Xj - X ) has a chi-square distribution. 

Ellipse Format Chart. The ellipse format chart for a bivariate control region 
is the more intuitive of the charts, but its approach is limited to two variables. The two 
characteristics on the jth unit are plotted as a pair ( xj 1 , xj2 ) . The 95% quality ellipse 
consists of all x that satisfy 

(x - x) ' S-1 (x - x) < x� ( .05 ) (5-32) 

Example 5 .9 {An e l l i pse format chart for overtime hou rs) 

Let us refer to Example 5 .8 and create a quality ellipse for the pair of overtime 
characteristics (legal appearances, extraordinary event) hours. A computer cal
culation gives 
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We illustrate the quality ellipse format chart using the 99% ellipse, which 
consists of all x that satisfy 

(x - x) 'S-1 (x - x) < x� ( .01 ) 

Here p = 2, so x�( .01 ) = 9.21, and the ellipse becomes 
sl l s2 2  
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This ellipse format chart is graphed, along with the pairs of data, in Figure 5 .6 .  
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Notice that one point, indicated with an arrow, is definitely outside of the 
ellipse. When a point is out of the control region, individual X charts are con
structed. The X -chart for x1 was given in Figure 5.5; that for x2 is given in Figure 5.7 on page 243 . 

When the lower control limit is less than zero for data that must be non
negative, it is generally set to zero. The LCL = 0 limit is shown by the dashed 
line in Figure 5.7 . 
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Extraordinary Event Hours 

0 5 10  1 5  
Observation Number 

Figure 5.7 The X-chart for x2 = extraord i na ry event hours .  

UCL = 5027 

LCL = -207 1 

Was there a special cause of the single point for extraordinary event over
time that is outside the upper control limit in Figure 5.7? During this period, 
the United States bombed a foreign capital, and students at Madison were 
protesting. A majority of the extraordinary overtime was used in that four
week period. Although, by its very definition, extraordinary overtime occurs 
only when special events occur and is therefore unpredictable, it still has a cer
tain stability. • 

T2-Chart. A T2-chart can be applied to a large number of characteristics. Un
like the ellipse format, it is not limited to two variables. Moreover, the points are 
displayed in time order rather than as a scatter plot, and this makes patterns and 
trends visible. 

For the jth point, we calculate the T2-statistic 
TJ = (xj - x) 'S-1 (xj - x) (5-33) 

We then plot the T2-values on a time axis. The lower control limit is zero, and we use 
the upper control limit 

UCL = x�( .05 ) 

or, sometimes, x�( .01 ) .  
There is no centerline in the T2-chart. Notice that the T2-statistic is the same 

as the quantity dJ used to test normality in Section 4.6 . 

Example 5 . 1 0  (A T2-chart for overtime hours) 

Using the police department data in Example 5.8, we construct a T2-plot based 
on the two variables xl = legal appearances hours and x2 = extraordinary 
event hours. T2-charts with more than two variables are considered in 
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Exercise 5 .26. We take a = .01 to be consistent with the ellipse format chart in Example 5.9 . 
The T2-chart in Figure 5.8 reveals that the pair (legal appearances, extra

ordinary event) hours for period 11 is out of control. Further investigation, as 
in Example 5.9 , confirms that this is due to the large value of extraordinary 
event overtime during that period. II 

• 

• • • 

0 2 4 6 8 1 0  1 2  14  1 6  

Period 

Figure 5.8 The T2-chart for legal appea rances hours and extraord i nary event hou rs, a = . 0 1 . 

When the multivariante T2-chart signals that the jth unit is out of control, it 
should be determined which variables are responsible. A modified region based on 
Bonferroni intervals is frequently chosen for this purpose. The kth variable is out of 
control if x 1 k does not lie in the interval 

( xk - tn - 1 ( .005/ p) vs;:;;' xk + tn - 1 ( .005/ p) YS;;;; ) 
where p is the total number of measured variables. 
Example  5 . 1 1 {Contro l of robotic welders-more than T2 needed) 

The assembly of a driveshaft for an automobile requires the circle welding of 
tube yokes to a tube. The inputs to the automated welding machines must be 

controlled to be within certain operating limits where a machine produces welds 
of good quality. In order to control the process, one process engineer measured 
four critical variables: 

X1 = Voltage (volts ) 
X2 = Current (amps) 
X3 = Feed speed ( in/min) 
X4 = (inert ) Gas flow ( cfm) 

Table 5.9 gives the values of these variables at 5-second intervals. 
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TABLE 5.9 WELDER  DATA 

Case Voltage (X1 ) Current (X2) Feed speed (X3 ) Gas flow (X4) 
1 23 .0 276 289 .6 51 .0 
2 22.0 281 289.0 51 .7 
3 22.8 270 288.2 51 .3 
4 22. 1  278 288.0 52.3 
5 22.5 275 288.0 53.0 
6 22.2 273 288.0 51 .0 
7 22.0 275 290.0 53.0 
8 22. 1 268 289 .0 54.0 
9 22.5 277 289.0 52.0 

10 22.5 278 289 .0 52.0 
11  22.3 269 287 .0 54.0 
12 21 .8 274 287.6 52.0 
13 22.3 270 288.4 51 .0 
14 22.2 273 290.2 51 .3 
15 22. 1 274 286 .0 51 .0 
16 22.1 277 287 .0 52.0 
17 21 .8 277 287 .0 51 .0 
18 22.6 276 290.0 51 .0 
19 22.3 278 287 .0 51 .7 
20 23 .0 266 289 .1 51 .0 
21 22.9 271 288.3 51 .0 
22 21 .3 274 289 .0 52.0 
23 21 .8 280 290.0 52.0 
24 22.0 268 288.3 51 .0 
25 22.8 269 288.7 52.0 
26 22.0 264 290.0 51 .0 
27 22.5 273 288.6 52.0 
28 22.2 269 288.2 52.0 
29 22.6 273 286.0 52.0 
30 21.7 283 290.0 52.7 
31 21 .9 273 288.7 55.3 
32 22.3 264 287 .0 52.0 
33 22.2 263 288 .0 52.0 
34 22.3 266 288.6 51 .7 
35 22.0 263 288.0 51 .7 
36 22.8 272 289.0 52.3 
37 22.0 277 287.7 53.3 
38 22.7 272 289 .0 52.0 
39 22.6 274 287.2 52.7 
40 22.7 270 290.0 51 .0 

Source: Data courtesy of  Mark Abbotoy. 
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The normal assumption is reasonable for most variables, but we take the 
natural logarithm of gas flow. In addition, there is no appreciable serial corre-· 
lation for successive observations on each variable. 

A T2-chart for the four welding variables is given in Figure 5.9 .  The dot
ted line is the 95% limit and the solid line is the 99% limit. Using the 99% limit, 
no points are out of control, but case 31 is outside the 95% limit . 

What do the quality control ellipses (ellipse format charts) show for two 
variables? Most of the variables are in control. However, the 99% quality el-· 
lipse for gas flow and voltage, shown in Figure 5 .10, reveals that case 31 is out 
of control and this is due to an unusually large volume of gas flow. The uni
variate X chart for ln(gas flow), in Figure 5 . 11 ,  shows that this point is outside 
the three sigma limits. It appears that gas flow was reset at the target for case 
32. All the other univariate X -charts have all points within their three sigma 
control limits. 
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Figure 5.9 The T2-chart for the 
we ld i ng  data with 95% and 99% 
l i m its . 

Figure 5 . 1 0  The 99% qua l ity control 
e l l i pse for l n (gas flow) and vo ltage. 
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UCL = 4.005 

Mean = 3 . 95 1  

LCL = 3 . 896 

40 
Figure 5.1 1 The un ivar iate X-chart 
for l n (gas f low) . 

In this example, a shift in a single variable was masked by 99% limits, or 
almost masked (with 95% limits) , by being combined into a single T2-value. • 

Contro l Reg ions for Future I nd iv idua l  Observations 

The goal now is to use data x1 , x2 , . . •  , xn , collected when a process is stable, to set a control region for a future observation x or future observations. The region in which 
a future observation is expected to lie is called a forecast, or prediction, region. If the 
process is stable, we take the observations to be independently distributed as 
Np( JL, I) . Because these regions are of more general importance than just for mon
itoring quality, we give the basic distribution theory as Result 5.6 . 

Result 5.6. Let X1 , X2 , . . .  , Xn be independently distributed as Np( JL, I) , and 
let X be a future observation from the same distribution. Then 

2 n - , 1 - (n - 1 )p T = 
1 
(X - X) s- (X - X) is distributed as FP n-p n +  n - p  ' 

and a 100 ( 1 - a)% p-dimensional prediction ellipsoid is given by all x satisfying 
( -) 's-1 ( -) ( n2 - 1 )p 

F ( ) X - X X - X < 
n (n _ p) 

p, n- p a 

Proof. We first note that X - X has mean 0. Since X is a future observation, 
X and X are independent, so 

- - 1 ( n  + 1 ) Cov (X - X ) = Cov (X) + Cov (X ) = I + - I = I n n 

and, by Result 4.8 , Vnj (n  + 1 ) (X - X) is distributed as Np(O, I) . Now, 
(rl (X - X) 'S-1 (rl (X - X) \j -;;-+1 \j -;;-+1 

which combines a multivariate normal, Np( 0, I) , random vector and an independent 
Wishart, Wp,n- 1 (I ) , random matrix in the form 
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random vector d.f. random vector 

has the scaled F distribution claimed according to (5-8) and the discussion on 
pages 212-213. 

The constant for the ellipsoid follows from (5-6) . II 

Note that the prediction region in Result 5.6 for a future observed value x is an 
ellipsoid. It is centered at the initial sample mean x, and its axes are determined by 
the eigenvectors of S. Since 

[ - ' -1 - (n2 - 1 )p J P (X - X )  S (X - X )  < n (n _ p) Fp,n -p (a) = 1 - a 

before any new observations are taken, the probability that X will fall in the predic
tion ellipse is 1 - a. 

Keep in mind that the current observations must be stable before they can be 
used to determine control regions for future observations. 

Based on Result 5.6, we obtain the two charts for future observations. 
Contro l E l l i pse for Futu re Observations 

With p = 2, the 95% prediction ellipse in Result 5.6 specializes to 
_ , _ 1  _ ( n2 - 1 )2 (x - x ) S (x - x) < n (n _ 2) F2, n -2 ( .05 ) (5-34) 

Any future observation x is declared to be out of control if it falls out of the con
trol ellipse. 
Example 5 . 1 2  {A Contro l e l l ipse for futu re overtime hours) 

In Example 5.9, we checked the stability of legal appearances and extraordinary 
event overtime hours. Let's use these data to determine a control region for fu
ture pairs of values. 

From Example 5.9 and Figure 5.6, we find that the pair of values for pe
riod 11 were out of control. We removed this point and determined the new 99% 
ellipse. All of the points are then in control, so they can serve to determine the 
95% prediction region just defined for p = 2. This control ellipse is shown in 
Figure 5.12 along with the initial 15 stable observations. 

Any future observation falling in the ellipse is regarded as stable or in 
control . An observation outside of the ellipse represents a potential out-of
control observation or special-cause variation. ll 

T2-Chart for Futu re Observations 

For each new observation x, plot 
n 

T2 = (x - x) 'S-1
(x - x) n + 1 
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Figure 5 . 1 2  The 95% control e l l i pse 
for future legal appeara nces and  
extraord i na ry event overt ime .  

in time order. Set LCL = 0, and take 
( n - l )p UCL = ( n 

_ p) 
Fp,n -p ( .OS ) 

Points above the upper control limit represent potential special cause variation and 
suggest that the process in question should be examined to determine whether im
mediate corrective action is warranted. 
Contro l Charts Based on Subsample Means 

It is assumed that each random vector of observations from the process is indepen
dently distributed as Np( 0, I) . We proceed differently when the sampling procedure 
specifies that m > 1 units be selected, at the same time, from the process. From the 
first sample, we determine its sample mean X1 and covariance matrix S1 . When the population is normal, these two random quantities are independent. 

For a general subsample mean Xj , Xj - X has a normal distribution with mean 
O and 

_ = ( 1 )2 _ n - 1 - ( n - 1 ) Cov (Xj - X ) = 1 - - Cov (Xj ) + 2 Cov (X1 ) = I 
n n nm 
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where 
= 1 � X = - £.J xj n j= 1 

As will be described in Section 6.4, the sample covariances from the n sub
samples can be combined to give a single estimate (called Spooled in Chapter 6) of the common covariance I. This pooled estimate is 

1 S = - ( S + S + · · · + S ) n 1 2 n 
Here ( nm - n)S is independent of each Xj and, therefore, of their mean X. 

Further, ( nm - n )S is distributed as a Wishart random matrix with nm - n degrees 
of freedom. Notice that we are estimating I internally from the data collected in 
any given period. These estimators are combined to give a single estimator with a 

large number of degrees of freedom. Consequently, 

is distributed as 

( + 1 ) Fp, nm-n-p+ 1 nm - n - p 
(nm - n )p 

(5-35 ) 

Ellipse Format Chart. In an analogous fashion to our discussion on individual 
multivariate observations, the ellipse format chart for pairs of subsample means is 

_ = , _1 _ = ( n  - 1 ) (m - 1 )2 ( x - x ) S ( x - x ) < 

( 1 ) F2, nm-n- 1 ( .05 ) m nm - n -

although the right-hand side is usually approximated as x� ( .05 )jm . 
(5-36) 

Subsamples corresponding to points outside of the control ellipse should be 

carefully checked for changes in the behavior of the quality characteristics being 
measured. The interested reader is referred to [9] for additional discussion. 

T2-Chart. To construct a T2-chart with subsample data and p characteristics, 
we plot the quantity 

Ty = m(Xj - X) 'S-1 (Xj - X ) 
for j = 1 ,  2, . . .  , n ,  where the 

(n - 1 ) (m - 1 )p UCL = 
( 1 ) Fp, nm-n-p+ 1 ( .05 ) nm - n - p + 

The UCL is often approximated as x�( .05 ) when n is large. 
Values of Tj that exceed the UCL correspond to potentially out-of-control or 

special cause variation, which should be checked. (See [9] . ) 
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Contro l  Reg ions for Future Subsample Observations 

Once data are collected from the stable operation of a process, they can be used to 
set control limits for future observed subsample means. 

If X is a future subsample mean, then X - X has a multivariate normal distri
bution with mean 0 and 

Consequently, 

- = - 1 _ ( n  + 1 ) Cov (X - X ) = Cov (X ) + - Cov (X1 ) = I n nm 

nm (X - X ) ' S-1 (X - X ) 
n + 1 

is distributed as 

( 1 )  Fp, nm-n-p+ l nm - n - p + 
( nm - n)p 

Control Ellipse for Future Subsample Means. The prediction ellipse for a fu
ture subsample mean for p = 2 characteristics is defined by the set of all x such that 

_ = , _1 _ = ( n  + 1 ) (m - 1 )2 (x - x ) S ( x - x ) < 

( 1 ) F2, nm-n- 1 ( .05 ) m nm - n -

where, again, the right-hand side is usually approximated as x�( .05 )/m . 

(5-37) 

T2-Chart for Future Subsample Means. As before, we bring nj ( n + 1 ) into the 
control limit and plot the quantity 

for future sample means in chronological order. The upper control limit is then 
( n + 1 ) (m - 1 )p UCL = 
( 1 ) Fp, nm-n-p+ l ( .05 ) nm - n - p + 

The UCL is often approximated as x�( .05 ) when n is large. 
Points outside of the prediction ellipse or above the UCL suggest that the cur

rent values of the quality characteristics are different in some way from those of the 
previous stable process. This may be good or bad, but almost certainly warrants a 
careful search for the reasons for the change. 



252 Chapter 5 I nfe rences about a Mean Vector 

5 .7 I N FERENCES ABOUT M EAN VECTORS 
WHEN SOME OBSERVATIONS ARE MISS ING 

Often, some components of a vector observation are unavailable. This may occur be
cause of a breakdown in the recording equipment or because of the unwillingness of 
a respondent to answer a particular item on a survey questionnaire. The best way to 
handle incomplete observations, or missing values, depends, to a large extent, on the 
experimental context . If the pattern of missing values is closely tied to the value of 
the response, such as people with extremely high incomes who refuse to respond in a 
survey on salaries, subsequent inferences may be seriously biased. To date, no statis
tical techniques have been developed for these cases. However, we are able to treat 
situations where data are missing at random-that is, cases in which the chance mech
anism responsible for the missing values is not influenced by the value of the variables. 

A general approach for computing maximum likelihood estimates from in
complete data is given by Dempster, Laird, and Rubin [5] . Their technique, called the 
EM algorithm, consists of an iterative calculation involving two steps. We call them 
the prediction and estimation steps: 

r--..1 

1. Prediction step .  Given some estimate (J of the unknown parameters, predict 
the contribution of any missing observation to the (complete-data) sufficient 
statistics. 

2. Estimation step .  Use the predicted sufficient statistics to compute a revised es
timate of the parameters. 
The calculation cycles from one step to the other, until the revised estimates do 

not differ appreciably from the estimate obtained in the previous iteration. 
When the observations X1 , X2 , . . .  , Xn are a random sample from a p-variate normal population, the prediction-estimation algorithm is based on the complete

data sufficient statistics [see ( 4-21)] 

and 
n 

n 
T1 = � Xj = nX j= l 

T2 = � XjXj = ( n  - l ) S  + nXX' j= l 
In this case, the algorithm proceeds as follows: We assume that the population mean 
and variance-JL and I, respectively-are unknown and must be estimated. 

Prediction step. For each vector xj with missing values, let x) 1 ) denote the 
missing components and x)2) denote those components which are available. Thus, 
' - [ ( 1 ) 1 (2) ' ] xj - xj , xj . 
Given estimates ji and I from the estimation step, use the mean of the condi

tional normal distribution of x( l ) , given x(2) , to estimate the missing values. That is, 1 

1 If all the components x1 are missing, set x1 = ii and x1x� = I + ii ii ' .  
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,..___ ( 1 ) - E(X(l )  I (2 ) . ,..___ � ) - ,..___ ( 1 ) + � �-1 ( (2 ) - ,..___ (2) ) xj - j xj , JL , � - JL �1 2�22 Xj IL 
estimates the contribution of x} 1 ) to T1 . 

and 

Next, the predicted contribution of x} 1 ) to T2 is 
( 1 ) ( l ) 1 _ E(X(l )x( l ) 1  1 (2 ) . ,..___ � ) _ � _ � �-1 � + ,..___ ( 1 ),..___ ( 1 ) 1 Xj Xj - j j Xj , JL ,  � - �1 1 �1 2�22�2 1 Xj Xj 

(5-38) 

(5-39) 

The contributions in (5-38) and (5-39) are summed over all xLwith �ssing components. The results are combined with the sample data to yield T1 and T2 . 

Estimation step. Compute the revised maximum likelihood estimates (see 
Result 4.11) : 

Tl IL = - , 
n 

� 1 T,..___ ,..___ ,..___ � � = - 2 - IL IL  
n 

(5-40) 

We illustrate the computational aspects of the prediction-estimation algorithm 
in Example 5.13 . 

Example 5 . 1 3  (I l l u strating the EM algorithm) 

Estimate the normal population mean IL and covariance I using the incom
plete data set 

X =  7 
5 

0 3 
2 6 
1 2 
5 

Here n = 4, p = 3, and parts of observation vectors x1 and x4 are missing. 
We obtain the initial sample averages 

,..___ 7 + 5 I-Ll = 2 = 6, 'ii2 = 0 + � + 1 = 1 , ,..___ 3 + 6 + 2 + 5 JL3 = = 4 4 
from the available observations. Substituting these averages for any missing 
values, so that x1 1  = 6, for example, we can obtain initial covariance estimates. 
We shall construct these estimates using the divisor n because the algorithm 
eventually produces the maximum likelihood estimate I. Thus, 

lTl l  = 
( 6 - 6 )2 + (7 - 6 )2 + (5 - 6 )2 + (6 - 6 )2 1 

4 2 
5 lT3 3 = -2 
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lT1 2 = (6 - 6 ) (0 - 1 ) + (7 - 6) (2 - 1 ) + ( 5 - 6) ( 1 - 1 ) + ( 6 - 6 ) ( 1 - 1 ) 
4 

1 
4 
3 lT23 = 4 '  (T1 3  = 1 
The prediction step consists of using the initial estimates ii and I to pre

dict the contributions of the missing values to the sufficient statistics T1 and T2 . 
[See (5-38) and (5-39) . ] 

The first component of x1 is missing, so we partition ii and I as 

and predict 
x1 1 = /i1 + I12Izi [ :� : = �:] = 6 + [L 1 ] [! n-1 [ � = ! ] = 5.73 
� = (71 1  - I1 2Izii2 1 + xr 1 = � - [L 1 ]  [! n-

1 D J + (5 .73? = 32.99 
xl l [x1 2 ' x1 3 ]  = xl l  [x1 2 '  x1 3 ]  = 5.73 [0, 3] = [0, 17.18 ] 

For the two missing components of x4 , we partition ii and I as 

ii = [��J = [-�-��], - -,.:_:--- J.L ( ) J.L3 
and predict 

[ ::J = E ([ �:J x43 = 5; /L ,  I) = [�J + I1 2I2Hx43 - /L3 ) 

= [�] + DJ m-1 ( 5 - 4 ) = [� ::] 
for the contribution to T1 . Also, from (5-39), 

1 .3 ] 
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and 

are the contributions to T2 . Thus, the predicted complete-data sufficient statistics are 
� [X1 1 + x2 1 + x3 1 + �4 1 ] _ 

[ 5 .73 + 7 + 5 + 6.4] 
_ 

[24. 13 ] 
T1 = x1 2 + x22 + x3 2 + x42 - 0 + 2 + 1 + 1 . 3  - 4.30 

x1 3 + x23 + x33 + x4 3 3 + 6 + 2 + 5 16 .00 

XI 1 + x� 1 + x� 1 + x� 1 
T2 = � + X2 1X22 + X3 1X3 2 + � XI2 + x�2 + x�2 + x�2 ------ ------ ----- 2 2 2 2 x1 1X1 3 + X2 1X23 + X3 1X3 3 + X4 1X43 X1 2X1 3 + X22X23 + X3 2X3 3 + X42X43 X1 3 + X2 3 + X3 3 + X43 [ 32.99 + 72 + 52 + 41 .06 

= 0 + 7 (2) + 5 ( 1 ) + 8.27 
17. 18 + 7 ( 6 ) + 5 (2 ) + 32 

02 + 22 + 12 + 1 .97 
0 ( 3 )  + 2( 6 ) + 1 ( 2) + 6.5 [ 148.05 27.27 101 . 18] 

= 27.27 6.97 20.50 
101 . 18 20.50 74.00 

This completes one prediction step. 
The next estimation step, using (5-40) , provides the revised estimates2 

/1 = � i\ = � 4.30 = 1 .08 
[24.13 ] [ 6.03 ] 

� 1 T""' ""' ""' ' � = - 2 - IL IL  
n 

-
1 [ 148.05 27.27 
- 4 27.27 6.97 

101 . 18  20.50 [ .61 .33 1 . 17] 
= .33 .59 .83 

1 . 17 .83 2.50 

16 .00 4.00 

1�� :!�] - [ �:�� ] [ 6 .03 1 .08 4.00] 
74.00 4.00 

Note that l:T1 1 = .61 and l:T22 = .59 are larger than the corresponding ini
tial estimates obtained by replacing the missing observations on the first and 
second variables by the sample means of the remaining values. The third 
2The final entries in I are exact to two decimal places. 
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variance estimate l:T3 3 remains unchanged, because it is not affected by the miss
ing components. 

The iteration between the prediction and estimation steps continues until 
the elements of ii and I remain essentially unchanged. Calculations of this sort are easily handled with a computer. II 

Once final estimates jL and i are obtained and relatively few missing compo
nents occur in X, it seems reasonable to treat 

all JL such that n ({L  - IL ) ' I-1 ( [L - IL) < x�(a) (5-41 )  
as an approximate 100 ( 1 - a)% confidence ellipsoid . The simultaneous confidence 
statements 

A 
would then follow as in Section 5 .5, but with x replaced by jL and S re

placed by I. 

Caution. The prediction-estimation algorithm we discussed is developed on 
the basis that component observations are missing at random. If missing values are 
related to the response levels, then handling the missing values as suggested may in
troduce serious biases into the estimation procedures. Typically, missing values are 
related to the responses being measured. Consequently, we must be dubious of any 
computational scheme that fills in values as if they were lost at random. When more 
than a few values are missing, it is imperative that the investigator search for the sys
tematic causes that created them. 

5 .8 D I FFICU LTI ES DUE TO TI ME  DEPENDENCE 
IN MULTIVARIATE OBSERVATIONS 

For the methods described in this chapter, we have assumed that the multivariate 
observations X1 , X2 , . . .  , Xn constitute a random sample; that is, they are independent of one another. If the observations are collected over time, this assumption may 
not be valid. The presence of even a moderate amount of time dependence among 
the observations can cause serious difficulties for tests, confidence regions, and si
multaneous confidence intervals, which are all constructed assuming that indepen
dence holds. 

We will illustrate the nature of the difficulty when the time dependence can be 
represented as a multivariate first order autoregressive [AR(1)] model. Let the p X 1 
random vector Xt follow the multivariate AR(1) model 

(5-42) 
where the et are independent and identically distributed with E [ et J = 0 and 
Cov ( et ) = Ie and all of the eigenvalues of the coefficient matrix <I> are between - 1  
and 1 . Under this model Cov (Xt ,  Xt-j ) = <l>jix where 

00 

Ix = 2: <l>jiE <I> 1 j 
j=O 
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The AR(l) model (5-42) relates the observation at time t, to the observation at time 
t - 1 , through the coefficient matrix <1> .  Further, the autoregressive model says the 
observations are independent, under multivariate normality, if all the entries in the 
coefficient matrix <I> are 0. The name autoregressive model comes from the fact that 
(5-42) looks like a multivariate version of a regression with Xt as the dependent vari
able and the previous value Xt- l as the independent variable. As shown in Johnson and Langeland [8] , 

where the arrow indicates convergence in probability, and 

(5-43) 

Moreover, for large n, Vn (X - IL) is approximately normal with mean 0 and covari
ance matrix given by (5-43) . 

To make the calculations easy, suppose the underlying process has <I> = c/JI where 
I 4> I < 1 . Now consider the large sample nominal 95% confidence ellipsoid for JL. 

{ all JL such that n (X - IL ) 'S-1 (X - IL )  < x� ( .05 ) } 
This ellipsoid has large sample coverage probability .95 if the observations are inde
pendent. If the observations are related by our autoregressive model, however, this 
ellipsoid has coverage probability 

Table 5.10 shows how the coverage probability is related to the coefficient 4> and the number of variables p. 

According to Table 5.10, the coverage probability can drop very low, to .632, 
even for the bivariate case. 

The independence assumption is crucial, and the results based on this assump
tion can be very misleading if the observations are, in fact, dependent. 

TABLE 5. 1 0  COVERAG E PROBAB I LITY O F  TH E NOM INAL 95% 
CONF ID ENCE ELLI PSO ID 

cP - .25 0 .25 .5 
1 .989 .950 .871 .742 
2 .993 .950 .834 .632 

p 5 .998 .950 .751 .405 
10 .999 .950 .641 .193 
15 1.000 .950 .548 .090 
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We begin this supplementary section by establishing the general result concerning 
the projection (shadow) of an ellipsoid onto a line. 

Result SA.l. Let the constant c > 0 and positive definite p X p matrix A de
termine the ellipsoid { z: z' A-1z < c2} . For a given vector u # 0, and z belonging to 
the ellipsoid, the (Projection (shadow) of) 

= c WAn u {z '  A-1z < c2} on u u'u 
which extends from 0 along u with length cV'u' Au/u' u. When u is a unit vector, the 
shadow extends cWAu units, so I z ' u  I < c�. The shadow also extends 
c� units in the -u direction. 

Proof. By Definition 2A. 12, the proj ection of any z on u is given by 
( z 'u) uju' u. Its squared length is (z' u) 2/u' u. We want to maximize this shadow over 
all z with z' A-1z < c2 . The extended Cauchy-Schwarz inequality in (2-49) states that 
(b ' d ) 2 < (b ' Bd) (d ' B-1d) , with equality when b = kB-1d. Setting b = z, d = u, 
and B = A-\ we obtain 
(u 'u ) (length of projection)2 = (z ' u)2 < ( z '  A-1z) (u' Au) 

The choice z = cAn/� yields equalities and thus gives the maximum shadow, 
besides belonging to the boundary of the ellipsoid . That is, z '  A-1z = c2u ' Au/u' Au 
= c2 for this z that provides the longest shadow. Consequently, the projection of the 
ellipsoid on u is c� uju'u, and its length is cV'u' Auju' u . With the unit vec
tor e0 = uj� , the projection extends 

V c2e ' Ae = 
c � units along u u u "' ;-;-v u' u 

The projection of the ellipsoid also extends the same length in the direction -u. II 
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Result 5A.2. Suppose that the ellipsoid { z: z' A-1z < c2} is given and that 
U = [ u1 l u2] is arbitrary but of rank two. Then 

or 

{ z in the ellipsoid } . 1 . h 
{ for all U, U'  z is in the ellipsoid } 

A-1 2 1mp 1es t at -1 based on and c based on (U'  AU) and c2 

z ' A-1z < c2 implies that (U' z ) ' (U' AU)-1 (U' z ) < c2 for all U 

Proof. We first establish a basic inequality. Set P = A112U(U' Au)-1U' A112, 
where A =  A112A112 . Note that P = P '  and P2 = P, so ( I - P)P'  = P - P2 = 0. 
Next, using A-1 = A-112A-112, we write z '  A-1z = (A-112z ) ' (A-112z )  and A-112z 
= PA-112z + ( I - P)A-112z. Then 

z '  A-1z = (A-112z ) ' (A-112z ) 

= (PA-112z + ( I  - P)A-112z ) ' (PA-112z + ( I - P)A-112z )  

= (PA-112z ) ' (PA-112z )  + ( (I - P)A-112z ) ' ( (I - P)A-112z) 

> z '  A-112P 'PA-112z = z '  A-112PA-112z = z ' U(U'  AU)-1U' z (SA-l) 

Since z '  A-1z < c2 and U was arbitrary, the result follows. • 

Our next result establishes the two-dimensional confidence ellipse as a projec
tion of the p-dimensional ellipsoid. (See Figure 5 .13 . )  

Projection on a plane is  simplest when the two vectors u1 and u2 determining the 
plane are first converted to perpendicular vectors of unit length. (See Result 2A.3 .) 

Result 5A.3. Given the ellipsoid {z :  z '  A-1z < c2} and two perpendicular unit 
vectors u1 and u2 , the projection (or shadow) of { z '  A-1z < c2} on the u1 , u2 plane results 
in the two-dimensional ellipse { (U ' z) ' (U' AU)-1 (U 'z ) < c2 } , where U = [u1 l u2 ] .  

Proof. By Result 2A.3 ,  the projection of a vector z on the u1 , u2 plane is 

(u1 z ) u1 + (u2z) u2 = [u1 l u2 ] [u!z] = UU' z  
u2z 

3 

�--� 2 
UU'z 

Figure 5 .1 3 The shadow of the 
e l l i psoid z ' A-1 z :::;; c2 on  the u 1 , u2 
p lane is an  e l l i pse. 
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EXERCISES  

The proj ection of  the ellipsoid {z: z ' A-1z < c2} consists of  all UU' z  With 
z' A-1z < c2• Consider the two coordinates U 'z  of the projection U(U'z ) . Let z be
long to the set { z: z '  A-1z < c2} so that UU' z belongs to the shadow of the ellipsoid . 
By Result 5A.2, 

(U 'z ) ' (U' AU)-1 (U 'z )  < c2 

so the ellipse { (U 'z ) ' (U'  AU)-1 (U ' z ) < c2} contains the coefficient vectors for the 
shadow of the ellipsoid. 

Let Ua be a vector in the u1 , u2 plane whose coefficients a belong to the ellipse 
{a ' (U ' AU)-1a < c2} .  If we set z = AU(U' AU)-1a, it follows that 

U' z = U' AU(U' AU)-1a = a 

and 

z' A-1z = a' (U'  AU)-1U' AA-1AU(U' AU)-1a = a ' (U'  AU)-1a < c2 

Thus, U' z belongs to the coefficient vector ellipse, and z belongs to the ellipsoid 
z' A-1z < c2. Consequently, the ellipse contains only coefficient vectors from the pro
jection of { z: z '  A-1z < c2} onto the u1 , u2 plane. II 

Remark. Projecting the ellipsoid z ' A-1z < c2 first to the u1 , u2 plane and then 
to the line u1 is the same as projecting it directly to the line determined by u1 . In the 
context of confidence ellipsoids, the shadows of the two-dimensional ellipses give 
the single component intervals. 

Remark. Results 5A.2 and 5A.3 remain valid if U = [ u1 , . . . , uq ] consists of 
2 < q < p linearly independent columns. 

5.1. (a) Evaluate T2, for testing H0 : IL ' = [7,  1 1 ] ,  using the data 

2 12 
8 9 
6 9 

X = 

8 10 

(b) Specify the distribution of T2 for the situation in (a) . 
(c) Using (a) and (b) , test H0 at the a = .05 level. What conclusion do you 

reach? 

5.2. Using the data in Example 5 . 1 ,  verify that T2 remains unchanged if each ob
servation xj , j = 1 ,  2, 3 ,  is replaced by Cxj , where 

c = [ � -� J 



Note that the observations 

yield the data matrix [ ( 6  - 9 )  
( 6  + 9 )  

( 10  - 6)  

( 10 + 6)  
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(8 - 3 ) ] ' 

( 8  + 3 )  

5.3. (a) Use expression (5-15) to evaluate T2 for the data in Exercise 5 .1 .  
(b) Use the data in Exercise 5 . 1  to evaluate A in (5-13) .  Also, evaluate Wilks ' 

lambda. 

5.4. Use the sweat data in Table 5 . 1 .  (See Example 5.2.) 
(a) Determine the axes of the 90% confidence ellipsoid for IL· Determine the 

lengths of these axes. 
(b) Construct Q-Q plots for the observations on sweat rate, sodium content , 

and potassium content, respectively. Construct the three possible scatter 
plots for pairs of observations. Does the multivariate normal assumption 
seem justified in this case? Comment. 

5.5. The quantities x, S, and s-1 are given in Example 5 . 3  for the transformed 
microwave-radiation data. Conduct a test of the null hypothesis 
H0 : IL '  = [ .55,  .60 J at the a = .05 level of significance. Is your result consistent 
with the 95% confidence ellipse for IL pictured in Figure 5 . 1?  Explain. 

5.6. Verify the Bonferroni inequality in (5-28) for m = 3. 
Hint: A Venn diagram for the three events C1 , C2 , and C3 may help. 

5.7. Use the sweat data in Table 5 .1  (See Example 5.2.) Find simultaneous 95% T2 

confidence intervals for JL1 , JL2 , and JL3 using Result 5 .3 .  Construct the 95% 
Bonferroni intervals using (5-29) .  Compare the two sets of intervals. 

5.8. From (5-23) ,  we know that T2 is equal to the largest squared univariate t-value 
constructed from the linear combination a' xj with a = s-

1 ( x - JLo) · Using the 
results in Example 5.3 and the H0 in Exercise 5.5, evaluate a for the transformed 
microwave-radiation data. Verify that the t2-value computed with this a is equal 
to T2 in Exercise 5 .5 .  

5.9. Harry Roberts, a naturalist for the Alaska Fish and Game department, studies 
grizzly bears with the goal of maintaining a healthy population. Measurements 
on n = 61 bears provided the following summary statistics (see also Exer
cise 8.23) :  

Variable Weight Body Neck Girth Head Head 
(kg) length (em) (em) length width 

(em) (em) (em) 

Sample 
mean :X 95.52 164.38 55.69 93.39 17.98 31 . 13  
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Covariance matrix 

3266.46 1343 .97 731 .54 1175.50 162.68 238.37 

1343.97 721 .91 324.25 537.35 80.17 117.73 

731 .54 324.25 179 .28 281 .17 39.15 56.80 
S = 

1175.50 537 .35 281 .17 474.98 63.73 94.85 
162.68 80.17 39.15 63.73 9 .95 13 .88 

238.37 117 .73 56.80 94.85 13 .88 21 .26 

(a) Obtain the large sample 95% simultaneous confidence intervals for the six 
population mean body measurements. 

(b) Obtain the large sample 95% simultaneous confidence ellipse for mean 
weight and mean girth. 

(c) Obtain the 95% Bonferroni confidence intervals for the six means in Part a. 
(d) Refer to Part b. Construct the 95% Bonferroni confidence rectangle for the 

mean weight and mean girth using m = 6. Compare this rectangle with the 
confidence ellipse in Part b. 

(e) Obtain the 95% Bonferroni confidence interval for 

mean head width - mean head length 

using m = 6 + 1 = 7 to allow for this statement as well as statements about 
each individual mean. 

5.10. Refer to the bear growth data in Example 1 . 10 (see Table 1 .4) . Restrict your 
attention to the measurements of length. 
(a) Obtain the 95% T2 simultaneous confidence intervals for the four popula

tion means for length. 
(b) Refer to Part a. Obtain the 95% T2 simultaneous confidence intervals for 

the three successive yearly increases in mean length. 
(c) Obtain the 95% T2 confidence ellipse for the mean increase in length from 

2 to 3 years and the mean increase in length from 4 to 5 years. 
(d) Refer to Parts a and b. Construct the 95% Bonferroni confidence intervals 

for the set consisting of four mean lengths and three successive yearly in
creases in mean length. 

(e) Refer to Parts c and d. Compare the 95% Bonferroni confidence rectangle 
for the mean increase in length from 2 to 3 years and the mean increase in 
length from 4 to 5 years with the confidence ellipse produced by the 
T2 -procedure. 

5.11. A physical anthropologist performed a mineral analysis of nine ancient Peru
vian hairs. The results for the chromium ( x1 ) and strontium ( x2) levels, in parts 
per million (ppm) , were as follows: 

x1(Cr) .48 40.53 2 .19 .55 .74 .66 .93 .37 .22 

x2(Cr) 12.57 73.68 1 1 .13 20 .03 20.29 .78 4.64 .43 1 .08 

Source: Benfer and others, "Mineral Analysis of Ancient Peruvian Hair," 
American Journal of Physical Anthropology, 48, no. 3 (1978), 277-282. 
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It is known that low levels (less than or equal to .100 ppm) of chromium sug
gest the presence of diabetes. while strontium is an indication of animal pro
tein intake. 
(a) Construct and plot a 90% joint confidence ellipse for the population mean 

vector IL '  == [,u1 , ,u2 ] ,  assuming that these nine Peruvian hairs represent a 
random sample from individuals belonging to a particular ancient Peruvian 
culture. 

(b) Obtain the individual simultaneous 90% confidence intervals for ,u1 and ,u2 
by "projecting" the ellipse constructed in Part a on each coordinate axis. 
(Alternatively, we could use Result 5 .3 . ) Does it appear as if this Peruvian 
culture has a mean strontium level of 10? That is, are any of the points (,u1 
arbitrary, 10) in the confidence regions? Is [ .30, 10] ' a plausible value for 
IL?  Discuss. 

(c) Do these data appear to be bivariate normal? Discuss their status with ref
erence to Q-Q plots and a scatter diagram. If the data are not bivariate 
normal, what implications does this have for the results in Parts a and b? 

(d) Repeat the analysis with the obvious "outlying" observation removed. Do 
the inferences change? Comment. 

5.12. Given the data 

X == 

3 
4 

5 

6 
4 
8 

0 

3 
3 

with missing components, use the prediction-estimation algorithm of Section 5.7 
to estimate IL and I. Determine the initial estimates, and iterate to find the first 
revised estimates. 

5.13. Determine the approximate distribution of -n ln ( l  I 1 / 1 I0 I )  for the sweat data 
in Table 5 . 1 .  (See Result 5 .2 . ) 

5.14. Create a table similar to Table 5 .4 using the entries (length of one-at-a-time 
t-interval)/(length of Bonferroni t-interval) . 

Exercises 5.15, 5. 16, and 5.1 7  refer to the following information: 

Frequently, some or all of the population characteristics of interest are in the 
form of attributes. Each individual in the population may then be described in 
terms of the attributes it possesses. For convenience, attributes are usually nu
merically coded with respect to their presence or absence. If we let the variable X pertain to a specific attribute, then we can distinguish between the presence 
or absence of this attribute by defining 

_ { 1 if attribute present X - 0 if attribute absent 

In this way, we can assign numerical values to qualitative characteristics. 
When attributes are numerically coded as 0-1 variables, a random sam

ple from the population of interest results in statistics that consist of the counts 
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of the number of sample items that have each distinct set of characteristics. If 
the sample counts are large, methods for producing simultaneous confidence 
statements can be easily adapted to situations involving proportions. 

We consider the situation where an individual with a particular combi
nation of attributes can be classified into one of q + 1 mutually exclusive and 
exhaustive categories. The corresponding probabilities are denoted by 
PI , p2 , . . .  , Pq , Pq+ I · Since the categories include all possibilities, we take Pq+ l  
= 1 - (PI + p2 + · · · + Pq ) · An individual from category k will be assigned 
the ( ( q  + 1 ) X 1 ) vector value [0 , . . .  , 0, 1 ,  0, . . . , O J ' with 1 in the kth position. 

The probability distribution for an observation from the population of 
individuals in q + 1 mutually exclusive and exhaustive categories is known as 
the multinomial distribution. It has the following structure: 

Category 

Outcome (value) 

Probability 
(proportion) 

1 
1 
0 
0 

0 

PI 

2 
0 
1 
0 

0 

k 

0 

0 
1 

q 
0 

q + 1 
0 

0 0 
0 0 

0 0 

0 
1 
0 

0 
1 

q 
Pq Pq+ I  = 1 - � Pi i= I  

Let Xj , j = 1 ,  2, . . .  , n ,  be a random sample of size n from the multinomial 
distribution. The kth component, xj k '  of xj is 1 if the observation (individual) 
is from category k and is 0 otherwise. 

The random sample XI , X2 , • • •  , Xn can be converted to a sample pro
portion vector, which, given the nature of the preceding observations, is a sam
ple mean vector. Thus, 

" PI 
" p =  

" Pq+ I 
and 

1 n 
= - � Xj with E(p) = p = 

n j= I  

lTI , q+ I lT2, q+ I 

PI 
P2 

Pq+ I 

lTI, q + I 
lT2, q+ I 

lT q+ I , q + I 
For large n, the approximate sampling distribution of p is provided by the cen
tral limit theorem. We have 
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Vn (p - p) is approximately N(O, I ) 

where the elements of I are a-kk = Pk ( 1  - Pk)  and a-i k = -PiPk .  The normal 
approximation remains valid when a-kk is estimated by ;;.kk = Pk ( 1  - Pk )  and 
a-i k is estimated by ;;.ik = -pipk ,  i =I= k. 

Since each individual must belong to exactly one category, Xq+l, j = 
1 - (X1j  + X2 j + · · · + Xq j ) ,  so Pq+ l = 1 - (PI + p2 + · · · + Pq ) ,  and as a 
result , :i has rank q .  The usual inverse of :i does not exist, but it is still 
possible to develop simultaneous 100 ( 1  - a)% confidence intervals for all 
linear combinations a' p. 

Result. Let X1 , X2 , . . . , Xn be a random sample from a q + 1 category 
multinomial distribution with P[Xjk = 1 ]  = pk , k = 1 , 2, . . .  , q  + 1 ,  
j = 1 ,  2 ,  . . . , n .  Approximate simultaneous 100 ( 1  - a)% confidence regions 
for all linear combinations a 'p = a 1p1 + a2p2 + · · · + aq+ IPq+ l are given by the 
observed values of 

r;:Ia a' p ± � 'J -----;;-
n " 

provided that n - q is large. Here p = ( 1/n ) � Xj , and I = {(fik}  is a 
j = l 

( q  + 1 )  X ( q  + 1 )  matrix with ;;.kk = Pk ( 1  - Pk)  and ;;.ik = -pipk ,  i # k. 
Also, x� (a )  is the upper ( 100a) th percentile of the chi-square distribution 
with q d.f. • 

In this result , the requirement that n - q is large is interpreted to mean 
npk is about 20 or more for each category. 

We have only touched on the possibilities for the analysis of categorical 
data. Complete discussions of categorical data analysis are available in [1] 
and [4] . 

5.15. Let Xj i and Xj k be the ith and kth components, respectively, of Xj . 
(a) Show that JLi = E ( Xji ) = Pi and a-ii = Var(Xji ) = Pi ( 1  - Pi ) ,  

i = 1 ,  2, 0 0  0 ' p . 
(b) Show that a-i k = Cov(Xji ' Xjk )  = -PiPk ,  i # k. Why must this covariance 

necessarily be negative? 

5.16. As part of a larger marketing research project, a consultant for the Bank of 
Shorewood wants to know the proportion of savers that uses the bank's facili
ties as their primary vehicle for saving. The consultant would also like to know 
the proportions of savers who use the three major competitors: Bank B, Bank 
C, and Bank D. Each individual contacted in a survey responded to the fol
lowing question: 

Which bank is your primary savings bank? 

Response: Bank of Another 
Shorewood 

Bank B Bank C Bank D 
Bank 

No 
Savings 
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A sample of n = 355 people with savings accounts produced the follow
ing counts when asked to indicate their primary savings banks (the people with 
no savings will be ignored in the comparison of savers, so there are five 
categories) : 

Bank (category) Bank of Shorewood Bank B Bank e Bank D Another bank 

Observed Total 
number 105 119 56 25 50 

n = 355 

Population PI P2 P3 P4 Ps = 1 -
proportion (PI + P2 + P3 + P4 ) 

Observed sample 
proportion A 105 

PI = 
355 

= .30 P2 = .33 P3 = . 16  P4 = .o7 p5 = . 14 

Let the population proportions be 

PI = proportion of savers at Bank of Shorewood 

p2 = proportion of savers at Bank B 

p3 = proportion of savers at Bank C 

p4 = proportion of savers at Bank D 

1 - (PI + P2 + p3 + p4) = proportion of savers at other banks 

(a) Construct simultaneous 95% confidence intervals for PI ,  p2 , • • •  , p5 • 
(b) Construct a simultaneous 95% confidence interval that allows a comparison 

of the Bank of Shorewood with its maj or competitor, Bank B. Interpret 
this interval. 

5.17. In order to assess the prevalence of a drug problem among high school stu
dents in a particular city, a random sample of 200 students from the city 's five 
high schools were surveyed. One of the survey questions and the correspond
ing responses are as follows: 

What is your typical weekly marijuana usage? 

Category 

None Moderate Heavy 
(1-3 joints) ( 4 or more joints) 

Number of 
responses 117 62 21 
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Construct 95% simultaneous confidence intervals for the three proportions 
PI , P2 , and P3 = 1 - (PI + P2 ) · 

The following exercises may require a computer. 

5.18. Use the college test data in Table 5.2. (See Example 5 .5 . )  
(a) Test the null hypothesis H0 : IL ' = [ 500, 50, 30] versus HI : IL ' =F [ 500, 50,  30 J 

at the a = .05 level of significance. Suppose [ 500, 50, 30 J '  represent average 
scores for thousands of college students over the last 10 years. Is there rea
son to believe that the group of students represented by the scores in Table 
5.2 is scoring differently? Explain. 

(b) Determine the lengths and directions for the axes of the 95% confidence el
lipsoid for JL .  

(c) Construct Q-Q plots from the marginal distributions of social science and 
history, verbal, and science scores. Also, construct the three possible seat
ter diagrams from the pairs of observations on different variables. Do these 
data appear to be normally distributed? Discuss. 

5.19. Measurements of xi = stiffness and x2 = bending strength for a sample of 
n = 30 pieces of a particular grade of lumber are given in Table 5 . 1 1 .  The units 
are pounds/( inches )2• Using the data in the table, 

TABLE 5 . 1 1  LUMBER  DATA 

xi x2 xi x2 
(Stiffness: (Stiffness: 

modulus of elasticity) (Bending strength) modulus of elasticity) (Bending strength) 

1232 4175 1712 7749 
1115  6652 1932 6818 
2205 7612 1820 9307 
1897 10,914 1900 6457 
1932 10,850 2426 10,102 
1612 7627 1558 7414 

1598 6954 1470 7556 
1804 8365 1858 7833 

1752 9469 1587 8309 

2067 6410 2208 9559 

2365 10,327 1487 6255 

1646 7320 2206 10,723 

1579 8196 2332 5430 

1880 9709 2540 12,090 

1773 10,370 2322 10,072 

Source: Data courtesy of U.S. Forest Products Laboratory. 
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(a) Construct and sketch a 95% confidence ellipse for the pair [JL1 , JL2 ] ' , where 
JL1 = E(X1 ) and JL2 = E(X2) .  

(b) Suppose JL1 o = 2000 and JL2o = 10,000 represent "typical" values for stiff
ness and bending strength, respectively. Given the result in (a), are the data 
in Table 5 .11  consistent with these values? Explain. 

(c) Is the bivariate normal distribution a viable population model? Explain 
with reference to Q-Q plots and a scatter diagram. 

5.20. A wildlife ecologist measured x1 = tail length (in millimeters) and x2 = wing 
length (in millimeters) for a sample of n = 45 female hook-billed kites. These 
data are displayed in Table 5.12. Using the data in the table, 

TABLE 5. 1 2  B I RD  DATA 

xl x2 xl x2 xl x2 
(Tail (Wing (Tail (Wing (Tail (Wing 

length) length) length) length) length) length) 

191 284 186 266 173 271 
197 285 197 285 194 280 

208 288 201 295 198 300 
180 273 190 282 180 272 

180 275 209 305 190 292 
188 280 187 285 191 286 
210 283 207 297 196 285 
196 288 178 268 207 286 
191 271 202 271 209 303 
179 257 205 285 179 261 
208 289 190 280 186 262 
202 285 189 277 174 245 
200 272 21 1 310 181 250 
192 282 216 305 189 262 
199 280 189 274 188 258 

Source: Data courtesy of S. Temple. 

(a) Find and sketch the 95% confidence ellipse for the population means f.LI 
and JL2 . Suppose it is known that JL1 = 190 mm and JL2 = 275 mm for male 
hook-billed kites. Are these plausible values for the mean tail length and 
mean wing length for the female birds? Explain. 

(b) Construct the simultaneous 95% T2-intervals for JLI and JL2 and the 95% 
Bonferroni intervals for JL1 and JL2 • Compare the two sets of intervals. What 
advantage, if any, do the T2-intervals have over the Bonferroni intervals? 

(c) Is the bivariate normal distribution a viable population model? Explain 

with reference to Q-Q plots and a scatter diagram. 
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5.21. Using the data on bone mineral content in Table 1 . 8 ,  construct the 95% 
Bonferroni intervals for the individual means. Also, find the 95% simultaneous 
T2-intervals. Compare the two sets of intervals. 

5.22. A portion of the data contained in Table 6 .10 in Chapter 6 is reproduced in the 
following table. 

M I LK TRANSPORTATION-COST DATA 

Fuel ( x 1 ) Repair (x2 ) Capital ( x3 ) 
16 .44 12.43 11 .23 
7 .19  2.70 3 .92 
9 .92 1 .35 9.75 
4.24 5 .78 7.78 

1 1 .20 5 .05 10.67 
14.25 5.78 9 .88 
13 .50 10.98 10.60 
13 .32 14.27 9 .45 
29 . 1 1  15 .09 3 .28 
12.68 7.61 10.23 
7 .51 5 .80 8 .13 
9 .90 3 .63 9 . 13  

10.25 5 .07 10.17 
1 1 . 1 1  6 .15 7 .61 
12.17 14.26 14.39 
10.24 2.59 6.09 
10 .18 6 .05 12.14 
8 .88 2.70 12.23 

12.34 7.73 1 1 .68 
8 .51 14.02 12.01 

26 . 16  17 .44 16 .89 
12.95 8.24 7 .18 
16.93 13 .37 17.59 
14 .70 10 .78 14.58 
10 .32 5 . 16  17 .00 

These data represent various costs associated with transporting milk from farms 
to dairy plants for gasoline trucks. Only the first 25 multivariate observations 
for gasoline trucks are given. Observations 9 and 21 have been identified as out
liers from the full data set of 36 observations. (See [2] . )  
(a) Construct Q-Q plots of the marginal distributions of fuel, repair, and capi

tal costs. Also, construct the three possible scatter diagrams from the pairs 
of observations on different variables. Are the outliers evident? Repeat 
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CHAPTER 

6 
Comparisons of Several 

Multivariate Means 

6 . 1  INTRODUCTION 

The ideas developed in Chapter 5 can be extended to handle problems involving the 
comparison of several mean vectors. The theory is a little more complicated and rests 
on an assumption of multivariate normal distributions or large sample sizes. Similarly, 
the notation becomes a bit cumbersome. To circumvent these problems, we shall 
often review univariate procedures for comparing several means and then general
ize to the corresponding multivariate cases by analogy. The numerical examples we 
present will help cement the concepts. 

Because comparisons of means frequently (and should) emanate from designed 
experiments, we take the opportunity to discuss some of the tenets of good experi
mental practice. A repeated measures design, useful in behavioral studies, is explic
itly considered, along with modifications required to analyze growth curves. 

We begin by considering pairs of mean vectors. In later sections, we discuss 
several comparisons among mean vectors arranged according to treatment levels. 
The corresponding test statistics depend upon a partitioning of the total variation 
into pieces of variation attributable to the treatment sources and error. This parti
tioning is known as the multivariate analysis of variance (MANOVA). 

6.2 PAIRED COMPARISONS AN D A REPEATED M EASURES DES IGN 

272 

Pai red Comparisons 

Measurements are often recorded under different sets of experimental conditions to 
see whether the responses differ significantly over these sets. For example, the effi
cacy of a new drug or of a saturation advertising campaign may be determined by com
paring measurements before the "treatment" (drug or advertising) with those after  
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the treatment . In other situations, two or more treatments can be administered to 
the same or similar experimental units, and responses can be compared to assess the 
effects of the treatments. 

One rational approach to comparing two treatments, or the presence and ab
sence of a single treatment, is to assign both treatments to the same or identical units 
(individuals, stores, plots of land, and so forth) .  The paired responses may then be an
alyzed by computing their differences, thereby eliminating much of the influence of 
extraneous unit-to-unit variation. 

In the single response (univariate) case, let X1 1 denote the response to treatment 
1 (or the response before treatment) , and let X1 2 denote the response to treatment 2 
(or the response after treatment) for the jth trial. That is, ( X1 1 ,  X1 2 )  are measure
ments recorded on the jth unit or jth pair of like units. By design, the n differences 

v. == x. 1 - x. 2 1 1 1 ' j == 1 ,  2, . . .  , n 

should reflect only the differential effects of the treatments. 

(6-1) 

Given that the differences D1 in (6-1) represent independent observations from 
an N ( 8, o-�) distribution, the variable 

where 

D - 8 
t == ---

sd/
Vn 

- 1 n 1 n 
D = 

n � Di and s� = 
n _ 1 � ( Di - D )

2 

has a !-distribution with n - 1 d.f. Consequently, an a-level test of 

H0 : 8 == 0 (zero mean difference for treatments)  
versus 

H1 : 8 =I= 0 

(6-2) 

(6-3) 

may be conducted by comparing I t I with tn _ 1 ( a/2)-the upper 100( a/2)th percentile 
of a !-distribution with n - 1 d.f. A 100 ( 1  - a )%  confidence interval for the mean 
difference 8 == E(X1 1 - X12)  is provided by the statement 

- � - � d - tn- l ( a/2)  Vn < 8 < d + tn- l (a/2) Vn 
(For example, see [7] .) 

(6-4) 

Additional notation is required for the multivariate extension of the paired
comparison procedure. It is necessary to distinguish between p responses, two treat
ments, and n experimental units. We label the p responses within the jth unit as 

x1j 1  == variable 1 under treatment 1 
x1 j2 == variable 2 under treatment 1 

x1j p == variable p under treatment 1 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

x2j 1  == variable 1 under treatment 2 

x2j2 == variable 2 under treatment 2 

x2j p == variable p under treatment 2 
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and the p paired-difference random variables become 

Dj l = xlj l - x2j l 
Dj2 = xl j2 - x21 2 . . . . . . 

Djp = xljp - X2jp 
Let n; = [D1 1 , Dj2 , . . .  , Dj p ] , and assume, for j = 1 , 2, . . .  , n , that 

BP 

(6-5) 

(6-6) 

If, in addition, D1 , D2 , . . .  , Dn are independent Np( 8, I d) random vectors, inferences 
about the vector of mean differences 8 can be based upon a T2-statistic. 

Specifically, 

where 

T2 = n ( D  - 8 ) ' S�? ( D  - 8 )  

- 1 � 1 � - - ,  
D = - £.J Dj and Sd = £.J (Dj - D ) (Dj - D )  

n j= l  n - 1 j= l 

(6-7) 

(6-8) 

Result 6.1. Let the differences D1 , D2 , . . .  , Dn be a random sample from an 
Np( 8, Id) population. Then 

T2 = n ( D  - 8 ) ' S�? ( D  - 8 )  

is distributed as an [ ( n  - 1 )p/ (n - p )  ]Fp, n-p random variable, whatever the true o 
and Id · 

If n and n - p are both large, T2 is approximately distributed as a x� random 
variable, regardless of the form of the underlying population of differences. 

Proof. The exact distribution of T2 is a restatement of the summary in (5-6) ,  
with vectors of differences for the observation vectors. The approximate distribu
tion of T2 , for n and n - p large, follows from ( 4-28) . • 

The condition 8 = 0 is equivalent to "no average difference between the two 
treatments." For the ith variable, Bi > 0 implies that treatment 2 is larger, on aver
age, than treatment 1 .  In general, inferences about 8 can be made using Result 6 . 1 .  
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Example 6 . 1  (Checking for a mean difference with pai red observations) 

Municipal wastewater treatment plants are required by law to monitor their 
discharges into rivers and streams on a regular basis. Concern about the relia
bility of data from one of these self-monitoring programs led to a study in which 
samples of effluent were divided and sent to two laboratories for testing. One
half of each sample was sent to the Wisconsin State Laboratory of Hygiene, and 
one-half was sent to a private commercial laboratory routinely used in the mon
itoring program. Measurements of biochemical oxygen demand (BOD) and 
suspended solids (SS) were obtained, for n == 11  sample splits, from the two 
laboratories. The data are displayed in Table 6 .1 . 

TABLE 6 . 1  EFFLU ENT DATA 

Commercial lab State lab of hygiene 

Sample j Xl j l (BOD) x1 j 2 (SS) x2j 1 (BOD) X2j 2 (SS) 

1 6 27 25 15 
2 6 23 28 13 
3 18 64 36  22 
4 8 44 35 29 
5 11  30 15 31 
6 34 75 44 64 
7 28 26 42 30 
8 71 124 54 64 
9 43 54 34 56 

10 33 30 29 20 
1 1  20 14 39 21 

Source: Data courtesy of S. Weber. 
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Do the two laboratories ' chemical analyses agree? If differences exist, what i s  
their nature? 

The T2-statistic for testing H0 : B '  == [ 81 , 82] == [ 0, 0] is constructed fron1 
the differences of paired observations : 

dj 1 == X1 j 1 - X2j 1 -19 -22 -18 -27 -4 - 10 - 14 17 9 4 - 19 

Here 

and 

12 10 42 15 -1 1 1  -4 60 -2 10 - 7 

d 
== 
[�1] == 

[-9.36] 
d2 13 .27 ' - [ 199 .26 88.38] 

sd - 88.38 418.61 

T2 == 1 1 [  -9 .36 13 .27 ]  [ .0055 - .0012] [-9.36] 
== 13 .6 ' 

- .0012 .0026 13 .27 

Taking a ==  .05, we find that [p( n - 1 )/ (n - p ) ]Fp, n -p( .05 ) == [2 ( 10 )/9 ]F2, 9 ( . 05 ) 
== 9.47. Since T2 == 13 .6 > 9.47, we rej ect H0 and conclude that there is a 
nonzero mean difference between the measurements of the two laboratories. It 
appears, from inspection of the data, that the commercial lab tends to produce 
lower BOD measurements and higher SS measurements than the State Lab of 
Hygiene. The 95% simultaneous confidence intervals for the mean differences 
81 and 82 can be computed using (6-10). These intervals are 

- � ( n - 1 )p /sf: )199.26 
81 : d1 ± 

(n _ p) 
Fp, n -p( a. ) \j -;:  = -9.36 ± v'9.47 

1 l  
or ( -22.46 , 3 .74 )  

(4I8.6I 82 : 13 .27 ± v'9.47 'v' ------u- or ( -5.71 , 32.25 ) 

The 95% simultaneous confidence intervals include zero, yet the hypothesis 
H0 : B == 0 was rejected at the 5% level. What are we to conclude? 

The evidence points toward real differences. The point B == 0 falls outside 
the 95% confidence region for B (see Exercise 6 . 1 ) ,  and this result is consistent 
with the T2-test. The 95% simultaneous confidence coefficient applies to the 
entire set of intervals that could be constructed for all possible linear combina
tions of the form a 181 + a282 • The particular intervals corresponding to the 
choices ( a 1 == 1 , a2 == O) and ( a 1 == O, a2 == 1 ) contain zero. Other choices of a 1  
and a2 will produce simultaneous intervals that do not contain zero. (If the hy
pothesis H0 : B == 0 were not rejected, then all simultaneous intervals would in
clude zero.) 

The Bonferroni simultaneous intervals also cover zero. (See Exer
cise 6 .2 . )  
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Our analysis assumed a normal distribution for the Dj . In fact, the situa
tion is further complicated by the presence of one or, possibly, two outliers. 
(See Exercise 6 .3 . ) These data can be transformed to data more nearly normal, 
but with such a small sample, it is difficult to remove the effects of the outlier(s) . 
(See Exercise 6.4.) 

The numerical results of this example illustrate an unusual circumstance 
that can occur when making inferences. • 

The experimenter in Example 6 .1 actually divided a sample by first shaking it 
and then pouring it rapidly back and forth into two bottles for chemical analysis. This 
was prudent because a simple division of the sample into two pieces obtained by pour
ing the top half into one bottle and the remainder into another bottle might result in 
more suspended solids in the lower half due to setting. The two laboratories would then 
not be working with the same, or even like, experimental units, and the conclusions 
would not pertain to laboratory competence, measuring techniques, and so forth. 

Whenever an investigator can control the assignment of treatments to experi
mental units, an appropriate pairing of units and a randomized assignment of treat
ments can enhance the statistical analysis. Differences, if any, between supposedly 
identical units must be identified and most-alike units paired. Further, a random as
signment of treatment 1 to one unit and treatment 2 to the other unit will help elim
inate the systematic effects of uncontrolled sources of variation. Randomization can 
be implemented by flipping a coin to determine whether the first unit in a pair receives 
treatment 1 (heads) or treatment 2 (tails) . The remaining treatment is then assigned 
to the other unit. A separate independent randomization is conducted for each pair. 
One can conceive of the process as follows: 

Experimental Design for Paired Comparisons 

2 3 n 

{6 D D • • • D Like pairs of 
expetimental 

units D D • • • D 
t t t t 

Treatments Treatments Treatments Treatments 
1 and 2 1 and 2 1 and 2 • • •  1 and 2 

assigned assigned assigned assigned 
at random at random at random at random 

We conclude our discussion of paired comparisons by noting that d and Sd , and 
hence T2 , may be calculated from the full-sample quantities x and S . Here x is the 
2p X 1 vector of sample averages for the p variables on the two treatments given by 

(6-1 1) 

and S is the 2p X 2p matrix of sample variances and covariances arranged as [ S1 1 S 1 2 ] 
S = (pxp) (pxp ) 

S2 1 S22 (pXp) (pXp) 
(6-12) 
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The matrix S1 1  contains the sample variances and covariances for the p variables on 
treatment 1. Similarly, S22 contains the sample variances and covariances computed 
for the p variables on treatment 2. Finally, S1 2 == S2 1 are the matrices of sample co
variances computed from observations on pairs of treatment 1 and treatment 2 
variables. 

Defining the matrix 

c (p X2p) 

1 0 
0 1 

0 0 

0 - 1 0 
0 

1 

0 - 1 

0 

i 
0 

(p + 1 ) st column 

we can verify (see Exercise 6.9) that 

Thus, 

d ·  == Cx · 1 1 ' j == 1 , 2, . . . , n  
d == C x  and Sd == CSC' 

0 
0 

-1 

( 6-13 )  

(6-14) 

(6- 15) 

and it is not necessary first to calculate the differences d 1 , d2 , . . .  , dn . On the other 
hand, it is wise to calculate these differences in order to check normality and the as
sumption of a random sample. 

Each row c; of the matrix C in (6-13) is a contrast vector, because its elements 
sum to zero. Attention is usually centered on contrasts when comparing treatments. 
Each contrast is perpendicular to the vector 1 ' == [ 1 ,  1 ,  . . .  , 1 J since c; 1 == 0. The com
ponent 1 ' xj , representing the overall treatment sum, is ignored by the test statistic T2 
presented in this section. 

A Repeated Measures Des ign for Comparing Treatments 

Another generalization of the univariate paired t-statistic arises in situations where 
q treatments are compared with respect to a single response variable. Each subject 
or experimental unit receives each treatment once over successive periods of time. 
The jth observation is 

X - = 1 j == 1 ,  2, . . .  , n 

Xjq 
where Xji is the response to the ith treatment on the jth unit. The name repeated 
measures stems from the fact that all treatments are administered to each unit . 

For comparative purposes, we consider contrasts of the components of 
IL == E(Xj) ·  These could be 



or 

Sect ion 6 .2  Pa i red Compar isons and a Repeated Measu res Des ign  279 

1 J.L1 - J.L2 1 - 1 0 0 J.L1 l�l � �3 1 0 -1 0 J.L2 == C l �-t 

J.L1 - J.Lq 1 0 0 -1 J.Lq 

J.L2 - J.L1 - 1 1 0 0 0 I-Ll 
I-L3 - J.L2 0 -1 1 0 0 J.L2 == 

J.Lq - J.Lq- 1 0 0 0 -1 1 J.Lq 

== C2�-t 

Both C1 and C2 are called contrast matrices, because their q - 1 rows are linearly in
dependent and each is a contrast vector. The nature of the design eliminates much 
of the influence of unit-to-unit variation on treatment comparisons. Of course, the 
experimenter should randomize the order in which the treatments are presented to 
each subject. 

When the treatment means are equal, C1 �-t == C2�-t == 0.  In general, the hy
pothesis that there are no differences in treatments (equal treatment means) be
comes C�-t == 0 for any choice of the contrast matrix C. 

Consequently, based on the contrasts C xj in the observations, we have means 
C x and covariance matrix CSC ' , and we test C�-t == 0 using the T2-statistic 

T2 == n (C x) ' (CSC ' ) -1 Cx 

It can be shown that T2 does not depend on the particular choice of C. 1 

1 Any pair of contrast matrices C1 and C2 must be related by C1  = BC2 , with B nonsingular. 
This follows because each C has the largest possible number, q - 1 ,  of linearly independent rows, 
all perpendicular to the vector 1. Then (BC2 ) ' (BC2SC2B ' )- 1 (BC2 ) = C2B ' (B ' )- 1 ( C2SC2) - 1 B- 1BC2 = 
C2(C2SC2)-1 C2 , so T2 computed with C2 or C 1 = BC2 gives the same result. 
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A confidence region for contrasts CJL, with IL the mean of a normal population, 
is determined by the set of all CJL such that 

_ , , -1 _ ( n  - 1 ) ( q - 1 ) 
n (C x - Cp ) (CSC ) ( C x  - Cp ) < 

( n  _ q + l ) Fq- l , n- q+ 1 (a )  (6-17) 

where x and S are as defined in (6-16) .  Consequently, simultaneous 100 ( 1 - a )%  
confidence intervals for single contrasts c' IL for any contrast vectors of interest are 
given by (see Result 5A. 1)  

C' JL :  c ' x ±  
( n - 1 ) ( q - 1 ) �' Sc 

( 1 ) 
Fq- 1 n- q+ l (a)  -n - q +  ' n ( 6- 18) 

Example 6.2 (Testing for equal treatments i n  a repeated measures design) 

Improved anesthetics are often developed by first studying their effects on an
imals. In one study, 19 dogs were initially given the drug pentobarbital. Each 
dog was then administered carbon dioxide ( C02) at each of two pressure lev
els. Next, halothane (H) was added, and the administration of (C02) was re
peated. The response, milliseconds between heartbeats, was measured for the 
four treatment combinations: 

Present 

Halothane 

Absent 

Low High 

C02 pressure 

Table 6.2 contains the four measurements for each of the 19 dogs, where 

Treatment 1 = high C02 pressure without H 

Treatment 2 = low C02 pressure without H 

Treatment 3 = high C02 pressure with H 

Treatment 4 = low C02 pressure with H 

We shall analyze the anesthetizing effects of C02 pressure and halothane 
from this repeated-measures design. 

There are three treatment contrasts that might be of interest in the ex
periment . Let JL1 , JL2 , JL3 , and JL4 correspond to the mean responses for treat
ments 1 ,  2, 3, and 4, respectively. Then (Halothane contrast representing the ) 

(JL3 + JL4 ) - (JL1 + JL2 ) = difference between the presence and 
absence of halothane 

( + ) _ ( + ) = (C02 contrast representing the difference) 
i-Ll JL3 JL2 JL4 between high and low C02 pressure 
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TABLE 6.2 SLEEP I NG-DOG DATA 

Treatment 
Dog 1 2 3 4 

1 426 609 556 600 
2 253 236 392 395 
3 359 433 349 357 
4 432 431 522 600 
5 405 426 513 513 
6 324 438 507 539 
7 310 312 410 456 
8 326 326 350 504 
9 375 447 547 548 

10 286 286 403 422 
1 1  349 382 473 497 
12 429 410 488 547 
13 348 377 447 514 
14 412 473 472 446 
15 347 326 455 468 
16  434 458 637 524 
17 364 367 432 469 
18 420 395 508 531 
19 397 556 645 625 

Source: Data courtesy of Dr. J. Atlee. 

( Contrast representing the influence ) ( JL1 + JL4) - ( JL2 + JL3 ) = of halothane on C02 pressure differences 
(H -C02 pressure "interaction" ) 

With JL ' = [JL1 , JL2 , JL3 ,  JL4 ] ,  the contrast matrix C is 

c = [ - � =� � 
-

� ] 
1 - 1  - 1  1 

The data (see Table 6 .2) give 

368.21 2819 .29 

x =  
404.63 
479.26 
502.89 

3568.42 7963 .14 
and S = 

2943 .49 5303 .98 6851 .32 

It can be verified that [ 209 .31 ] e x = -60.05 ; 
- 12.79 

2295 .35 4065.44 4499.63 4878.99 [ 9432.32 1098.92 927 .62 ] CSC '  = 1098.92 5195.84 914.54 
927.62 914.54 7557.44 
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and 

T2 = n(Cx) ' (CSC ' )-
1
( Cx) = 19 ( 6 . 1 1 )  = 116 

With a = .05, 

(n - 1 ) ( q - 1 )  18 ( 3 )  18 ( 3 ) 
( n  _ q + 1 ) Fq-l , n - q+ l (a)  = 

16 F3 , 16 ( .05 ) = 
16 

( 3 .24) = 10.94 

From (6-16), T2 = 116 > 10.94, and we rej ect H0 : CJL = 0 (no treatment ef
fects) . To see which of the contrasts are responsible for the rej ection of H0 , we 
construct 95% simultaneous confidence intervals for these contrasts. Fron1 
(6-18) ,  the contrast 

c1 1L = (JL3 + JL4) - (JL1 + JL2) = halothane influence 

is estimated by the interval 

18 ( 3 )  � )9432.32 
( X3 + X4 ) - (.i1 + X2) ± 

16 F3, 16 ( .05 ) \j � = 209 .31 ± v'Tif.94 
19 

= 209 .31 ± 73 .70 

where c1 is the first row of C. Similarly, the remaining contrasts are esti
mated by 

C02 pressure influence = (JL1 + JL3 ) - (JL2 + JL4 ) :  

f5I95.84 - 60.05 ± v'ID.94 \/ �  = -60.05 ± 54.70 

H-C02 pressure "interaction" = (JLI + JL4) - (JL2 + JL3 ) :  

{1557M - 12.79 ± v'ID.94 \1 � = -12.79 ± 65 .97 

The first confidence interval implies that there is a halothane effect. The 
presence of halothane produces longer times between heartbeats. This occurs 
at both levels of C02 pressure, since the H-C02 pressure interaction contrast , 
(JL1 + JL4) - (JL2 - JL3 ) ,  is not significantly different from zero. (See the third 
confidence interval. )  The second confidence interval indicates that there is an 
effect due to C02 pressure: The lower C02 pressure produces longer times be
tween heartbeats. 

Some caution must be exercised in our interpretation of the results 
because the trials with halothane must follow those without. The apparent 
H-effect may be due to a time trend. (Ideally, the time order of all treatments 
should be determined at random.) • 

The test in (6-16) is appropriate when the covariance matrix, Cov (X)  = I , 

cannot be assumed to have any special structure. If it is reasonable to assume that I 
has a particular structure, tests designed with this structure in mind have higher power 
than the one in (6-16) .  (For I with the equal correlation structure (8-14), see a dis
cussion of the "randomized block" design in [10] or [16] . )  
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6.3 COMPARING M EAN VECTORS FRO M TWO POPU LATIONS 

A T2-statistic for testing the equality of  vector means from two multivariate popula
tions can be developed by analogy with the univariate procedure. (See [7] for a dis
cussion of the univariate case .)  This T2-statistic is appropriate for comparing 
responses from one set of experimental settings (population 1) with independent re
sponses from another set of experimental settings (population 2) . The comparison 
can be made without explicitly controlling for unit-to-unit variability, as in the paired
comparison case. 

If possible, the experimental units should be randomly assigned to the sets of 
experimental conditions. Randomization will, to some extent, mitigate the effect 
of unit-to-unit variability in a subsequent comparison of treatments. Although some 
precision is lost relative to paired comparisons, the inferences in the two-population 
case are, ordinarily, applicable to a more general collection of experimental units sim
ply because unit homogeneity is not required. 

Consider a random sample of size n1 from population 1 and a sample of size n2 
from population 2. The observations on p variables can be arranged as follows: 

Sample Summary statistics 

(Population 1 )  

(Population 2) 
X 2 1  , X 2 2 ' · · · ' X 2 n2 

In this notation, the first subscript-1 or 2-denotes the population. 
We want to make inferences about (mean vector of population 1) - (mean vec

tor of population 2) == ILl - IL2 • For instance, we shall want to answer the question, 
Is ILl == �L2 (or, equivalently, is ILl  - �L2 == 0)? Also, if p.. 1 - IL2 # 0, which compo
nent means are different? 

With a few tentative assumptions, we are able to provide answers to these 
questions. 

Assumptions Concern ing the Structure of the Data 

1. The sample X1 1 , X1 2 , . . .  , X1 n1 , is a random sample of size n1 from a p-variate 
population with mean vector ILl and covariance matrix I1 • 

2. The sample X2 1 , X22 , . . .  , X2n2 , is a random sample of size n2 from a p-variate 
population with mean vector p..2 and covariance matrix I2 • 

(6-19) 

We shall see later that, for large samples, this structure is sufficient for making 
inferences about the p X 1 vector ILl - IL2 • However, when the sample sizes n1 and 
n2 are small, more assumptions are needed. 
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Further Assumptions when n 1  and n2 Are Smal l 

1. Both populations are multivariate normal. 
2. Also, I1 = I2 (same covariance matrix) . (6-20) 

The second assumption, that I1 = I2 , is much stronger than its univariate counter
part. Here we are assuming that several pairs of variances and covariances are near
ly equal. 

n l  
When i1 = I2 = I, �  (x1 1 - x1 ) (x 1 1 - x1 ) ' is an estimate of (n1 - 1 )I and 

j= l 
n2 
� (x21 - x2) (x2 1 - x2) ' is an estimate of ( n2 - 1 )I. Consequently, we can pool the 
j = l 
information in both samples in order to estimate the common covariance I. 

We set 
n l  n2 
� (xl j - xl ) (xl j - xl ) '  + � (x2j - x2) (x2j - x2) '  
j= l j= l 

Spooled = --------------------nl + n2 - 2 
n - 1 n - 1 1 

sl + 2 
s2 

n1 + n2 - 2 n1 + n2 - 2 
nl  n2 

(6-21) 

Since � (x1 1 - x1 ) (x1 1 - x1 ) '  has n1 - 1 d.f. and � (x21 - x2) (x21 - x2 ) ' has 
j= l j= l 

n2 - 1 d.f. ,  the divisor ( n1 - 1 ) + ( n2 - 1 )  in ( 6-21) is obtained by combining the 
two component degrees of freedom. [See ( 4-24) . ] Additional support for the pool
ing procedure comes from consideration of the multivariate normal likelihood. (See 
Exercise 6 . 1 1 . )  

To test the hypothesis that ILl - IL2 = Do , a specified vector, we consider the 
squared statistical distance from x1 - x2 to D0 .  Now, 

E (X1 - X2) = E (X1 ) - E (X2) = 1L1 - 1L2 

Since the independence assumption in (6-19) implies that X1 and X2 are indepen
dent and thus Cov (X1 , X2) = 0 (see Result 4.5) , by (3-9) ,  it follows that 

- - - - 1 1 ( 1 1 ) 
Cov ( X1 - X2) = Cov (X1 ) + Cov ( X2) = - I + - I =  - + - I (6-22) 

nl n2 nl n2 

Because Spooled estimates I, we see that ( �1 
+ �J Spooled 

is an estimator of Cov (X1 - X2) .  
The likelihood ratio test of 

Ho : IL1 - IL2 = Do 
is based on the square of the statistical distance, T2 , and is given by (see [ 1 ] ) .  
Reject H0 if 

T2 = ( X1 - X2 - Do) ' [ ( �1 
+ �J Spooled J1 

( X1 - X2 - Do) > c2 (6-23) 
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where the critical distance c2 is determined from the distribution of the two-sample 
T2 -statistic. 

Result 6.2. If X1 1 ,  X1 2 , . . .  , X1 111 is a random sample of size n1 from Np( 11-1 , I ) and X2 1 , X22 , . . . , X2112 is an independent random sample of size n2 from Np(JL2 , I) , then 
2 - - - ' [ ( 1 1 ) J-l - -T - [Xl - X2 - (ILl - 1L2) ] n1 + n2 Spooled [X l - X2 - ( p, l - P2) ] 

is distributed as 

Consequently, [ - - ' [ ( 1 1 ) J-l - - 2] -P (Xl - X2 - ( p,l - IL2) ) n1 + n2 Spooled (Xl - X2 - ( p, l  - /L2) ) < c - 1 - a 

where (n1 + n2 - 2 )p 
c2 = ( 1 ) FP n + n -p - 1 (a ) nl + n2 - p - , 1 2 

Proof. We first note that 

(6-24) 

- - 1 1 1 1 1 1 X1 - X2 == -Xl l + -X12 + . . . + -Xln1 - -X2 1 - - X22 - · · · - -X2 nl nl nl n2 n2 n2 n2 
is distributed as 

by Result 4.8 , with c1 == c2 == . . · == C11 1 == 1/ n1 and C11 1 + l == C11 1 +2 == . .  · == Cn1 +n2 == 

- 1jn2 • According to (4-23) ,  

( n1 - 1 )S1 is distributed as Wn1 - 1 (I ) and ( n2 - 1 )S2 as Wn2- 1 (I ) 
By assumption, the X1/s and the X2/s are independent, so ( n1 - 1 )S1 and ( n2 - 1 )S2 are also independent. From ( 4-24) , ( n1 - 1 )S1 + ( n2 - 1 )S2 is then distributed as Wn1 +n2-2(I ) . Therefore, 

2 - ( 1 1 )-1/2 - - ' -1 ( 1 1 )-1/2 - -T - - + - ( X1 - X2 - ( ILl - 1L2) ) Spoolect - + - ( Xl - X2 - (P- 1 - 1L2) ) nl n2 nl n2 
== 
(multivariate normal) ' (Wishart random matrix)-l (multivariate normal) 
random vector d.f. random vector 

= Np(O, I) ' [:n�n��2�I� ll Np(O, I) 
which is the T2-distribution specified in (5-8), with n replaced by n1 + n2 - 1 . [See 
(5-5) for the relation to F.] • 
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We are primarily interested in confidence regions for ILl - IL2 • From (6-24 ) , 

we conclude that all ILl - IL2 within squared statistical distance c2 of x1 - x2 con
stitute the confidence region. This region is an ellipsoid centered at the observed 
difference x1 - x2 and whose axes are determined by the eigenvalues and eigen
vectors of spooled (or s�;oled ) .  

Example 6 .3  {Constructing a confidence reg ion for the difference 
of two mean vectors) 

Fifty bars of soap are manufactured in each of two ways. Two characteristics, 
X1 == lather and X2 == mildness, are measured. The summary statistics for bars 
produced by methods 1 and 2 are [8.3] 

x l == 
4.1 ' [ 10.2] 

x2 == 3 .9 ' 

s l = 
[ � � J 

Sz =
[� !] 

Obtain a 95% confidence region for IL1  - IL2 • 
We first note that S1 and S2 are approximately equal, so that it is reason

able to pool them. Hence, from (6-21 ) , 

Also, 

49 49 [2 
5
1] 

Spooled == 
98 

S 1 + 
98 

S2 == 
1 

[-1 .9] 
x l - x2 == .2 

so the confidence ellipse is centered at [ -1 .9, .2 J ' . The eigenvalues and eigen
vectors of Spooled are obtained from the equation 

2 - A 1 
0 = I Spooled - AI I = l 5 _ A 

= A 2 - 7 A + 9 

so A == (7 ± V49 - 36 )/2 . Consequently, A1 == 5.303 and A2 == 1 .697, and the 
corresponding eigenvectors, e1 and e2 , determined from 

are 

i == 1, 2 

[ .290] [ .957] 
el == 

.957 
and e2 == 

- .290 

By Result 6.2, ( 1 1 ) 2 - ( 1 1 ) ( 98 ) (2) 
-

nl 
+ 

nz 
c -

50 + 
50 ( 97 ) Fz, 97 ( .05 ) - .25 

since F2, 97 ( .05 ) == 3 . 1 .  The confidence ellipse extends 

\IT; f(l_ + l_) c2 == \IT; V25 \j nl n2 
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2.0 

- 1 .0 Figure 6.1 95% confi dence e l l i pse 
for J.A-1 - J.A-2 . 

units along the eigenvector ei ,  or 1 . 15 units in the e1 direction and .65 units in 
the e2 direction. The 95% confidence ellipse is shown in Figure 6 . 1 .  Clearly, 
IL l - IL2 = 0 is not in the ellipse, and we conclude that the two methods of 
manufacturing soap produce different results. It appears as if the two process
es produce bars of soap with about the same mildness ( X2) , but those from the 
second process have more lather (X1 ) . • 

S imu ltaneous Confidence I nterva l s  

I t  is possible to  derive simultaneous confidence intervals for the components of the 
vector JJ-1 - IL2 • These confidence intervals are developed from a consideration of 
all possible linear combinations of the differences in the mean vectors. It is assumed 
that the parent multivariate populations are normal with a common covariance I.  

Result 6.3. Let c2 = [ (n1 + n2 - 2)p/ (n1 + n2 - p - 1 ) ]Fp, n1 +n2-p- l (a ) . 
With probability 1 - a. 

a' (X1 - X2) ± c a' (_!_ + _!_) spoolecta n l n2 
will cover a' ( IL l - IL2) for all a. In particular JLl i - JL2 i will be covered by 

(Xu - X2 ; ) ± C (�1 + �2) Si i, pooled for i = 1 , 2, . . .  , p 

Proof. Consider univariate linear combinations of the observations 

Xl l ' Xl 2 ' . . .  ' Xl nl and X2 1 ' X22 ' . . . ' X2 n2 
given by a 'X1 j = a1X1 j 1 + a2X1 j2 + · . .  + apXl jp and a'X2j = a1X2j 1 + a2X2j2 
+ · · · + aPX2jp · These linear combinations have sample means and covariances 
a 'X1 , a' S1a and a 'X2 , a' S2a, respectively, where X1 , S1 , and X2 , S2 are the mean and 
covariance statistics for the two original samples. (See Result 3 .5 . )  When both par
ent populations have the same covariance, si , a = a' S1 a and si , a = a' S2a are both es
timators of a'Ia, the common population variance of the linear combinations a 'X1 
and a 'X2 •  Pooling these estimators, we obtain 
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( nl - 1 )si , a  + (n2 - 1 ) s�, a 
s2 - --------------------a, poolect - (nl + n2 - 2) 

' 
1 

s 
2 s 

[ n - 1 n - 1 J = a  1 +  2 a 
n1 + n2 - 2 n1 + n2 - 2 (6-25 )  

= a' Spoolect a 

To test H0 : a ' ( p.. 1 - p..2 ) = a' B0 , on the basis of the a 'X1 j and a 'X2j , we can form the 
square of the univariate two-sample t-statistic 

[a ' (X1 - X2) - a' ( p.. 1 - p..2 ) ]
2 

t2 = ----------------------a (
-
1 

+ -
1 ) 

s;, poolect a' 
(-1 + -

1 ) 
Spoolecta 

( 6-26) 

nl n2 nl n2 
According to the maximization lemma with d = ( X1 - X2 - ( p.. 1 - p..2 ) )  
B = ( 1/nl + 1/n2)Spooled in (2-50) , 

and 

2 - - ' [( 1 1 ) J-l - -ta < (Xl - X2 - ( ILl - ILJ ) 
n1 

+ n2 
Spooled ( Xl - X2 - ( IL l - IL2 ) )  

= T2 

for all a # 0. Thus, 

( 1 - a ) = P[T2 
< c2 ] = P[ti < c2 , for all a] 

= P
[ l a' ( Xl - X2) - a' ( IL1 - IL2) 1 < c '

( 1 1 ) 
a - + - Spoolecta nl n2 

for all a J 
where c2 is selected according to Result 6.2. • 

Remark. For testing H0 : �t1 - �t2 = 0, the linear combination a ' ( x1 - x2 ) , 
with coefficient vector a ex s;�oled ( xl - x2) , quantifies the largest population differ
ence. That is, if T2 rejects H0 , then a' ( x 1 - x2) will have a nonzero mean. Frequently, 
we try to interpret the components of this linear combination for both subject mat
ter and statistical importance. 

Example 6.4 (Ca lcu lati ng s imu ltaneous confidence i nterva ls  
for the differences i n  mean components) 

Samples of sizes n 1 = 45 and n2 = 55 were taken of Wisconsin homeowners 
with and without air conditioning, respectively. (Data courtesy of Statistical 
Laboratory, University of Wisconsin.) Two measurements of electrical usage (in 

kilowatt hours) were considered. The first is a measure of total on-peak con
sumption (X1 ) during July, and the second is a measure of total off-peak 
consumption (X2) during July. The resulting summary statistics are [204.4] [ 13825 .3 23823 .4] 

xl = 556.6 ' 
81 = 23823 .4 73107 .4 ' 

nl = 45 [ 130.0] [ 8632.0 19616.7] 
x2 = 355.0 ' 

82 = 19616.7 55964.5 ' n2 = 55 
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(The off-peak consumption is higher than the on-peak consumption because 
there are more off-peak hours in a month.) 

Let us find 95% simultaneous confidence intervals for the differences in 
the mean components. 

Although there appears to be somewhat of a discrepancy in the sample 
variances, for illustrative purposes we proceed to a calculation of the pooled 
sample covariance matrix. Here 

and 

n1 - 1 n2 - 1 [10963.7 21505 .5 ] 
Spooled = 

n1 + n2 - 2 81 + n1 + n2 - 2 82 = 21505.5 63661 .3 

2 _ (n 1 + n2 - 2)p _ 98(2) 
C - 1 FP n + n -p- l ( a ) - 97 F2 97 ( .05 ) nl + n2 - p - , 1 2 , 

== (2.02) (3 . 1 ) == 6.26 
With IL1 - IL2 == [JL1 1 - JL2 1 , JL1 2 - JL22] ,  the 95% simultaneous confidence in
tervals for the population differences are 

or 

or 

1L1 1  - f.L2 1 : (204.4 - 130.o ) ± V6.26 � ( 15 + 515 ) 10963 .7 
21.7 < JLl l  - JL2 1 < 127 .1 

1L1 2 - f.L22 : (556.6 - 355 .0) ± V6.26 
�
r-
(-1
5

_
+
_

5
-1
5

_
)
_
6
-
36
_
6
_
1
-
.3 

74.7 < JL1 2 - JL22 < 328.5 
We conclude that there is a difference in electrical consumption between those 
with air-conditioning and those without . This difference is evident in both on
peak and off-peak consumption. 

The 95% confidence ellipse for ILl - IL2 is determined from the 
eigenvalue-eigenvector pairs A.1 == 71323 .5, e1 == [ .336, .942 J and A.2 == 3301 .5, 
e2 == [ . 942, - .336 ] . 

Since 

VAr � ( �1 
+ �2) c2 = V71323 .5 � ( 415 + 515 ) 6.26 = 134.3 

and 

VI; � ( �1 
+ �J c2 = V3301 .5 � ( 415 + 515 ) 6.26 = 28 .9 

we obtain the 95% confidence ellipse for ILl - IL2 sketched in Figure 6 .2 on 
page 290. Because the confidence ellipse for the difference in means does not 
cover 0' == [ 0, OJ ,  the T2-statistic will reject H0 : ILl - IL2 == 0 at the 5% level. 
The coefficient vector for the linear combination most responsible for rejec
tion is proportional to S��olect (i1 - x2) .  (See Exercise 6.7 .) • 
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f.112 - J.122 
300 

200 

1 00 

0 1 00 200 
Figure 6.2 95% confidence e l l i pse 
for P-1 - P-2 = (JL1 1 - IL2 1 , JL1 2 - M2 2 ) . 

The Bonferroni 100 ( 1 - a)% simultaneous confidence intervals for the p pop
ulation mean differences are ( 1 1 ) 

- + - s 
n 1 n2 

i i, pooled 

where tn 1 +n2-2 ( aj2p) is the upper 100 ( aj2p ) th percentile of a !-distribution with 
n 1 + n2 - 2 d.f. 

The Two-Sample S ituation when I1 =I= I2 

When I1 # I2 . we are unable to find a "distance" measure like T2 , whose distribu
tion does not depend on the unknowns I1 and I2 . Bartlett 's test [3] is used to test 
the equality of I 1 and I2 in terms of generalized variances. Unfortunately, the con
clusions can be seriously misleading when the populations are nonnormal. Nonnor
mality and unequal covariances cannot be separated with Bartlett 's test. A method 
of testing the equality of two covariance matrices that is less sensitive to the as
sumption of multivariate normality has been proposed by Tiku and Balakrishnan 
[17] . However, more practical experience is needed with this test before we can rec
ommend it unconditionally. 

We suggest, without much factual support, that any discrepancy of the order 
a-1, i i  = 4a-2, i i ' or vice versa, is probably serious. This is true in the univariate case. The 
size of the discrepancies that are critical in the multivariate situation probably de
pends, to a large extent , on the number of variables p. 

A transformation may improve things when the marginal variances are quite dif
ferent. However, for n1 and n2 large, we can avoid the complexities due to unequal 
covariance matrices. 
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Result 6.4. Let the sample sizes be such that n1 - p and n2 - p are large. 
Then, an approximate 100 ( 1 - a )% confidence ellipsoid for ILl - IL2 is given by all 
ILl - JL2 satisfying 

where x� (a ) is the upper ( 100a )th percentile of a chi-square distribution with p d.f. 
Also, 100 ( 1 - a )% simultaneous confidence intervals for all linear combinations 
a' ( �-t1 - JL2) are provided by 

and 

a ' ( IL l - 1L2) belongs to a' ( i1 - i2 ) ± � )a' (_!_S1 + _!_s2) a n l n2 

Proof. From (6-22) and (3 -9), 

E (X1 - X2) = IL1 - IL2 

By the central limit theorem, X1 - X2 is nearly Np[ IL1 - IL2 , n11I1 + n21I2 ] .  If I1 
and I2 were known, the square of the statistical distance from xl - x2 to ILl - IL2 
would be 

[X1 - X2 - ( ILl - IL2) ] ' (__!_ I1 + __!_ I2)-1 
[X1 - X2 - ( ILl - 1L2) J nl n2 

This squared distance has an approximate x�-distribution, by Result 4.7. When n1 and 
n2 are large, with high probability, S1 will be close to I1 and S2 will be close to I2 . Con
sequently, the approximation holds with S1 and S2 in place of I1 and I2 , respectively. 

The results concerning the simultaneous confidence intervals follow from 
Result 5 A.1 .  • 

Remark. If n1 = n2 = n, then ( n  - 1 )/ ( n  + n - 2) = 1/2, so 

1 1 - 1 -
( n - 1 ) sl + ( n - 1 ) s2 ( 1 1 ) - sl + - S2 - - (S1 + S2) - - + -

n1 n2 n n + n - 2 n n 

= Spooled (! + ! ) 
With equal sample sizes, the large sample procedure is essentially the same as the 
procedure based on the pooled covariance matrix. (See Result 6.2.) In one dimen
sion, it is well known that the effect of unequal variances is least when n1 = n2 and 
greatest when n1 is much less than n2 or vice versa. 
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Example 6 .5  {Large sample procedures for i nferences 
about the difference i n  means) 

We shall analyze the electrical-consumption data discussed in Example 6.4 using 
the large-sample approach. We first calculate 

and 

1 1 1 [ 13825 .3 23823 .4] 1 [ 8632.0 19616 .7] 
nl 

81 + 
n2 

82 = 
45 23823 .4 73107 .4 + 55 19616.7 55964.5 [464.17 886.08] - 886.08 2642.15 

The 95% simultaneous confidence intervals for the linear combinations 

' ( ) [ J 
[ JL 1 1  - i-L2 1 J a IL1 - IL2 = 1 ,  0 = JL1 1 - JL2 1 

JL1 2 - JL22 

a' ( ILl - 1L2) = [0 , 1 ]  [JL1 1 - JL2 1] 
= JL1 2 - JL22 

JL1 2 - JL22 
are (see Result 6.4) 

JL1 1 - JL2 1 : 74.4 ± V5.99 V464.17 or (21 .7 , 127 .1 ) 
JL1 2 - JL22 : 201 .6 ± V5.99 \12642.15 or (75.8 , 327.4) 

Notice that these intervals differ negligibly from the intervals in Example 6.4, 
where the pooling procedure was employed. The T2-statistic for testing 
Ho : IL1 - IL2 = 0 is [ 1 1 J-l 

T2 = [ x1 - x2J ' -sl + -s2 [ x1 - x2J nl n2 [204.4 - 130.0] ' [464.17 886.08]-l [204.4 - 130.0] 
- 556.6 - 355.0 886.08 2642.15 556.6 - 355.0 

- [ 
-4 [ 59.874 -20.080] [ 74.4] -- 74·4 201 ·6 ]  ( 10 ) 

-20.080 10 .519 201 .6 - 15.66 

For a = .05 , the critical value is x�( .05 )  = 5 .99 and, since T2 = 15 .66 > x�( .05 ) 
= 5 .99, we rej ect H0 • 

The most critical linear combination leading to the rej ection of H0 has co
efficient vector 

" ( 1 1 )-l - - - -4 [ 59.874 -20.080] [ 74.4] a ex 
nl 

s l + 
n2 

s2 ( x l - x2) - ( 10 ) 
-20.080 10.519 201 . 6 

= 
[ :�:� J 

The difference in off-peak electrical consumption between those with air 
conditioning and those without contributes more than the corresponding dif
ference in on-peak consumption to the rejection of H0 : ILl - IL2 = 0. II 
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A statistic similar to T2 that is less sensitive to outlying observations for small 
and moderately sized samples has been developed by Tiku and Singh [18] . Howev
er, if the sample size is moderate to large, Hotelling's T2 is remarkably unaffected by 
slight departures from normality and/or the presence of a few outliers. 

6.4 COMPARING SEVERAL M U LTIVARIATE POPU LATION M EANS 
(ON E-WAY MANOVA) 

Often, more than two populations need to be compared . Random samples, collect
ed from each of g populations, are arranged as 

Population 1: X1 1 , X1 2 ' . . .  , X1 n1 
(6-27) 

Population g: Xg 1 , Xg2 , . . .  , Xgng 
MANOVA is used first to investigate whether the population mean vectors are the 
same and, if not, which mean components differ significantly. 

Assumptions about the Structure of the Data for One-way MAN OVA 

1. Xe 1 , Xe2 , . . .  , Xenc ' is a random sample of size ne from a population with mean 
JLe , e = 1 ,  2, . . .  , g. The random samples from different populations are 
independent. 

2. All populations have a common covariance matrix I. 
3. Each population is  multivariate normal. 

Condition 3 can be relaxed by appealing to the central limit theorem (Result 4 .13) 
when the sample sizes ne are large. 

A review of the univariate analysis of variance (ANOVA) will facilitate our 
discussion of the multivariate assumptions and solution methods. 

A Summary of Un ivariate ANOVA 

In the univariate situation, the assumptions are that Xe1 , Xe2 , • • •  , Xenc is a random 
sample from an N(J.Le , o-2) population, e = 1 ,  2, . . .  , g, and that the random samples 
are independent. Although the null hypothesis of equality of means could be for
mulated as J.L1 = J.L2 = · · · = J.Lg , it is customary to regard J.Le as the sum of an overall 
mean component, such as J.L, and a component due to the specific population. For in
stance, we can write J.Le = J.L + (J.Le - J.L) or J.Le = J.L + T e where Te = J.Le - J.L. 

Populations usually correspond to different sets of experimental conditions, 
and therefore, it is convenient to investigate the deviations T e associated with the fth 
population (treatment) . 
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The reparameterization 

JLe (fth population) 
mean 

(overall) 
mean 

+ Te ( fth population ) 
( treatment ) effect 

(6-28) 

leads to a restatement of the hypothesis of equality of means. The null hypothesis 
becomes 

H0 : T1 = T2 = · · · = Tg = 0 

The response Xej , distributed as N(JL + Te , o-2) , can be expressed in the suggestive 
form 

+ 

( overall mean) 

+ ee j ( treatment) (random) 
effect error 

( 6-29) 

where the eej are independent N(O, o-2) random variables. To define uniquely 
the model parameters and their least squares estimates, it is customary to impose the 

g 
constraint � ne T e = 0. 

€= 1 
Motivated by the decomposition in (6-29) , the analysis of variance is based upon 

an analogous decomposition of the observations, 

X + ( xe - x) 

(observation) ( overall ) 
sample mean 

( estimated ) 
treatment effect (residual) 

(6-30) 

where x is an estimate of JL, Te = ( xe - x) is an estimate of Te , and ( xej - xe ) is an 
estimate of the error eej . 

Example 6 .6 (The sum of squares decomposition for un ivariate ANOVA) 

Consider the following independent samples. 

Population 1 :  9 , 6 ,  9 
Population 2: 0, 2 
Population 3 : 3 ,  1 ,  2 

Since, for example, x3 = ( 3 + 1 + 2 )/3 = 2 and x = ( 9 + 6 + 9 + 0 + 2 + 
3 + 1 + 2)/8 = 4, we find that 

3 = x3 1 = .X + ( x3 - x) + (x3 1 - x3 ) 
= 4 + (2 - 4) + ( 3  - 2) 
= 4 + ( -2) + 1 

Repeating this operation for each observation, we obtain the arrays 
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observation 

(xej ) 
mean 

(x) 
+ treatment effect + 

( xe - x) 
residual 

( xej - xe) 

The question of equality of means is answered by assessing whether the 
contribution of the treatment array is large relative to the residuals. (Our esti

g 
mates Te == Xe - x of Te always satisfy � ne Te == 0. Under H0 , each Te is an 

€= 1  
estimate o f  zero. ) I f  the treatment contribution i s  large, H0 should be  re-
j ected. The size of an array is quantified by stringing the rows of the array 
out into a vector and calculating its squared length. This quantity is called 
the sum of squares (SS) . For the observations, we construct the vector 
y' == [9, 6 ,  9 ,  0, 2, 3 ,  1, 2 ] .  Its squared length is 

ss b == 92 + 62 + 92 + 02 + 22 + 32 + 12 + 22 == 216 0 s 
Similarly, 

ss == 42 + 42 + 42 + 42 + 42 + 42 + 42 + 42 == 8 (42) == 128 mean 
sstr == 4 2 + 4 2 + 4 2 + ( -3 ) 2 + ( -3 ) 2 + ( -2) 2 + ( -2) 2 + ( -2) 2 

== 3 ( 42 ) + 2( -3 ) 2 + 3 ( -2)2 == 78 

and the residual sum of squares is 

ssres == 12 + ( -2 )2 + 12 + ( - 1 ) 2 + 12 + 12 + ( -1 )2 + 02 == 10 

The sums of squares satisfy the same decomposition, (6-30) , as the observations. 
Consequently, 

or 216 == 128 + 78 + 10. The breakup into sums of squares apportions vari
ability in the combined samples into mean, treatment, and residual (error) com
ponents. An analysis of variance proceeds by comparing the relative sizes of SS1r 
and SSres . If H0 is true, variances computed from SS1r and SSres should be ap
proximately equal. • 

The sum of squares decomposition illustrated numerically in Example 6.6 is so 
basic that the algebraic equivalent will now be developed. 

Subtracting x from both sides of (6-30) and squaring gives 

( xej - x)2 == (xe - x)2 + ( xej - xe)2 + 2(xe - x) ( xej - xe) 
nc 

We can sum both sides over j, note that � (xej - ie ) == 0, and obtain 
j= l 

nc nc 
� ( xej - x)2 == ne (xe - x)2 + � ( xej - xe )2 
j= l  j = l  
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Next, summing both sides over e we get g nc g g ne 
L L (xej - x)2 = L ne(Xe - x)2 + L L (xej - Xe)2 (6-3 1 ) €= 1  j= 1  €= 1  € = 1  j= 1  ( SScor ) ( SStr ) ( SSres ) 

total ( corrected) SS = 
between ( samples) SS + 

within ( samples ) SS 
or g nc 

L L x�j 
€= 1  j= 1 
( ssobs ) 

g g nc 
( n1 + n2 + . . . + ng)x2 + L ne(Xe - x) 2 + L L (xej - Xe)2 

€= 1  €= 1  j= 1  
( SSmean ) + ( SStr ) + ( SSres ) (6-32) 

In the course of establishing (6-32), we have verified that the arrays represent
ing the mean, treatment effects, and residuals are orthogonal. That is, these arrays, 
considered as vectors, are perpendicular whatever the observation vector 
y' = [x1 1 ' . . .  ' X1 ni ' x2 1 ' . . . ' X2 n2 ' . . .  ' XgnJ · Consequently, we could obtain ssres by 
subtraction, without having to calculate the individual residuals, because ssres = SSobs - SSmean - SStr · However, this is false economy because plots of the residuals 
provide checks on the assumptions of the model. 

The vector representations of the arrays involved in the decomposition (6-30) 
also have geometric interpretations that provide the degrees of freedom. For an ar
bitrary set of observations, let [x1 1 , . . .  , x1 n1 , x2 r ,  . . . , x2n2 , • • •  , Xgng ] = y' . The obser
vation vector y can lie anywhere in n = n1 + n2 + · · · + ng dimensions; the mean 
vector x1 = [ x, . . . , x] ' must lie along the equiangular line of 1, and the treatment 
effect vector 

1 }nr 
1 

( i1 - x) 0 + ( x2 - x) 
0 
0 

0 

0 

0 
1 

1 
0 

0 

} + . . .  + ( Xg - :X) 
n2 

0 

0 
0 

0 
1 }ng 
1 

= ( x1 - x) u 1 + ( x2 - x) u2 + · · · + (xg - x) ug 
lies in the hyperplane of linear combinations of the g vectors u1 , u2 , . . .  , ug . Since 
1 = u1 + u2 + · · · + ug ,  the mean vector also lies in this hyperplane, and it is always 
perpendicular to the treatment vector. (See Exercise 6.10.) Thus, the mean vector has 
the freedom to lie anywhere along the one-dimensional equiangular line, and the 
treatment vector has the freedom to lie anywhere in the other g - 1 dimensions. 
The residual vector, e = y - (x1) - [ (x1 - x )u1 + · · · + ( xg - x)ug] is perpen
dicular to both the mean vector and the treatment effect vector and has the freedom 
to lie anywhere in the subspace of dimension n - ( g - 1 )  - 1 = n - g that is per
pendicular to their hyperplane. 

To summarize, we attribute 1 d.f. to SSmean , g - 1 d.f. to SS10 and n - g == 
( n1 + n2 + . . . + ng ) - g d.f. to ssres . The total number of degrees of freedom is 
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n == n1 + n2 + · · · + ng . Alternatively, by appealing to the univariate distribution 
theory, we find that these are the degrees of freedom for the chi-square distributions 
associated with the corresponding sums of squares. 

The calculations of the sums of squares and the associated degrees of freedom 
are conveniently summarized by an AN OVA table. 

ANOVA TABLE  FOR COMPAR ING UN IVARIATE POPULATION MEANS 

Source Degrees of 
of variation Sum of squares (SS) freedom ( d.f. )  

Treatments 

Residual 
(Error) 

g SStr == � ne (xe - x) 2 
€= 1  

g ne ssres == � � (xej - ie) 2 
€= 1 j= 1 

Total (corrected g ne 
sscor == � � (xej - x )2 for the mean) 

€= 1  j= 1  

The usual F-test rej ects H0 : T1 == T2 == · · · == T g == 0 at level a if 

sstr / (g - 1 )  
F == /( g ) > Fg- 1, 2-ne-g ( a)  

ssres � ne - g 
€= 1  

g - 1 

g 
� ne - g  
€= 1  

g 
� ne - 1 
€= 1  

where Fg- 1 , 2-ne -g(a )  is the upper ( 100a)th percentile of the F-distribution with g - 1 
and 2:ne - g degrees of freedom. This is equivalent to rejecting H0 for large values 
of sstr ;ssres or for large values of 1 + sstr ;ssres . The statistic appropriate for a mul
tivariate generalization rejects H0 for small values of the reciprocal 

1 ssres 
1 + sstr ;ssres ssres + sstr (6-33) 

Example 6.7 (A un ivariate ANOVA tab le  and F-test fo r treatment effects) 

Using the information in Example 6.6 , we have the following AN OVA table : 

Source 
of variation Sum of squares 

Treatments SS 1r == 78 

Residual SSres == 10 

Total (corrected) SScor == 88 

Degrees of freedom 

g - 1 == 3 - 1 == 2 
g 

� ne - g == ( 3 + 2 + 3 ) - 3 == 5 
€= 1  
g 

� ne - 1 == 7 
€= 1 
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Consequently, 
F = 

SS1r/ (g  - 1 ) 
= 

78/2 
= 19 _5 ssres / (Ine - g)  10/5 

Since F = 19 .5 > F2, 5 ( .01 ) = 13 .27, we reject H0 : T 1 = T2 = T3 = 0 (no treatment effect) at the 1% level of significance. • 

Mu ltivariate Analysis of Variance (MANOVA) 

Paralleling the univariate reparameterization, we specify the MANOVA model: 

According to the model in (6-34) , each component of the observation vector Xej satisfies the univariate model (6-29) . The errors for the components of Xej are correlated, but the covariance matrix I is the same for all populations. 
A vector of observations may be decomposed as suggested by the model. Thus, 

(obse::�tion) = 

(overall
x
sa�ple) 

+ (;;�:��) + (
(:::

e
�;
1
u
::
)
) 

(6-35) 
mean !J.- effect 1-e 1, 

The decomposition in ( 6-35) leads to the multivariate analog of the univariate 
sum of squares breakup in (6-31 ) .  First we note that the product 

(xej - i) (xej - i) ' 
can be written as 
(xej - i) (xej - i) ' = [ (xej - xe) + ( ie - i) ]  [ (xej - ie ) 

+ 
( ie - i) ] ' 

= (xej - ie) (xej - ie ) ' + (xej - ie) (xe - i) ' 
+ (xe - i) (xej - ie) ' + ( xe - i) ( ie - x) '  

The sum over j of the middle two expressions is the zero matrix, because ne 
:L (xej - ie) = 0. Hence, summing the cross product over e and j yields 
j = 1  

g ne g 
:L :L (xej - x) (xej - x) ' = :L ne( ie - i) ( ie - i) ' + 
€= 1  j= 1  €= 1  ( total (corrected) sum) ( treatment (Between) ) 
of squares and cross sum of squares and 

products cross products 

g ne 
:L :L (xej - ie ) (xej - ie) ' 
€= 1  j = l  (residual (Within) sum) 
of squares and cross 

products 

(6-36) 
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The within sum of squares and cross products matrix can be expressed as 
g ne 

W = L L (xej - ie) (xej - ie ) ' 
f= l  j = 1  

= ( n 1 - 1 ) S1 + ( n2 - 1 ) S2 + · · ·  + ( ng - 1 ) Sg 
(6-37) 

where Se is the sample covariance matrix for the fth sample. This matrix is a gener
alization of the ( n 1 + n2 - 2) Spooled matrix encountered in the two-sample case. It plays a dominant role in testing for the presence of treatment effects. 

Analogous to the univariate result , the hypothesis of no treatment effects, 
Ho : Tl = T2 = . . .  = Tg = 0 

is tested by considering the relative sizes of the treatment and residual sums of squares 
and cross products. Equivalently, we may consider the relative sizes of the residual 
and total (corrected) sum of squares and cross products. Formally, we summarize 
the calculations leading to the test statistic in a MANOVA table. 

MANOVA TABLE  FOR COMPAR ING  POPULATION M EAN VECTORS 

Source Matrix of sum of squares and Degrees of 
of variation cross products (SSP) freedom (d.f. ) 

g Treatment B = L ne(ie - i) ( ie - x) '  g - 1 
€= 1  

g ne g Residual (Error) W = L L (xej - ie) (xej - ie) ' L ne - g  
€= 1  j= 1  €= 1  

Total (corrected g ne g for the mean) B + w = L L (xej - i) (xej - x) ' L ne - 1 
€= 1  j= 1  €= 1  

This table is exactly the same form, component by component, as the AN OVA table, 
except that squares of scalars are replaced by their vector counterparts. For exam
ple, ( xe - x)2 becomes ( ie - x) ( ie - x) ' .  The degrees of freedom correspond to 
the univariate geometry and also to some multivariate distribution theory involving 
Wishart densities. (See [1] . )  

One test of H0 : T1 = T2 = · · · = T g = 0 involves generalized variances. We re
ject H0 if the ratio of generalized variances 

A* = 
I W I 

I B + W I g ne 
L L (xej - x) (xej - x) '  
€= 1  j= 1  

(6-38) 

is too small. The quantity A* = I W 1/ 1 B + W I , proposed originally by Wilks 
(see [20] ) ,  corresponds to the equivalent form (6-33) of the F-test of H0 : no treat
ment effects in the univariate case. Wilks ' lambda has the virtue of being convenient 
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TABLE 6 .3 

No. of 
variables 

p = 1  

p = 2 

p > 1 

p > 1 

DISTR I BUTION OF  WI LKS' LAMB DA, A* = I W 1 / 1  B + W I  

No. of 
groups 

g > 2 

g > 2 

g = 2  

g = 3 

Sampling distribution for multivariate normal data ( �ne - g ) e - A* ) 
g - 1 A* � Fg- l , Ln,-g  ( �ne - g - 1 ) e - VA*) 

g _ 1 Vi\* � F2(g- 1 ) , 2(Ln1 - g - l l  ( �ne - p - 1 ) e - A* ) 
� A Fp 'Ln -p- 1 p * ' ( ( �ne - p - 2) e - VA*) 

p Vi\* � F2p, 2 ( Ln1 - p-2) 

and related to the likelihood ratio criterion.2 The exact distribution of A* can be de
rived for the special cases listed in Table 6.3. For other cases and large sample sizes, 
a modification of A* due to Bartlett (see [4] ) can be used to test H0 • 

Bartlett (see [4]) has shown that if H0 is true and 2:ne = n is large, 
-
(n - 1 -

(p + g) ) ln A * = -
(n - 1 -

(p + g) ) ln ( I W I ) (6-39) 2 2 I B + W I 

has approximately a chi-square distribution with p(g - 1 ) d.f. Consequently, for 
2:ne = n large, we reject H0 at significance level a if ( (p + g) ) ( I w I ) 2 - n - 1 -

2 
ln 

I B + W I > xp(g- l ) ( a )  (6-40) 

where X� (g- 1 ) ( a) is the upper ( 100a ) th percentile of a chi-square distribution with 
p(g - 1 ) d.f. 
Example 6.8 (A MANOVA table and Wi l ks' lambda for testi ng the equal ity 

of three mean vectors) 

Suppose an additional variable is observed along with the variable introduced 
in Example 6.6. The sample sizes are n1 = 3, n2 = 2, and n3 = 3. Arranging the 
observation pairs Xej in rows, we obtain 
2Wilks' lambda can also be expressed as a function of the eigenvalues of A1 , A2 , . . . , As of w-1B a s  

s ( 1 ) 
A* = II --t = l  1 + At 

where s = min (p, g - 1 ) , the rank of B.  Other statistics for checking the equality of several multivari
ate means, such as Pillai's statistic, the Lawley-Hotelling statistic, and Roy's largest root statistic can also 
be written as particular functions of the eigenvalues of w-1 B.  For large samples, all of these statistics are, 
essentially equivalent. (See the additional discussion on page 331 .)  



Sect ion 6.4 Compa r ing Severa l M u lt ivar iate Popu l at ion Means (One-Way Manova) 301 

[ � ] [ � ] [ � ]  [ � ] [ � ] 
[ � ] [ ! ] [ � ] 

We have already expressed the observations on the first variable as the sum of 
an overall mean, treatment effect, and residual in our discussion of univariate 
ANOVA. We found that 

(� ! :) = (: : :) + ( =� =� _:) + ( -: �: :) 
(observation) (mean) ( treatment ) 

effect (residual) 
and 

ssobs = ssmean + sstr + ssres 
216 = 128 + 78 + 10 

Total SS ( corrected) = SSobs - SSmean = 216 - 128 = 88 
Repeating this operation for the observations on the second variable, we 

have (! � 7) = (� � 5) + (=� =� -1) + ( -� =� 3) 
8 9 7 5 5 5 3 3 3 0 1 -1 

(observation) (mean) ( treatment) 
effect (residual) 

and 
ssobs = ssmean + sstr + ssres 
272 = 200 + 48 + 24 

Total SS ( corrected ) = SSobs - SSmean = 272 - 200 = 72 

These two single-component analyses must be augmented with the sum of entry
by-entry cross products in order to complete the entries in the MAN OVA table. 
Proceeding row by row in the arrays for the two variables, we obtain the cross 
product contributions : 

Mean: 4(5 ) + 4(5 ) + · · ·  + 4(5 ) = 8 (4 ) (5 ) = 160 
Treatment: 3 (4 ) ( - 1 ) + 2( -3 ) ( -3 ) + 3 ( -2) ( 3 ) = -12 
Residual: 1 ( - 1 ) + ( -2) ( -2) + 1 ( 3 ) + ( - 1 ) (2) + . . .  + 0 ( - 1 ) = 1 
Total: 9 ( 3 )  + 6 (2) + 9 (7 ) + 0 (4) + . . . + 2(7 ) = 149 
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Total (corrected ) cross product = total cross product - mean cross product 
= 149 - 160 = -11 

Thus, the MANOVA table takes the following form: 
Source 
of variation 

Matrix of sum of squares 
and cross products Degrees of freedom 

Treatment [ 78 
-12 

-12] 
48 3 - 1 = 2 

Residual [ 1� z!] 3 + 2 + 3 - 3 = 5  

Total (corrected) [ 88 -11 ] 
-11 72 7 

Equation (6-36) is verified by noting that [ 88 -11] = [ 78 -12] + [ 10 1] 
-11 72 -12 48 1 24 

Using (6-38), we get 

A* = I W I 
I B + W I 

10 1 
1 24 

88 -11 
- 11 72 

10 (24) - ( 1 ) 2 239 
----- = - = .0385 88 (72) - ( - 11 ) 2 6215 

Since p = 2 and g = 3, Table 6.3 indicates that an exact test (assuming 
normality and equal group covariance matrices) of H0 : T1 == T2 = T3 = 0 (no 
treatment effects) versus H1 : at least one T e i:- 0 is available. To carry out the 
test, we compare the test statistic 

( 1 - VA*) ( 2:ne - g - 1 ) = ( 1 - \!0385) ( 8 - 3 - 1 ) = 8.19 
VA* ( g  - 1 ) \!0385 3 - 1 

with a percentage point of an F-distribution having v1 = 2(g  - 1 ) = 4 and 
v2 = 2( 2:ne - g - 1 ) = 8 d.f. Since 8.19 > F4, 8( .01 ) = 7.01, we reject H0 at 
the a = .01 level and conclude that treatment differences exist. II 

When the number of variables, p, is large, the MAN OVA table is usually not con
structed. Still, it is good practice to have the computer print the matrices B and W 
so that especially large entries can be located. Also, the residual vectors 

" -eej = Xej - Xe  

should be examined for normality and the presence of outliers using the techniques 
discussed in Sections 4.6 and 4.7 of Chapter 4. 
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Example 6.9 (A multivariate analys is of Wiscons in  nurs ing home data) 

Group 

The Wisconsin Department of Health and Social Services reimburses nurs
ing homes in the state for the services provided. The department develops a set 
of formulas for rates for each facility, based on factors such as level of care, 
mean wage rate, and average wage rate in the state. 

Nursing homes can be classified on the basis of ownership (private party, 
nonprofit organization, and government) and certification (skilled nursing fa
cility, intermediate care facility, or a combination of the two) . 

One purpose of a recent study was to investigate the effects of ownership 
or certification (or both) on costs. Four costs, computed on a per-patient-day 
basis and measured in hours per patient day, were selected for analysis: 
xl = cost of nursing labor, x2 = cost of dietary labor, x3 = cost of plant operation and maintenance labor, and X4 = cost of housekeeping and laundry 
labor. A total of n = 516 observations on each of the p = 4 cost variables were 
initially separated according to ownership. Summary statistics for each of the 
g = 3 groups are given in the following table. 

Number of 
observations Sample mean vectors 

e = 1 (private ) n1 = 271 
2.066 2 .167 2.273 

e = 2 (nonprofit ) n2 = 138 .480 .596 .521 x l = .082 x2 = . 124 x3 = . 125 
.360 .418 .383 e = 3 (government ) 

3 
L ne = 516 €= 1 

Sample covariance matrices 
.291 .561 

sl = - .001 .01 1 
s2 = .01 1 .025 

.002 .000 .001 .001 .004 .005 

.010 .003 .000 .010 .037 .007 .002 .019 
.261 

s3 = .030 .017 
.003 - .000 .004 
.018 .006 .001 .013 

Source: Data courtesy of State of Wisconsin Department of Health and Social Services. 
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Since the S/s seem to be reasonably compatible,3 they were pooled [see 
( 6-37)] to obtain 

Also, 

and 

3 

W = (n 1 - 1 ) S1 + ( n2 - 1 ) S2 + ( n3 - 1 ) S3 
182.962 

x = 

4.408 8.200 
1 .695 .633 1 .484 
9.581 2.428 .394 6.538 

2.136 
n1 x1 + n2i2 + n3i3 .519 

nl + n2 + n3 . 102 
.380 

3.475 
1 . 1 11 1 .225 B = L ne( ie - x) ( ie - x) ' = .821 .453 .235 f= l  
.584 .610 .230 .304 

To test H0 : T1 = T2 = T3 (no ownership effects or, equivalently, no difference in 
average costs among the three types of owners-private, nonprofit, and gov
ernment) , we can use the result in Table 6.3 for g = 3 . 

and 

Computer-based calculations give 

A* = l , = .7714 B + W  
I W I 

( "Zne - p - 2) ( 1 - VA*) = ( 516 - 4 - 2) ( 1 - Y.7714) = 17 .67 
p VA* 4 Y.77I4 

Let a = .01, so that F2(4) , 2 (s lo) ( .01 ) . x§ ( .01 )/8 == 2.51 .  Since 17 .67 > 
F8 , 1020 ( .01 ) · 2.51 , we reject H0 at the 1% level and conclude that average costs 
differ, depending on type of ownership. 

It is informative to compare the results based on this "exact" test with 
those obtained using the large-sample procedure summarized in (6-39) and 
(6-40). For the present example, "Zne = n == 516 is large, and H0 can be tested 
at the a == .01 level by comparing 
3However, a normal-theory test of H0 : I-1 = I-2 = I-3 would rej ect H0 at any reasonable signifi

cance level because of the large sample sizes. 



Sect ion 6 . 5  S imu ltaneous Conf idence I nterva ls for Treatment Effects 305 

- (n - 1 - (p + g)/2) lnC 81:� 1 ) = -stt .s ln ( .7714) = 132.76 

with X�(g- 1 ) ( .01 ) = x§( .01 ) = 20.09. Since 132.76 > x§( .01 ) = 20.09, we re
ject H0 at the 1% level . This result is consistent with the result based on the 
foregoing F-statistic. • 

6.5 S I MULTAN EOUS CONFIDE NCE I NTERVALS FOR TREATM ENT EFFECTS 

When the hypothesis of equal treatment effects is rejected, those effects that led to 
the rejection of the hypothesis are of interest. For pairwise comparisons, the Bon
ferroni approach (see Section 5.4) can be used to construct simultaneous confidence 
intervals for the components of the differences Tk - Te (or ILk - P.. e) .  These inter
vals are shorter than those obtained for all contrasts, and they require critical values 
only for the univariate t-statistic. 

Let Tk i  be the ith component of Tk . Since Tk is estimated by 7-k = X.k - X. 
" - -Tki = xk i  - xi (6-41 ) 

and Tk i  - Te i = xk i - xn is the difference between two independent sample means. 
The two-sample t-based confidence interval is valid with an appropriately modified a. 
Notice that 

" " - - ( 1 1 ) Var ( Tk i  - T e ; ) = Var (Xk i  - X e; ) = nk 
+ ne CT; ; 

where o-i i  is the ith diagonal element of I. As suggested by (6-37) , Var (Xk i  - XeJ 
is estimated by dividing the corresponding element of W by its degrees of freedom. 
That is, 

where wi i  is the ith diagonal element of W and n = n 1 + · · · + ng . 
It remains to apportion the error rate over the numerous confidence statements. 

Relation (5-28) still applies. There are p variables and g(g - 1 )/2 pairwise differ
ences, so each two-sample t-interval will employ the critical value tn-g ( a/2m) , where 

m = pg (g  - 1 )/2 (6-42) 
is the number of simultaneous confidence statements. 

g 
Result 6.5. Let n = � nk . For the model in (6-34) , with confidence at least 

k= l  
( 1 - a) , 

Tk i - Te i belongs to 
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for all components i = 1 , . . .  , p and all differences e < k = 1 , . . .  , g .  Here wii is the 
ith diagonal element of W. II 

We shall illustrate the construction of simultaneous interval estimates for the 
pairwise differences in treatment means using the nursing-home data introduced in 
Example 6.9 . 
Example 6 . 1 0  (Simu ltaneous i nterva ls  for treatment 

differences-nursing homes) 

We saw in Example 6.9 that average costs for nursing homes differ, depending 
on the type of ownership. We can use Result 6.5 to estimate the magnitudes of 
the differences. A comparison of the variable X3 , costs of plant operation and 
maintenance labor, between privately owned nursing homes and government
owned nursing homes can be made by estimating T1 3 - T3 3 . Using (6-35) and the information in Example 6.9, we have 

W =  

Consequently, 

- .070 
- .039 
- .020 ' 

- .020 
182.962 
4.408 8.200 
1.695 .633 1 .484 
9.581 2.428 .394 6.538 

T1 3 - T3 3 = - .020 - .023 = - .043 

.137 

.002 

.023 

.003 

and n = 271 + 138 + 107 = 516, so that ( 1 1 ) 1 .484 
271 + 107 516 - 3 = •00614 

Since p = 4 and g = 3 , for 95% simultaneous confidence statements we re
quire that t513 ( .05/4 (3 )2 ) · 2.87. (See Appendix, Table 1.) The 95% simulta
neous confidence statement is 

T1 3 - T3 3 belongs to ,... ,... ( ) ) ( 1 1 ) w3 3 T1 3 - T3 3 ± t513 .00208 - + -n1 n3 n - g 

= - .043 ± 2.87 ( .00614) 
= - .043 ± .018, or ( - .061 , - . 025 ) 

We conclude that the average maintenance and labor cost for government
owned nursing homes is higher by .025 to .061 hour per patient day than for 
privately owned nursing homes. With the same 95% confidence, we can say that 

T1 3 - T23 belongs to the interval ( - .058, - .026 ) 
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and 
T2 3 - T3 3  belongs to the interval ( - .021 , .019) 

Thus, a difference in this cost exists between private and nonprofit nurs
ing homes, but no difference is observed between nonprofit and government 
nursing homes. • 

6.6 TWO-WAY M U LTIVARIATE ANALYSIS OF VARIANCE 

Following our approach to the one-way MAN OVA, we shall briefly review the analy
sis for a univariate two-way fixed-effects model and then simply generalize to the 
multivariate case by analogy. 
Univariate Two-Way Fixed-Effects Model with I nteraction 

We assume that measurements are recorded at various levels of two factors. In some 
cases, these experimental conditions represent levels of a single treatment arranged 
within several blocks. The particular experimental design employed will not concern 
us in this book. (See [9] and [10] for discussions of experimental design.) We shall, 
however, assume that observations at different combinations of experimental condi
tions are independent of one another. 

Let the two sets of experimental conditions be the levels of, for instance, factor 
1 and factor 2, respectively. 4 Suppose there are g levels of factor 1 and b levels of fac
tor 2, and that n independent observations can be observed at each of the gb combi
nations of levels. Denoting the rth observation at level e of factor 1 and level k of 
factor 2 by Xekr , we specify the univariate two-way model as 

Xekr == J.L + Te + f3k + 'Ye k  + eekr e = 1 , 2, . . .  , g 
k == 1, 2, . . . ' b r == 1, 2, . . .  , n 

g b g b 

(6-43) 

where � Te == � f3k == � 'Yek == � 'Yek == 0 and the eekr are independent 
€= 1  k= 1  €= 1  k= 1  

N ( 0 , a-2 ) random variables. Here J.L represents an overall level, T e represents the fixed effect of factor 1, {3 k represents the fixed effect of factor 2, and y e k is the interaction between factor 1 and factor 2. The expected response at the fth level of factor 1 and 
the kth level of factor 2 is thus 

J.L + Te + f3k + 'Yek  ( mean ) 
response 

(overall) + (effect of) + (effect of) + (fa�tor 1-fa�tor 2) level factor 1 factor 2 Interaction 
f == 1 , 2, . . .  , g, k == 1, 2, . . . ' b (6-44) 

4The use of the term "factor" to indicate an experimental condition is convenient. The factors dis
cussed here should not be confused with the unobservable factors considered in Chapter 9 in the context 
of factor analysis. 
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2 3 

Level of factor 2 

(a) 

2 3 

Level of factor 2 

(b) 

4 

4 

Level 1 of factor 1 
Level 3 of factor 1 
Level 2 of factor 1 

Level 3 of factor 1 

Level 1 of factor 1 

Level 2 of factor 1 

Figure 6.3 Cu rves for expected 
responses (a) with i nteract ion and  
(b) without i nteract ion . 

The presence of interaction, Yek , implies that the factor effects are not additive and complicates the interpretation of the results. Figures 6.3( a) and (b) show expected 
responses as a function of the factor levels with and without interaction, respective
ly. The absense of interaction means Yek = 0 for all e and k. 

In a manner analogous to (6-44) , each observation can be decomposed as 
Xekr = X +  (xe . - x) + (x. k - x) + ( :Xek - Xe . - x. k + x) + (xe kr - Xek) (6-45) 
where x is the overall average, :X e . is the average for the fth level of factor 1 , x. k is the average for the kth level of factor 2, and :Xe k is the average for the fth level of factor 1 and the kth level of factor 2. Squaring and summing the deviations ( xe kr - x) gives 

or 

g b n g b 
L L L ( xekr - x)2 = L bn (xe . - x)2 + L gn (x. k - x)2 €= 1 k= 1 r= 1 €= 1 k= 1 

g b 
+ L L n (xek - Xe . - x. k + x)2 €= 1 k= 1 

g b n 
+ L L L ( xe kr - Xek ) 2 €= 1 k= 1 r= 1 

sscor = ssfac 1  + ssfac 2 + ssint + ssres 

(6-46) 
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The corresponding degrees of freedom associated with the sums of squares in the 
breakup in ( 6-46) are 

gbn - 1 == (g - 1 ) + (b - 1 ) + ( g  - 1 ) ( b - 1 ) + gb (n  - 1 ) (6-47) 
The ANOVA table takes the following form: 

ANOVA TABLE FOR COMPARING EFFECTS OF TWO FACTORS 
AND THEIR INTERACTION 
Source 
of variation 
Factor 1 

Factor 2 

Interaction 

Residual (Error) 

Total (corrected) 

Sum of squares (SS) 
g ssfac l  == L bn( X e . - x)2 €= 1 
b 

ssfac2 == L gn (x. k - x)2 k= 1 
g b 

ssint == L L n (xek - Xe . - x. k + x)2 €= 1 k= 1 

g b n 
sscor == L L L ( xekr - x ) 2 €= 1 k= 1 r= 1 

Degrees of 
freedom ( d.f. ) 
g - 1 

b - 1 

( g  - 1 ) ( b - 1 ) 

gb (n - 1 ) 

gbn - 1 

The F-ratios of the mean squares, SS£ac 1 / (g - 1 ) , SS£ac2 / (b - 1 ) , and 
ssint ! (g - 1 ) ( b - 1 ) to the mean square, ssres / (gb (  n - 1 ) ) can be used to test for 
the effects of factor 1 , factor 2, and factor 1-factor 2 interaction, respectively. (See 
[7] for a discussion of univariate two-way analysis of variance.) 

Mu ltivariate Two-Way Fixed-Effects Model with I nteraction  

Proceeding by analogy, we specify the two-way fixed-effects model for a vector re
sponse consisting ofp components [see (6-43)] 

Xekr == 1L + Te + f3k + Yek + ee kr e == 1 , 2, . . .  , g 
k == 1 , 2, . . .  ' b 
r == 1 , 2, . . .  , n 

g b g b 

(6-48) 

where L Te == L f3k == L Yek == L Yek == 0. The vectors are all of order p X 1 , €= 1 k= 1 €= 1 k= 1 
and the ee kr are independent Np( 0, I ) random vectors. Thus, the responses consist 
of p measurements replicated n times at each of the possible combinations of levels 
of factors 1 and 2. 
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Following (6-45) , we can decompose the observation vectors Xekr as 
Xekr = X + ( xe . - x) + ( x. k - x) + ( xek - Xe . - x. k + x) + (xekr - Xek ) (6-49) 

where x is the overall average of the observation vectors, Xe . is the average of the observation vectors at the fth level of factor 1, x. k is the average of the observation vectors at the kth level of factor 2, and Xek is the average of the observation vectors at the fth level of factor 1 and the kth level of factor 2. 
Straightforward generalizations of ( 6-46) and ( 6-47) give the breakups of the 

sum of squares and cross products and degrees of freedom: 
g b n g 2: 2: 2: (xekr - x) (xekr - x) ' = 2: bn (i.e . - x) (xe . - x) '  €= 1 k= 1 r= 1 €= 1 

b 
+ 2: gn (x. k - x) ( x. k - x) '  k= 1 

g b 
+ 2: 2: n (xek - xe . - x. k + x) ( xe k - Xe . - x. k + x) '  €= 1 k= 1 

g b n 
+ 2: 2: 2: (xekr - Xek ) (xe kr - iek) ' (6-50) €= 1 k= 1 r= 1 

gbn - 1 = ( g - 1 ) + (b - 1 ) + (g - 1 ) ( b - 1 ) + gb (n - 1 ) (6-5 1)  

Again, the generalization from the univariate to the multivariate analysis consists 
simply of replacing a scalar such as ( xe . - :X) 2 with the corresponding matrix 
( i.e . - x) ( xe . - x) ' . 

The MANOVA table is the following: 

MANOVA TABLE FOR COMPARING FACTORS AND THEIR INTERACTION 

Source of 
variation 
Factor 1 

Factor 2 

Interaction 
Residual 
(Error) 
Total 
(corrected) 

Matrix of sum of squares 
and cross products (SSP) 

g SSPtac 1 = 2: bn ( i.e . - x) ( xe . - x) '  €= 1 
b SSPfac 2 = 2: gn ( x. k - x) (x. k - x) ' 

g b 
k = 1 

SSPint = 2: 2: n (xek - xe . - x. k + x) ( xek - xe . - x. k + x) '  €= 1 k= 1 
g b n SSPres = 2: 2: 2: (xekr - Xek ) (xekr - Xek) '  €= 1 k= 1 r= 1 
g b n SSPcor = 2: 2: 2: (xekr - x) (xekr - x) ' €= 1 k= 1 r= 1 

Degrees of 
freedom 
( d.f. ) 

g - 1 

b - 1 

( g - 1 ) ( b - 1 )  

gb(n - 1 ) 

gbn - 1 
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A test (the likelihood ratio test )5 of 
Ho : 1'1 1  == 1'12 == · · · = 1'g b  = 0 (no interaction effects) 

versus 
H1 : At least one Yek # 0 

is conducted by rejecting H0 for small values of the ratio 
I SSPres I A* =------1 SSPint + SSPres I 

(6-52) 

(6-53) 
For large samples, Wilks' lambda, A* , can be referred to a chi-square percentile. 
Using Bartlett 's multiplier (see [6] ) to improve the chi-square approximation, we re
ject H0 : y1 1 == y1 2 = · · · = 1'g b  = 0 at the a level if [ p + 1 - (g - 1 ) (b - 1 ) ] 2 - gb (n - 1 ) - 2 ln A* > X(g- 1 ) (b- 1 )p ( a) (6-54) 
where A* is given by (6-53) and XJg- 1 ) (b - 1 )p (a )  is the upper (100a)th percentile of a 
chi-square distribution with (g - 1 ) ( b - 1 ) p d.f. 

Ordinarily, the test for interaction is carried out before the tests for main fac
tor effects. If interaction effects exist, the factor effects do not have a clear inter
pretation. From a practical standpoint, it is not advisable to proceed with the 
additional multivariate tests. Instead,p univariate two-way analyses of variance (one 
for each variable) are often conducted to see whether the interaction appears in some 
responses but not others. Those responses without interaction may be interpreted in 
terms of additive factor 1 and 2 effects, provided that the latter effects exist. In any 
event, interaction plots similar to Figure 6.3 , but with treatment sample means re
placing expected values, best clarify the relative magnitudes of the main and inter
action effects. 

In the multivariate model, we test for factor 1 and factor 2 main effects as fol
lows. First, consider the hypotheses H0 : T1 = T2 = · · · = T g = 0 and H1 : at least one Te # 0. These hypotheses specify no factor 1 effects and some factor 1 effects, re
spectively. Let 

I SSPres I A* =-------1 SSPfac 1 + SSPres I (6-55) 
so that small values of A* are consistent with H1 • Using Bartlett 's correction, the likelihood ratio test is as follows: 

Reject H0 : T1 = T2 = · · · = Tg = 0 (no factor 1 effects) at level a if 
1 p + 1 - (g - 1 ) ] - l  gb (n - 1 ) - 2 ln A* > x{g- l )p(a) (6-56) 

where A* is given by (6-55) and XJg- 1 )p( a) is the upper (100a)th percentile of a chisquare distribution with ( g - 1 ) p d.f. 
5The likelihood test procedures require that p ::; gb (n - 1 ) ,  so that SSPres will be positive definite 

(with probability 1) .  
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In a similar manner, factor 2 effects are tested by considering H0 : /3 1  == 

P2 = · · · = f3 b = 0 and H1 : at least one f3 k # 0. Small values of 
I SSPres I A* = (6-57) 

I SSPfac2 + SSPres I 
are consistent with H1 . Once again, for large samples and using Bartlett 's correction: Reject H0 : /31 = /32 = · · · = f3b = 0 (no factor 2 effects) at level a if [ p + 1 - (b - 1 ) ] - gb(n - 1 ) - 2 ln A* > xJb- l )p (a )  ( 6-58) 

where A* is given by (6-57) and xfb- l )p( a) is the upper (100a)th percentile of a chisquare distribution with ( b - 1 )p degrees of freedom. 
Simultaneous confidence intervals for contrasts in the model parameters can 

provide insights into the nature of the factor effects. Results comparable to Result 
6.5 are available for the two-way model. When interaction effects are negligible, we 
may concentrate on contrasts in the factor 1 and factor 2 main effects. The Bonfer
roni approach applies to the components of the differences Te - T m of the factor 1 
effects and the components of f3 k - f3 q of the factor 2 effects, respectively. The 100 ( 1 - a)% simultaneous confidence intervals for Te i - T mi are ( a ) {£;;2 Te ; - Tm ; belongs to ( ie ; . - im ; . ) ± tv pg(g - 1 ) \j � bn ( 6-59) 

where v = gb (n - 1 ) , Ei i is the ith diagonal element of E = SSPres , and "ie i · - Xm 1 • is the ith component of X e . - Xm . .  
Similarly, the 100 ( 1 - a)% simultaneous confidence intervals for f3ki - /3q 1  are ( a ) {£;;2 /3k ; - /3q ; belongs to (i. k ; - i. q ; ) ± tv pb (b _ 1 )  \j �g;; (6-60) 

where v and Ei i are as just defined and x. k i  - x. q i is the ith component of x. k - x. q ·  

Comment. We have considered the multivariate two-way model with repli
cations. That is, the model allows for n replications of the responses at each combi
nation of factor levels. This enables us to examine the "interaction" of the factors. If 
only one observation vector is available at each combination of factor levels, the two
way model does not allow for the possibility of a general interaction term y e k .  The 
corresponding MAN OVA table includes only factor 1 , factor 2, and residual sources 
of variation as components of the total variation. (See Exercise 6.13 . ) 

Examp le  6 . 1 1 {A two-way mu ltivariate ana lysis of variance 
of p lastic fi lm  data) 

The optimum conditions for extruding plastic film have been examined using a 

technique called Evolutionary Operation. (See [8] .) In the course of the study 
that was done, three responses-X1 = tear resistance, X2 = gloss , and 
X3 = opacity-were measured at two levels of the factors, rate of extrusion 
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TABLE 6.4 PLASTIC FI LM DATA 

x1 = tear resistance, x2 = gloss, and x3 = opacity 
Factor 2: Amount of additive 
Low (1 .0%) High (1 .5%) 
xl x2 x3 xl x2 x3 
- - - - - -

[6.5 9.5 4.4] [6 .9 9. 1 5.7] 
[6.2 9.9 6.4] [7.2 10.0 2.0] 

Low (-10)% [5 .8 9.6 3.0] [6.9 9.9 3.9] 
[6.5 9.6 4.1] [6. 1 9.5 1 .9] 

Factor 1: Change [6.5 9.2 0.8] [6.3 9.4 5.7] 
in rate of extrusion xi x2 x3 xl x2 x3 

- - - - - -

[6.7 9.1 2.8] [7 . 1 9.2 8.4] 
[6.6 9.3 4.1] [7.0 8.8 5.2] 

High (10%) [7.2 8.3 3.8] [7.2 9.7 6.9] 
[7. 1 8.4 1 .6] [7 .5 10.1 2.7] 
[6.8 8.5 3.4] [7.6 9.2 1 .9] 

and amount of an additive. The measurements were repeated n = 5 times at 
each combination of the factor levels. The data are displayed in Table 6.4. 

The matrices of the appropriate sum of squares and cross products were 
calculated (see the SAS statistical software output in Panel 6 . 1 ) , leading to the 
following MANOVA table: 
Source of variation 

change in rate Factor 1 : . of extrusion 

amount of Factor 2: dd. . a 1t1ve 

Interaction 

Residual 

Total (corrected) 

SSP [ 1 .7405 -1 .5045 
1 .3005 [ .7605 .6825 
.6125 [ .0005 .0165 
.5445 [ 1 .7640 .0200 
2.6280 [ 4.2655 - .7855 
5.0855 

d.f. 
.8555 ] 
- .7395 1 
.4205 
1 .9305 ] 
1 .7325 1 
4.9005 
.0445 ] 
1 .4685 1 
3.9605 
-3.0700 ] 
- .5520 16 
64.9240 
- .2395 ] 
1 . 9095 19 
74.2055 
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PANEL 6.1  SAS ANALYSIS FOR EXAM PLE 6 . 1 1  US ING PROC GLM.  

t i t le  'MANOVA'; 
data f i lm;  
i nfi l e  'T6-4.dat'; 
i n put x1 x2 x3 factor 1  factor2; 
proc g l m  data = fi lm ;  PROGRAM COM MANDS 
c l ass factor 1  facto r2; 
model x1 x2 x3 = factor 1  factor2 factor 1  *factor2 jss3; 
man ova h = factor 1  factor2 factor1  *factor2 jpr i nte; 
means factor 1 factor2; 

Genera l  L inear  Models Proced u re 
Cl ass Leve l I nformation 

Sou rce 
Model  
E rro r 
Corrected Tot a I 

Sou rce 

Sou rce 
Mode l  
E rro r 
Corrected Tot a I 

Sou rce 

C lass 
FACTOR 1  
FACTOR2 

Leve ls  
2 
2 

Va l ues 
0 1 
0 1 

Number of observat ions i n  data set = 20 

DF  Sum of  Sq uares Mean Sq ua re 
3 2 . 501 50000 0.83383333 

1 6  1 .76400000 0. 1 1 025000 
1 9  4.26550000 

R-Sq uare C.V. Root MSE 
0 . 586449 4.893724 0 .332039 

DF Type I l l  SS Mean Square 

1 .74050000 
0 . 76050000 
0.00050000 

DF Sum of Sq ua res Mean Square 
3 2.457 50000 0 .8 1 9 1 6667 

1 6  2 . 62800000 0 . 1 642 5000 
1 9  5 .08550000 

R-Sq uare C.V. Root MSE 
0.483237 4.350807 0.405278 

DF Type I l l  SS Mean Sq ua re 

1 .30050000 
0 .6 1 250000 
0 . 54450000 

F Va l ue  
7 . 56 

F Va l ue  

1 5 .79 
6.90 
0.00 

F Va l ue  
4 .99 

F Va lue  

7.92 
3 .73 
3 .32 

OUTPUT 

Pr > F 
0 .0023 

X1  Mean 
6.78500000 

Pr > F 

0 .00 1 1 
0 .0 1 83 
0 .947 1 

Pr > F 
0 .0 1 25  

X2  Mean 
9 .3 1 500000 

Pr  > F 

0 .0 1 25  
0 .07 1 4  
0 .0874 
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Sou rce 
Mode l 
E rror 
Corrected Tota l  

Sou rce 

P i l la i 's Trace 
Hotel l i ng-Lawley Trace 
Roy's G reatest Root 

P i l l a i 's Trace 
Hotel l i ng-Lawley Trace 
Roy's G reatest Root 
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DF 
3 

1 6  
1 9  

R-Sq uare 
0 . 1 25078 

X 1  
X2 
X3 

DF 

Sum of Squares 
9 .281 50000 

64. 92400000 
74. 20550000 

C.V. 
5 1 . 1 9 1 5 1  

Type I l l  55 

X1 
1 .764 
0 .02 

-3 .07 

Mean Square F Va l ue  
3 .09383333 
4 .05775000 

Root MSE  
2 . 0 1 4386 

Mean Sq ua re 

0 .42050000 
4.90050000 
3 .96050000 

X3 
-3 .07 

-0 . 552  

0 .76 

F Va l ue  

0 . 1 0  
1 . 2 1  
0.98 

X2 
0 .02 

2 .628 
-0. 5 52 64.924 

Manova Test Criteria and Exact F Statistics for 

the 

H = Type I l l  SS&CP Matrix for FACTOR 1  
S = 1 M = 0 . 5  

0. 6 1 8 1 41 62 
1 . 6 1 877 1 88 
1 . 6 1 877 1 88 

7 . 5543 
7 . 5543 
7 . 5543 

E = E rror SS&CP Matrix 
N = 6 

3 
3 
3 

Manova Test Criter ia  and  Exact F Statistics for 

the 

H = Type I l l  SS&CP Matrix for FACTOR2 
S = 1 M = 0 . 5  

0 .476965 1 0  
0 .9 1 1 9 1 832 
0 . 9 1 1 9 1 832 

4 .2556 
4 .2556 
4 .2556 

E = E rror SS&CP Matrix 
N = 6  

3 
3 
3 

1 4  
1 4  
1 4  

1 4  
1 4  
1 4  

P r  > F 
0 . 53 1 5  

X3 Mean 
3 .93 500000 

Pr > F 

0 .7 5 1 7  
0 .288 1 
0 .3379 

0 .0030 
0 .0030 
0 .0030 

0 .0247 
0 .0247 
0 .0247 

(continues on next page) 
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PANEL 6.1 (continued) 

Manova Test Criter ia and Exact F Statistics for 

the 

H = Type I l l  SS&CP Matrix fo r FACTOR1  * FACTOR2 E = E rror SS&CP Matrix 
S = 1 M = 0.5 N = 6 

P i l l a i 's Trace 
Hotel l i ng-Lawley Trace 
Roy's G reatest Root 

0 .22289424 
0 .286826 1 4  
0 .286826 1 4  

1 .3385 
1 . 3385 
1 . 3385 

3 
3 
3 

1 4  
1 4  
1 4  

0.30 1 8  
0 .30 1 8  
0 .30 1 8  

Level of 
FACTOR 1  
0 

Leve l of 
FACTOR2 
0 

N 
1 0  
1 0  

Level of 
FACTOR 1  
0 

N 
1 0  
1 0  

Leve l of 
FACTOR2 
0 

- - - - - - - - - X1 - - - - - - - - - - - - - - - - - - X2 - - - - - - - - -
Mean 

6 .49000000 
7. 08000000 

N 
1 0  
1 0  

SD 
0.4201 85 1 4  
0 .3224903 1 

Mean 
9. 57000000 
9 .06000000 

- - - - - - - - - X3 - - - - - - - - -
Mean 

3 . 79000000 
4.08000000 

SD 
1 .8537949 1 
2 . 1 82 1 4981  

SD 
0 .29832868 
0 . 57580861  

- - - - - - - - - X 1 - - - - - - - - - - - - - - - - - - X2 - - - - - - - - -
Mean SD Mean SD 

6 . 59000000 0 .40674863 9. 1 4000000 0 .560 1 587 1 
6 . 98000000 0.47328638 9.49000000 0.42804465 

- - - - - - - - - X3 - - - - - - - - -
N Mean SD 

1 0  3 .44000000 1 . 55077042 
1 0  4.43000000 2 . 30 1 23 1 55 

To test for interaction, we compute 
A* = I SSPres I = 275.7098 = _7771 I SSPint + SSPres I 354.7906 

For ( g - 1 ) ( b - 1 ) = 1 , ( 1 - A* ) (gb (n - 1 ) - p + 1 )/2 F =  A* ( l (g - 1 ) ( b - 1 ) - p l + 1 )/2 
has an exact F-distribution with v1 = I (g - 1 ) (b - 1 ) - p I + 1 and v2 == 
gb (n - 1 ) - p + 1 d.f. (See [1] . ) For our example. 

- ( 1 - .7771 ) (2 (2 ) (4) - 3 + 1 )/2 -F - .7771 ( 1 1 ( 1 ) - 3 1  + 1 )/2 - 1 .34 
V1 = ( 1 1  ( 1 ) - 3 1  + 1 ) = 3 
v2 == ( 2 ( 2) ( 4) - 3 + 1 ) == 14 
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and F3, 14 ( .05 ) = 3.34. Since F = 1.34 < F3, 14 ( .05 ) = 3.34, we do not reject the hypothesis H0 : y1 1  = y1 2  = y2 1 = y22 = 0 (no interaction effects) . 
Note that the approximate chi-square statistic for this test is - [2 (2) ( 4) -

(3 + 1 - 1 ( 1 ) )/2 ] ln( .7771 ) = 3.66, from (6-54) . Since x�( .05 ) = 7.81 , we 
would reach the same conclusion as provided by the exact F-test. 

To test for factor 1 and factor 2 effects (see pages 311 and 312), we calculate 

Af = I SSPres I = 275 .7098 = 3819 I SSPfac 1 + SSPres I 722.0212 
and 

A! = I SSPres I = 275 .7098 = 5230 I SSPfac 2 + SSPres I 527 .1347 
For both g - 1 = 1 and b - 1 = 1, 

and 

F = ( 1 - Ai ) (gb ( n  - 1 ) - p + 1 )/2 1 Ai ( l ( g - 1 ) - p l + 1 )/2 

_ ( 1 - Ai ) (gb ( n - 1 ) - p + 1 )/2 
F2 - Ai ( l ( b - 1 ) - p l + 1 )/2 

have F-distributions with degrees of freedom v1 = I ( g  - 1 ) - p I + 1, v2 = 
gb ( n  - 1 ) - p + 1 and v1 = I ( b  - 1 ) - p I + 1, v2 = gb (n  - 1 ) - p + 1, 
respectively. (See [1] . ) In our case, 

and 

( 1 - .3819 ) ( 16 - 3 + 1)/2 F1 = .3819 ( 1 1 - 3 1 + 1 )/2 = 7 .55 ( 1 - .5230 ) ( 16 - 3 + 1 )/2 F2 = .5230 ( 1 1 - 3 1 + 1 )/2 = 4·26 

v1 = 1 1 - 3 1  + 1 = 3 v2 = ( 16 - 3 + 1 ) = 14 
From before, F3, 14 ( .05 ) = 3.34. We have F1 = 7.55 > F3, 14 ( .05 ) = 3.34, and therefore, we reject H0 : T1 = T2 = 0 (no factor 1 effects) at the 5% level. 

Similarly, F2 = 4.26 > F3, 14 ( .05 ) = 3.34, and we reject H0 : /31 = /32 = 0 (no 
factor 2 effects) at the 5% level. We conclude that both the change in rate of ex
trusion and the amount of additive affect the responses, and they do so in an 
additive manner. 

The nature of the effects of factors 1 and 2 on the responses is explored 
in Exercise 6.15 . In that exercise, simultaneous confidence intervals for con
trasts in the components of Te and f3k are considered. • 
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6.7 PROFILE ANALYSIS 

Profile analysis pertains to situations in which a battery of p treatments (tests, ques
tions, and so forth) are administered to two or more groups of subjects. All responses 
must be expressed in similar units. Further, it is assumed that the responses for the 
different groups are independent of one another. Ordinarily, we might pose the ques
tion, are the population mean vectors the same? In profile analysis, the question of 
equality of mean vectors is divided into several specific possibilities. 

Consider the population means IL1 = [JL1 1 , JL1 2 , JL1 3 ,  JL1 4 ] representing the av

erage responses to four treatments for the first group. A plot of these means, con

nected by straight lines, is shown in Figure 6.4. This broken-line graph is the profile 
for population 1 . 

Profiles can be constructed for each population (group) . We shall concentrate 
on two groups. Let IL1 = [JL1 1 , JL1 2 , . . .  , JL1 p ] and IL2 = [JL2 1 , JL22 , . . .  , JL2p ] be the mean responses to p treatments for populations 1 and 2, respectively. The hypothe
sis Ha : IL l = IL2 implies that the treatments have the same (average) effect on the two populations. In terms of the population profiles, we can formulate the question of 
equality in a stepwise fashion. 

1. Are the profiles parallel? 
Equivalently: Is Ha1 : JLl i - JLl i- l = JL2 i - JL2 i- l , i = 2, 3, . . .  , p, acceptable? 

2. Assuming that the profiles are parallel, are the profiles coincident?6 
Equivalently: Is Ha2 : JLl i = JL2 i , i = 1 , 2, . . . , p, acceptable? 

3. Assuming that the profiles are coincident, are the profiles level? That is, are all 
the means equal to the same constant? 
Equivalently: Is Ha3 : JL1 1  = JL1 2 = · · · = JL1 P = JL2 1 = JL22 = · · · = JL2p acceptable? 
The null hypothesis in stage 1 can be written 

Ha1 : CIL1 = CIL2 
where C is the contrast matrix 
Mean 

response 

2 3 4 
Variable Figure 6.4 The popu l at ion profi l e  

p = 4 .  

6The question, "Assuming that the profiles are parallel, are the profiles linear?" i s  considered in Ex
ercise 6.12. The null hypothesis of parallel linear profiles can be written H0 : (JL 1 � + JL2 1 ) - (JL1 1 - 1 + JL2 1 - 1 )  
= (JLI L - 1 + JL2 1 - 1 ) - (JL1 1 -2 + JL2 1 -2) , i = 3, . . .  , p.  Although this hypothesis may be of interest in a par
ticular situation, in practice the question of whether two parallel profiles are the same (coincident) , what
ever their nature, is usually of greater interest. 
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-1 1 0 0 0 0 
c 

0 -1 1 0 0 0 (6-61) = 

( (p- l ) Xp) 
0 0 0 0 -1 1 

For independent samples of sizes n1 and n2 from the two populations, the null hypothesis can be tested by constructing the transformed observations 
j = 1, 2, . . .  , n1 and 
j = 1 , 2, . . .  , n2 

These have sample mean vectors C x 1 and C x2 , respectively, and pooled covariance rna trix cspooled c ' .  
Since the two sets of transformed observations have Np- l ( CIL1 , CIC ' ) and 

Np- l ( CIL2 , CIC ' ) distributions, respectively, an application of Result 6.2 provides a 
test for parallel profiles. 

When the profiles are parallel, the first is either above the second (J..L1 i > J..L2 i ,  for all i) , or vice versa. Under this condition, the profiles will be coincident only if the 
total heights J..L1 1  + J..L1 2  + · · · + J..Ll p = 1' IL l and J..L2 1  + J..L22 + · · · + J..L2 p = 1' �L2 are equal. Therefore, the null hypothesis at stage 2 can be written in the equivalent form 

Ho2 : 1' IL1 = 1' IL2 
We can then test H02 with the usual two-sample t-statistic based on the univariate observations l ' x1 j ,  j = 1, 2, . . . , n1 , and 1' x2j ,  j = 1, 2, . . .  , n2 • 
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For coincident profiles, x1 1 , x1 2 , . . .  , x 1 n 1 and x2 1 , x22 , . . .  , x2 n2 are all observations from the same normal population. The next step is to see whether all variables have the same mean, so that the common profile is level. 
When H0 1 and H0 2 are tenable, the common mean vector J.L is estimated, using 

all n1 + n2 observations, by 
1 ( n1 n2 ) n n - """ """ 1 - 2 -X = .£,; X1 · + .£,; X2 · = X 1  + X2 n1 + n2 1 = 1 1 j= l  1 ( nl + n2 ) ( n l + n2 ) 

If the common profile is level, then f..Ll = f..L2 = · · · = f..Lp , and the null hypothesis at stage 3 can be written as 
Ho3 : Cp., = 0 

where C is given by (6-61) . Consequently, we have the following test. 

Example 6 . 1 2  (A profi le analysis  of love and marriage data) 

As part of a larger study of love and marriage, E. Hatfield, a sociologist, sur
veyed adults with respect to their marriage "contributions" and "outcomes" 
and their levels of "passionate" and "companionate" love. Recently married 
males and females were asked to respond to the following questions, using the 
8-point scale in the figure below. 

2 3 4 5 6 7 8 

1. All things considered, how would you describe your contributions to the 
marriage? 

2. All things considered, how would you describe your outcomes from the 
marriage? 

Subjects were also asked to respond to the following questions, using 
the 5-point scale shown. 

3. What is the level of passionate love that you feel for your partner? 
4. What is the level of companionate love that you feel for your partner? 
None 
at all 

Very 
little 

2 

Some 

3 

A great 
deal 

4 

Tremendous 
amount 

5 
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x1 == an 8-point scale response to Question 1 
x2 == an 8-point scale response to Question 2 
x3 == a 5-point scale response to Question 3 

x4 == a 5-point scale response to Question 4 
and the two populations be defined as 

Population 1 == married men 
Population 2 == married women 

The population means are the average responses to the p == 4 questions 
for the populations of males and females. Assuming a common covariance ma
trix I, it is of interest to see whether the profiles of males and females are the 
same. 

A sample of n1 == 30 males and n2 == 30 females gave the sample mean 
vectors 

6.833 
7.033 
3.967 ' 
4.700 
(males ) 

and pooled covariance matrix 
.606 

Spooled == .262 .066 
.161 

.262 

.637 

.173 

.143 

6.633 
7.000 
4.000 
4.533 
( females) 

.066 .161 

.173 .143 

.810 .029 

.029 .306 
The sample mean vectors are plotted as sample profiles in Figure 6.5 on page 322. 

Since the sample sizes are reasonably large, we shall use the normal the
ory methodology, even though the data, which are integers, are clearly nonnor
mal. To test for parallelism (H0 1 :  CJL1 == CP-2) , we compute [ -1 1 � ] Spooled 

-1 0 0 0 1 -1 CSpooiectC ' = � -1 1 0 
0 1 -1 0 -1 0 0 1 [ .719 - .268 - .125 ] == - .268 1 . 101 - .751 

- .125 -.751 1 .058 
and [ -1 1 0 �] 

.200 [ - .167 ] .033 C (X1 - X2) = � -1 1 == - .066 - .033 0 -1 .200 .167 



322 Chapter 6 Compar i sons of Seve ra l Mu ltivar i ate Means 

Sample mean 
response x Ci 

6 

4 

2 

Key: 
X-X Males 
o- - o Females 

X �-o �0� X 

�������������������� v�i�k Figure 6.5 Sample  profi les for 
2 3 4 marr iage-love responses. 

Thus, [ .719 
T2 = [ - .167, - .066, .200] ( 310 + 310 )-1 - .268 

- .125 
= 15 ( .067 ) = 1 .005 

- .268 
1 . 101 
- .751 

- .125 ]-l [ - .167 ] 
- .751 - .066 
1 .058 .200 

Moreover, with a = .05, c2 = [ ( 30 + 30 - 2 ) ( 4 - 1 )/(30 + 30 - 4) ]F;,, 56 ( .05 ) 
= 3 .11 (2.8 ) = 8.7. Since T2 = 1 .005 < 8.7, we conclude that the hypothesis of 
parallel profiles for men and women is tenable. Given the plot in Figure 6.5, this 
finding is not surprising. 

Assuming that the profiles are parallel, we can test for coincident profiles. 
To test H02 : 1 ' JL1 = 1' JL2 (profiles coincident) , we need 

Sum of elements in ( x1 - x2) = 1 ' ( x1 - x2) = .367 
Sum of elements in Spoolect = 1 ' Spoolect1 = 4.207 

Using (6-63) , we obtain 

T2 = ( .367 )2 = .501 V( 310 + 31o )4.027 
With a = .05, F1,58 ( .05 ) = 4.0, and T2 = .501 < F1, 58 ( .05 ) = 4.0, we cannot re
ject the hypothesis that the profiles are coincident. That is, the responses of 
men and women to the four questions posed appear to be the same. 

We could now test for level profiles; however, it does not make sense to 
carry out this test for our example, since Questions 1 and 2 were measured on 
a scale of 1-8, while Questions 3 and 4 were measured on a scale of 1-5 . The 
incompatibility of these scales makes the test for level profiles meaningless and 
illustrates the need for similar measurements in order to carry out a complete 
profile analysis. B 
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When the sample sizes are small, a profile analysis will depend on the normal
ity assumption. This assumption can be checked, using methods discussed in Chap
ter 4, with the original observations xej or the contrast observations Cxej · The analysis of profiles for several populations proceeds in much the same fash
ion as that for two populations. In fact, the general measures of comparison are anal
ogous to those just discussed. (See [13] .) 

6.8 REPEATED M EASURES DES IGNS AN D GROWTH CURVES 

As we said earlier, the term "repeated measures" refers to situations where the same 
characteristic is observed, at different times or locations, on the same subject. 
(a) The observations on a subject may correspond to different treatments as in Ex
ample 6.2 where the time between heartbeats was measured under the 2 X 2 
treatment combinations applied to each dog. The treatments need to be com
pared when the responses on the same subject are correlated. 

(b) A single treatment may be applied to each subject and a single characteristic ob
served over a period of time. For instance, we could measure the weight of a 
puppy at birth and then once a month. It is the curve traced by a typical dog 
that must be modeled. In this context, we refer to the curve as a growth curve. 
When some subjects receive one treatment and others another treatment, 

the growth curves for the treatments need to be compared. 
To illustrate the growth curve model introduced by Potthoff and Roy [15] , we 

consider calcium measurements of the dominant ulna bone in older women. Besides 
an initial reading, Table 6.5 gives readings after one year, two years, and three years 

TABLE 6 .5 CALC IUM MEASUREMENTS ON TH E DOM I NANT ULNA; 
CONTROL GROUP  

Subject Initial 1 year 2 year 3 year 
1 87.3 86.9 86.7 75.5 
2 59.0 60.2 60.0 53.6 
3 76.7 76.5 75.7 69.5 
4 70.6 76.1 72. 1 65.3 
5 54.9 55.1 57.2 49.0 
6 78.2 75.3 69.1 67.6 
7 73.7 70.8 71 .8 74.6 
8 61.8 68.7 68.2 57.4 
9 85.3 84.4 79.2 67.0 
10 82.3 86.9 79.4 77.4 
11 68.6 65.4 72.3 60.8 
12 67.8 69.2 66.3 57.9 
13 66.2 67.0 67.0 56.2 
14 81 .0 82.3 86.8 73.9 
15 72.3 74.6 75.3 66.1 
Mean 72.38 73.29 72.47 64.79 

Source: Data courtesy of Everett Smith. 
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for the control group. Readings obtained by photon absorptiometry from the same 

subject are correlated but those from different subjects should be independent. The 

model assumes that the same covariance matrix I holds for each subject. Unlike univariate approaches, this model does not require the four measurements to have 

equal variances. A profile, constructed from the four sample means ( x1 , x2 , x3 , x4 ) ,  
summarizes the growth which here is a loss of calcium over time. Can the growth pat
tern be adequately represented by a polynomial in time? 

When the p measurements on all subjects are taken at times t1 , t2 , • • •  , t P , the 
Potthoff-Roy model for quadratic growth becomes 

f3o + f3I t1 + f32ti 
f3o + f3 I t2 + f32t� 

where the ith mean JLi is the quadratic expression evaluated at ti . Usually groups need to be compared. Table 6.6 gives the calcium measure 
ments for a second set of women, the treatment group, that received special help with 
diet and a regular exercise program. 

When a study involves several treatment groups, an extra subscript is needed as 
in the one-way MAN OVA model. Let Xe 1 , Xe2 , . . .  , Xenc be the ne vectors of mea-surements on the ne subjects in group e, for e = 1, . . .  ' g. 

TABLE 6 .6 CALC IUM MEASUREMENTS ON TH E DOM I NANT ULNA; 
TREATM ENT GROUP 

Subj ect Initial 1 year 2 year 3 year 
1 83.8 85.5 86.2 81 .2 
2 65.3 66.9 67.0 60.6 
3 81.2 79.5 84.5 75.2 
4 75.4 76.7 74.3 66.7 
5 55.3 58.3 59 .1 54.2 
6 70.3 72.3 70.6 68.6 
7 76.5 79.9 80.4 71 .6 
8 66.0 70.9 70.3 64. 1 
9 76.7 79.0 76.9 70.3 
10 77.2 74.0 77.8 67 .9 
11 67.3 70.7 68.9 65.9 
12 50.3 51 .4 53.6 48.0 
13 57.7 57.0 57.5 51 .5 
14 74.3 77.7 72.6 68.0 
15 74.0 74.7 74.5 65.7 
16 57.3 56.0 64.7 53.0 
Mean 69.29 70.66 71.18 64.53 

Source: Data courtesy of Everett Smith. 
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Assump t ions. All of the Xej are independent and have the same covariance matrix I. Under the quadratic growth model, the mean vectors are 

E[Xej ] = 

where 

f3eo + f3e 1 t1 + f3e2ti 1 t1 ti 
f3eo + f3e 1 t2 + f3e2t� 1 t2 t� 

1 tp t� 

[f3eo] 
f3e 1 = Bf3e 
f3e2 

B = 

1 
1 

1 tp t� 

[ f3eo] 
and f3e = Pe 1 

Pe2 

If a qth-order polynomial is fit to the growth data, then 

B = and f3e = 

f3eo 
Pe 1 

1 tP t� /3eq 

(6-65) 

(6-66) 

Under the assumption of multivariate normality, the maximum likelihood esti
mators of the f3e are 

where 
1 1 

Spooled = (N _ g) 
( (nl - l ) Sl + 0 0 0 + (ng - l ) Sg) = N _ g W 

g 

(6-67) 

with N = � ne , is the pooled estimator of the common covariance matrix I. The 
€= 1  estimated covariances of the maximum likelihood estimators are 

---- A k -l Cov ( f3e ) = - (B' S�;olectB ) for f = 1 , 2, . . . , g ne 

where k = (N - g) (N - g - 1 )/(N - g - p + q) (N - g - p + q + 1 ) . 
Also, f3e and f3h are independent, for e =I= h, so their covariance is 0. 

(6-68) 

We can formally test that a qth-order polynomial is adequate. The model is fit 
without restrictions, the error sum of squares and cross products matrix is just the 
within groups W that has N - g degrees of freedom. Under a qth-order polynomi
al, the error sum of squares and cross products 

g ne A A 

Wq = � � (Xej - Bf3e) (Xej - Bf3e) ' 
€= 1  j= l  

(6-69) 
has ng - g + p - q - 1 degrees of freedom. The likelihood ratio test of the null 
hypothesis that the q-order polynomial is adequate can be based on Wilks ' lambda 
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A* = I W I  I Wq l (6-70) 
Under the polynomial growth model, there are q + 1 terms instead of the p me ans for each of the groups. Thus there are (p - q - 1 ) g fewer parameters. For large 
sample sizes, the null hypothesis that the polynomial is adequate is rejected if 

- ( N - � (p - q + g ) ) ln A* > xfp-q- l Jg (a )  ( 6-7 1 ) 

Example 6 . 1 3  {Fitting a quadratic growth cu rve to ca lci um loss) 

Refer to the data in Tables 6.5 and 6.6 . Fit the model for quadratic growth. 
A computer calculation gives [ 73.0701 70. 1387 ] 

[ {3 1 , P2J = 3 .6444 4.o9oo 
-2.0274 -1 .8534 

so the estimated growth curves are 

where 

Control group: 73 .07 + 3 .64t - 2.03t2 
(2.58 ) ( .83 ) ( .28 ) 

Treatment group: 70. 14 + 4.09t - 1 .85t2 
(2.50) ( .80) ( .27 ) [ 93. 1744 -5.8368 0.2184 ] 

(B ' S�;olectB )-1 = -5.8368 9 .5699 -3.0240 
0.2184 -3.0240 1 .1051 

and, by (6-68) , the standard errors given below the parameter estimates were 
obtained by dividing the diagonal elements by ne and taking the square root . Examination of the estimates and the standard errors reveals that the t2 
terms are needed. Loss of calcium is predicted after 3 years for both groups. 
Further, there does not seem to be any substantial difference between the two 
groups. 

Wilks' lambda for testing the null hypothesis that the quadratic growth 
model is adequate becomes 

2726.282 2660.749 2369.308 2335.912 
2660.749 2756.009 2343 .514 2327.961 
2369.308 2343 .514 2301 .714 2098 .544 

A* = � =  2335.912 2327.961 2098.544 2277.452 = .7627 I W2 1 2781 .017 2698.589 2363.228 2362.253 
2698.589 2832.430 2331 .235 2381 .160 
2363 .228 2331 .235 2303 .687 2089.996 
2362.253 2381 .160 2089.996 2314.485 



Sect ion 6 .9  Perspect ives and a Strategy for  Ana lyz i ng  M u lt ivar iate Models  327 

Since, with a = .01 , 
- ( N - � (p - q + g) ) ln A* = - ( 31 - � (4 - 2 + 2) ) 1n .7627 

= 7.86 < XJ4-2- 1 )2 ( .01 ) = 9.21 
we fail to rej ect the adequacy of the quadratic fit at a = .01. Since the p-value 
is less than .05 there is, however, some evidence that the quadratic does not fit 
well. 

We could, without restricting to quadratic growth, test for parallel and co-
incident calcium loss using profile analysis. • 

The Potthoff and Roy growth cu�ve model holds for more general designs than 
one-way MANOVA. However, the f3e are no longer given by (6-67) and the ex
pression for its covariance matrix becomes more complicated than (6-68) . We refer 
the reader to [12] for more examples and further tests. 

There are many other modifications to the model treated here. They include the 
following: 
(a) Dropping the restriction to polynomial growth. Use nonlinear parametric mod
els or even nonparametric splines. 

(b) Restricting the covariance matrix to a special form such as equally correlated 
responses on the same individual. 

(c) Observing more than one response variable, over time, on the same individual. 
This results in a multivariate version of the growth curve model. 

6.9 PERSPECTIVES AN D A STRATEGY FOR ANALYZING 
MULTIVARIATE MODELS 

We emphasize that, with several characteristics, it is important to control the overall 
probability of making any incorrect decision. This is particularly important when 
testing for the equality of two or more treatments as the examples in this chapter in
dicate. A single multivariate test, with its associated single p-value, is preferable to 
performing a large number of univariate tests. The outcome tells us whether or not 
it is worthwhile to look closer on a variable by variable and group by group analysis. 

A single multivariate test is recommended over, say,p univariate tests because, 
as the next example demonstrates, univariate tests ignore important information and 
can give misleading results. 
Example 6 . 14  (Compar ing multivariate and  u n ivariate tests 

for the differences i n  means) 

Suppose we collect measurements on two variables X1 and X2 for ten randomly selected experimental units from each of two groups. The hypothetical data 
are noted here and displayed as scatter plots and marginal dot diagrams in Fig
ure 6.6 on page 328. 
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x

2 

+ 8 + 
0 

+ 7 
+ o 
+ o 6 + 8 + o 
+ 5 
+ O 
+ 4 0 0 0 3 

Group 
5.0 3.0 1 
4.5 3.2 1 
6.0 3.5 1 
6.0 4.6 1 
6.2 5.6 1 
6.9 5.2 1 
6.8 6.0 1 
5.3 5.5 1 
6.6 7.3 1 
7.3 6.5 1 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ... - - - - --

x

2 

4.6 4.9 2 
4.9 5.9 2 
4.0 4.1 2 
3.8 5.4 2 
6.2 6.1 2 
5.0 7.0 2 
5.3 4.7 2 
7.1 6.6 2 
5.8 7.8 2 
6.8 8.0 2 

+ + 
0 

+ 

[I] 2 

+ 0 
+ 0 + 0 0 0 

+ + 0 

0 0 0 
4 5 6 7 

+ + + + +  + + 0 + + + 
I 0 ? 0 ? 0 0 0 0 1  0 

----�------�---------r--------�------�· X I  

Figure 6.6 Scatter p lots and marg i na l  dot d iag rams fo r the data from two g roups .  
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It is clear from the horizontal marginal dot diagram that there is consid
erable overlap in the x1 values for the two groups. Similarly, the vertical marginal dot diagram shows there is considerable overlap in the x2 values for the two groups. The scatter plots suggest that there is fairly strong positive corre
lation between the two variables for each group, and that, although there is 
some overlap, the group 1 measurements are generally to the southeast of the 
group 2 measurements. 

Let IL1 == [JL1 1 , JL1 2] be the population mean vector for the first group, and let IL2 == [JL2 1 , JL22 ] be the population mean vector for the second group. Using the x1 observations, a univariate analysis of variance gives F == 2.46 with v1 == 1 
and v2 == 18 degrees of freedom. Consequently, we cannot reject H0 : JL1 1 == JL2 1 at any reasonable significance level (F1 , 18 ( .10) == 3.01 ) . Using the x2 observations, a univariate analysis of variance gives F == 2.68 with v1 == 1 and v2 == 18 
degrees of freedom. Again, we cannot reject H0 : JL1 2 == JL22 at any reasonable significance level. The univariate tests suggest there is no difference between 
the component means for the two groups, and hence we conclude ILl == IL2 • On the other hand, if we use Hotelling's T2 to test for the equality of the ( 18 ) ( 2) mean vectors, we find T2 = 17.29 > c2 = 17 F2, n( .01 ) = 2 .118 X 6 .11 = 

12.94 and we reject H0 : ILl == IL2 at the 1% level. The multivariate test takes into account the positive correlation between the two measurements for each 
group-information that is unfortunately ignored by the univariate tests. This 
T2-test is equivalent to the MANOVA test (6-38) . • 

Example 6 . 1 5 (Data on l i zards that requ i re a bivariate test to estab l i sh 
a d ifference in  means) 

A zoologist collected lizards in the southwestern United States. Among other 
variables, he measured mass (in grams) and the snout-vent length (in millime
ters) . Because the tails sometimes break off in the wild, the snout-vent length 
is a more representative measure of length. The data for the lizards from two 
genera, Cnemidophorus (C) and Sceloporus (S), collected in 1997 and 1999 are 
given in Table 6.7. Notice that there are n1 == 20 measurements for C lizards and 
n2 == 40 measurements for S lizards. 

After taking natural logarithms, the summary statistics are 
C: n1 == 20 x == [2.240] S == [0.35305 0.09417] 1 4.394 1 0.09417 0.02595 
S: n2 == 40 [2.368] [0.50684 0.14539] x2 = 4.308 82 == 0. 14539 o.04255 

A plot of mass (Mass) versus snout-vent length (SVL) , after taking natural log
arithms, is shown in Figure 6.7. The large sample individual 95% confidence in
tervals for the difference in ln(Mass) means and the difference in ln(SVL) means 
both cover 0. 

ln(Mass ) : JL1 1 - JL2 1 : 
ln(SVL) : JL1 2 - JL22 : 

( -0.476, 0.220) 
( -0.01 1 , 0.183 ) 
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TABLE 6.7 LIZARD DATA FOR TWO GENERA 

c s 
Mass SVL Mass SVL Mass 
7.513 74.0 13.911 77 .0 14.666 
5.032 69.5 5.236 62.0 4.790 
5.867 72.0 37.331 108.0 5.020 
11 .088 80.0 41 .781 115.0 5.220 
2.419 56.0 31 .995 106.0 5.690 
13.610 94.0 3.962 56.0 6.763 
18.247 95.5 4.367 60.5 9.977 
16.832 99.5 3.048 52.0 8.831 
15.910 97.0 4.838 60.0 9.493 
17.035 90.5 6.525 64.0 7.811 
16.526 91.0 22.610 96.0 6.685 
4.530 67.0 13.342 79.5 11 . 980 
7.230 75.0 4.109 55.5 16.520 
5.200 69.5 12.369 75.0 13.630 
13 .450 91.5 7.120 64.5 13.700 
14.080 91 .0 21 .077 87.5 10.350 
14.665 90.0 42.989 109.0 7.900 
6.092 73.0 27.201 96.0 9. 103 
5.264 69.5 38.901 111 .0 13.216 
16.902 94.0 19.747 84.5 9.787 

SVL = snout-vent length. 
Source: Data courtesy of Kevin E. Bonine. 
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The corresponding univariate Student's t-test statistics for testing for no dif
ference in the individual means have p-values of .46 and .08, respectively. Clear
ly, from a univariate perspective, we cannot detect a difference in mass means 
or a difference in snout-vent length means for the two genera of lizards. 

However, consistent with the scatter diagram in Figure 6.7,  a bivariate 
analysis strongly supports a difference in size between the two groups of lizards. 
Using Result 6.4 (also see Example 6.5) , the T2-statistic has an approximate x� 
distribution. For this example, T2 = 225 .4 with a p-value less than .0001 . A 
multivariate method is essential in this case. • 

Examples 6.14 and 6.15 demonstrate the efficacy of a multivariate test relative 
to its univariate counterparts. We encountered exactly this situation with the efflu
ent data in Example 6.1 . 

In the context of random samples from several populations (recall the one-way 
MAN OVA in Section 6.4), multivariate tests are based on the matrices 

g ne 
W = L L (xej - xe) (xej - xe ) '  €= 1 j= 1 

Throughout this chapter, we have used 

g and B = L ne (ie - x) ( xe - x) ' €= 1 

Wilks' lambda statistic A* = 
I W I 

I B + W I 
which is equivalent to the likelihood ratio test. Three other multivariate test statis
tics are regularly included in the output of statistical packages. 

Lawley-Hotelling trace = tr [BW-1 J 
Pillai trace = tr [B (B + W)-1 J 
Roy's largest root = maximum eigenvalue of W (B + W)-1 

All four of these tests appear to be nearly equivalent for extremely large sam
ples. For moderate sample sizes, all comparisons are based on what is necessarily a 
limited number of cases studied by simulation. From the simulations reported to 
date, the first three tests have similar power, while the last, Roy's test, behaves dif
ferently. Its power is best only when there is a single nonzero eigenvalue and, at the 
same time, the power is large. This may approximate situations where a large differ
ence exists in just one characteristic and it is between one group and all of the oth
ers. There is also some suggestion that Pillai 's trace is slightly more robust against 
nonnormality. However, we suggest trying transformations on the original data when 
the residuals are nonnormal. 

All four statistics apply in the two-way setting and in even more complicated 
MAN OVA. More discussion is given in terms of the multivariate regression model 
in Chapter 7. 

When, and only when, the multivariate tests signals a difference, or departure 
from the null hypothesis, do we probe deeper. We recommend calculating the 
Bonferonni intervals for all pairs of groups and all characteristics. The simultaneous 
confidence statements determined from the shadows of the confidence ellipse are, 
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EXERCISES 

typically, too large. The one-at-a-time intervals may be suggestive of differences that 
merit further study but, with the current data, cannot be taken as conclusive evidence 
for the existence of differences. We summarize the procedure developed in this chap
ter for comparing treatments. The first step is to check the data for outliers using vi
sual displays and other calculations. 

We must issue one caution concerning the proposed strategy. It may be the 
case that differences would appear in only one of the many characteristics and, fur
ther, the differences hold for only a few treatment combinations. Then, these few ac
tive differences may become lost among all the inactive ones. That is, the overall test 
may not show significance whereas a univariate test restricted to the specific active 
variable would detect the difference. The best preventative is a good experimental 
design. To design an effective experiment when one specific variable is expected to 
produce differences, do not include too many other variables that are not expected 
to show differences among the treatments. 

6.1. Construct and sketch a joint 95% confidence region for the mean difference 
vector B using the effluent data and results in Example 6.1 . Note that the point 
B == 0 falls outside the 95% contour. Is this result consistent with the test of 
H0 : B == 0 considered in Example 6.1? Explain. 

6.2. Using the information in Example 6.1 . construct the 95% Bonferroni simulta
neous intervals for the components of the mean difference vector 8 .  Compare 
the lengths of these intervals with those of the simultaneous intervals con 
structed in the example. 

6.3. The data corresponding to sample 8 in Table 6.1 seem unusually large. Remove 
sample 8. Construct a joint 95% confidence region for the mean difference vee-
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tor B and the 95% Bonferroni simultaneous intervals for the components of the 
mean difference vector. Are the results consistent with a test of H0 : B = 0? 
Discuss. Does the "outlier" make a difference in the analysis of these data? 

6.4. Refer to Example 6.1 . 
(a) Redo the analysis in Example 6.1 after transforming the pairs of observations 
to ln (BOD) and ln (SS) . 

(b) Construct the 95% Bonferroni simultaneous intervals for the components of 
the mean vector B of transformed variables. 

(c) Discuss any possible violation of the assumption of a bivariate normal dis
tribution for the difference vectors of transformed observations. 

6.5. A researcher considered three indices measuring the severity of heart attacks. 
The values of these indices for n = 40 heart-attack patients arriving at a hos
pital emergency room produced the summary statistics [ 46 .1 ] [ 101 .3 63.0 71.0 ] 

x = 57 .3 and S = 63.0 80.2 55.6 
50.4 71.0 55.6 97.4 

(a) All three indices are evaluated for each patient. Test for the equality of 
mean indices using (6-16) with a = .05. 

(b) Judge the differences in pairs of mean indices using 95% simultaneous con
fidence intervals. [See (6-18) . ] 

6.6. Use the data for treatments 2 and 3 in Exercise 6.8 . 
(a) Calculate Spoolect . 
(b) Test H0 : IL2 - #L3 = 0 employing a two-sample approach with a = .01 . 
(c) Construct 99% simultaneous confidence intervals for the differences 

IL2 i - JL3 i ' i = 1 , 2. 
6.7. Using the summary statistics for the electricity-demand data given in Example 
6.4, compute T2 and test the hypothesis H0 : ILl - IL2 = 0, assuming that 
I1 = I2 . Set a = .05. Also, determine the linear combination of mean com
ponents most responsible for the rejection of H0 • 

6.8. Ob�ervations o[nxt:Jo responses are collected for three treatments. The obser-vation vectors 
x2 
are 

Treatment 1 : [ � J [: J [: J [: J [� J 
Treatment 2: [ � J D J [ � J 
Treatment 3: [ � J [ � J [ � J [ � J 

(a) Break up the observations into mean, treatment, and residual components, 
as in (6-35) . Construct the corresponding arrays for each variable. (See Ex
ample 6.8 .) 

(b) Using the information in Part a, construct the one-way MANOVA table. 
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(c) Evaluate Wilks' lambda, A* , and use Table 6.3 to test for treatment effects. 
Set a = .01 . Repeat the test using the chi-square approximation with 
Bartlett 's correction. [See (6-39) . ] Compare the conclusions. 

6.9. !Jsing the contrast matrix C in (6-13 ) , verify the relationships dj = Cx1 ,  
d = C x, and Sd = CSC' in (6-14) . 

6.10. Consider the univariate one-way decomposition of the observation xej given by ( 6-30) . Show that the mean vector x is always perpendicular to the treatment 
effect vector ( x1 - x) u1 + ( x2 - x) u2 + · · · + ( xg - x) ng where 

1 }n 1 
0 0 

1 0 0 
0 1 }n2 , . . .  , ng = 

0 
ul = ' "2 = 

0 1 0 
0 0 1 }ng 0 0 1 

6.11. A likelihood argument provides additional support for pooling the two inde
pendent sample covariance matrices to estimate a common covariance matrix 
in the case of two normal populations. Give the likelihood function, 
L( IL l , �L2 , I ) ,  for two independent samples of sizes n1 and n2 from Np( IL l , I ) and Np( IL2 , I) populations, respectively. Show that this likelihood is maximized 
by the choices ill = xl ' [L2 = x2 and 

i = 
1 

[ ( nJ - l ) SJ + ( n2 - l ) S2 ] = ( n l + n2 - 2) spooled n1 + n2 n1 + n2 
Hint: Use (4-16) and the maximization Result 4.10. 

6.12. (Test for linear profiles, given that the profiles are parallel. ) Let IL1 == 

[JLl l '  JL1 2 ' 0 0 0 , JL1 p J  and IL2 = [JL2 1 , JL22 , 0 0 • , JL2p ] be the mean responses to p 
treatments for populations 1 and 2, respectively. Assume that the profiles given 
by the two mean vectors are parallel. 
(a) Show that the hypothesis that the profiles are linear can be written as 

Ho : (JLl i + JL2 i ) - (JLl i- 1 + JL2i- l ) = (JLl i- 1 + JL2 i- l ) - (JLl i-2 + JL2i-2 ) , 
i = 3, 0 0 . , p or as H0 : C ( �L 1 + �L2) = 0, where the (p - 2) X p matrix 

1 -2 1 0 0 0 0 
c = 

0 1 -2 1 0 0 0 

0 0 0 0 1 -2 1 
(b) Following an argument similar to the one leading to (6-62) , we reject 

Ho : C (IL1 + �L2) = 0 at level a if 
T2 = ( X1 + X2) 'C{ (�1 

+ �J cspooiectC' l
1
C(XI + X2 ) > c2 
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where 
2 _ (n 1 + n2 

-
2) (p - 2) 

C 

-
l Fp-2 n +n, -p+ l (a ) 

nl + n2 - p + , 1 -

Let n1 = 30, n2 = 30, x1 = [ 6.4, 6.8, 7.3 , 7.0] , x2 = [ 4.3, 4.9, 5.3, 5.1 ] ,  and 
.61 .26 .07 .16 
.26 .64 .17 .14 spooled = .07 .17 .81 .03 
.16 .14 .03 .31 

Test for linear profiles, assuming that the profiles are parallel. Use a = . 05 . 
6.13. (Two-way MANOVA without replications. ) Consider the observations on two 

responses, x1 and x2 , displayed in the form of the following two-way table (note 
that there is a single observation vector at each combination of factor levels) : 

Factor 2 
Level Level Level 
1 2 3 

Level l 
[�] [:] [ 

1� J 
Factor 1 Level 2 

[�] [ -�] [�] 
Level 3 

[ -�] [ =�J [ -�J 
With no replications, the two-way MANOVA model is 

g b 2: Te = 2: f3k == 0 
€= 1 k= l  

where the ee k are independent Np( 0 ,  I) random vectors. 
(a) Decompose the observations for each of the two variables as 

Xek == X + (xe . - x) + ( x. k  - x) + (xe k  - Xe . 
-
x. k + x) 

Level 
4 [�] [ -�] 

[ =:J 

similar to the arrays in Example 6.8. For each response, this decomposition 
will result in several 3 X 4 matrices. Here x is the overall average, Xe . is the 
average for the fth level of factor 1 , and x. k is the average for the kth level 
of factor 2. 

(b) Regard the rows of the matrices in Part a as strung out in a single "long" vec
tor, and compute the sums of squares 

sstot == ssmean + ssfac l + ssfac2 + ssres 
and sums of cross products 

SCPtot == SCP mean + SCPfac l + SCPfac 2 + SCPres 
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Consequently, obtain the matrices SSP con SSPfac l , SSPfac 2 , and SSPres with degrees of freedom gb - l , g - l , b - l , and (g - l ) (b - l ) , respectively. 
(c) Summarize the calculations in Part b in a MANOVA table. 
Hint: This MANOVA table is consistent with the two-way MANOVA table 
for comparing factors and their interactions where n == 1 .  Note that, with n == 1 , 
SSPres in the general two-way MAN OVA table is a zero matrix with zero degrees of freedom. The matrix of interaction sum of squares and cross products now 
becomes the residual sum of squares and cross products matrix. 
(d) Given the summary in Part c, test for factor 1 and factor 2 main effects at the 

a == .05 level. 
Hint: Use the results in (6-56) and (6-58) with gb(n - 1 ) replaced by 
(g - 1 ) (b - 1 ) .  
Note: The tests require that p < (g - 1 )  ( b - 1 )  so that SSPres will be positive definite (with probability 1) . 

6.14. A replicate of the experiment in Exercise 6.13 yields the following data: 

Factor 2 
Level Level Level Level 1 2 3 4 

Level l [1:] [�] [�] [ ��] 
Factor 1 Level 2 DJ [1�] [ 1�] DJ 

Level 3 [ -�J [ -�] [ -1� J [ -�] 
(a) Use these data to decompose each of the two measurements in the obser
vation vector as 

Xek == X + (xe .  - x) + ( x. k  - x) + (xek - Xe . - x. k + x) 
where x is the overall average, xe . is the average for the fth level of factor 1, and x.k is the average for the kth level of factor 2. Form the corresponding arrays for each of the two responses. 

(b) Combine the preceding data with the data in Exercise 6.13 and carry out 
the necessary calculations to complete the general two-way MAN OVA table. 

(c) Given the results in Part b, test for interactions, and if the interactions do not 
exist, test for factor 1 and factor 2 main effects. Use the likelihood ratio test 
with a == .05. 

(d) If main effects, but no interactions, exist, examine the nature of the main ef
fects by constructing Bonferroni simultaneous 95% confidence intervals for 
differences of the components of the factor effect parameters. 
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(a) Carry out approximate chi-square (likelihood ratio) tests for the factor 1 
and factor 2 effects. Set a = .05 . Compare these results with the results for 
the exact F-tests given in the example. Explain any differences. 

(b) Using (6-59) , construct simultaneous 95% confidence intervals for differ
ences in the factor 1 effect parameters for pairs of the three responses. In
terpret these intervals. Repeat these calculations for factor 2 effect 
parameters. 

The following exercises may require the use of a computer. 

6.16. Four measures of the response stiffness on each of 30 boards are listed in Table 
4.3 (see Example 4.14) . The measures, on a given board, are repeated in the 
sense that they were made one after another. Assuming that the measures of 
stiffness arise from four treatments, test for the equality of treatments in a 
repeated measures design context. Set a = .05. Construct a 95% (simultane
ous) confidence interval for a contrast in the mean levels representing a com
parison of the dynamic measurements with the static measurements. 

6.17. The data in Table 6.8 were collected to test two psychological models of nu
merical cognition. Does the processing of numbers depend on the way the 
numbers are presented (words, Arabic digits) ? Thirty-two subjects were re
quired to make a series of quick numerical judgments about two numbers pre
sented as either two number words ("two," "four") or two single Arabic digits 
("2," "4") . The subjects were asked to respond "same" if the two numbers had 
the same numerical parity (both even or both odd) and "different" if the two 
numbers had a different parity (one even, one odd). Half of the subjects were 
assigned a block of Arabic digit trials, followed by a block of number word tri
als, and half of the subjects received the blocks of trials in the reverse order. 
Within each block, the order of "same" and "different" parity trials was ran
domized for each subject. For each of the four combinations of parity and for
mat, the median reaction times for correct responses were recorded for each 
subject. Here 
X1 = median reaction time for word format-different parity combination 
X2 = median reaction time for word format-same parity combination 
X3 = median reaction time for Arabic format-different parity combination 
X4 = median reaction time for Arabic format-same parity combination 

(a) Test for treatment effects using a repeated measures design . Set a = .05. 
(b) Construct 95% (simultaneous) confidence intervals for the contrasts repre
senting the number format effect, the parity type effect and the interaction 
effect. Interpret the resulting intervals. 

(c) The absence of interaction supports the M model of numerical cognition, 
while the presence of interaction supports the C and C model of numerical 
cognition. Which model is supported in this experiment? 

(d) For each subject, construct three difference scores corresponding to the 
number format contrast, the parity type contrast, and the interaction 
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TABLE 6 .8 NUMBER PARITY DATA (M EDIAN TI M ES IN M I LLIS ECON DS) 

WordDiff Word Same ArabicDiff ArabicSame 
( xi ) ( x2 ) ( x3 ) ( x4 ) 

869 .0 860.5 691.0 601 .0 
995.0 875 .0 678.0 659.0 
1056.0 930.5 833.0 826.0 
1126.0 954.0 888.0 728 .0 
1044.0 909.0 865 .0 839.0 
925 .0 856.5 1059.5 797.0 
1172.5 896.5 926.0 766.0 
1408.5 1311 .0 854.0 986.0 
1028.0 887.0 915.0 735.0 
1011 .0 863 .0 761.0 657.0 
726.0 674.0 663.0 583 .0 
982.0 894.0 831.0 640.0 
1225 .0 1179.0 1037.0 905.5 
731 .0 662.0 662.5 624.0 
975 .5 872.5 814.0 735.0 
1130.5 811 .0 843 .0 657.0 
945 .0 909 .0 867.5 754.0 
747 .0 752.5 777.0 687.5 
656.5 659.5 572.0 539.0 
919.0 833 .0 752.0 611 .0 
751.0 744.0 683 .0 553.0 
774.0 735 .0 671 .0 612.0 
941 .0 931 .0 901 .5 700.0 
751 .0 785 .0 789.0 735 .0 
767 .0 737 .5 724.0 639.0 
813.5 750.5 711 .0 625 .0 
1289.5 1140.0 904.5 784.5 
1096.5 1009 .0 1076.0 983.0 
1083.0 958.0 918.0 746 .5 
1114.0 1046.0 1081 .0 796.0 
708.0 669 .0 657.0 572.5 
1201 .0 925 .0 1004.5 673.5 

Source: Data courtesy of J. Carr. 

contrast. Is a multivariate normal distribution a reasonable population 
model for these data? Explain. 

6.18. Jolicoeur and Mosimann [11] studied the relationship of size and shape for 
painted turtles. Table 6.9 contains their measurements on the carapaces of 24 
female and 24 male turtles. 
(a) Test for equality of the two population mean vectors using a == .05. 
(b) If the hypothesis in Part a is rejected, find the linear combination of mean 
components most responsible for rejecting H0 • 
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TABLE 6.9 CARAPACE M EASUREMENTS ( I N 
M I LLI M ETERS) FOR PAI NTED TU RTLES 

Female Male 
Length Width Height Length Width Height 

( x1 ) ( x2 ) ( x3 ) ( xi ) ( x2 ) ( x3 ) 

98 81 38 93 74 37 
103 84 38 94 78 35 
103 86 42 96 80 35 
105 86 42 101 84 39 
109 88 44 102 85 38 
123 92 50 103 81 37 
123 95 46 104 83 39 
133 99 51 106 83 39 
133 102 51 107 82 38 
133 102 51 112 89 40 
134 100 48 113 88 40 
136 102 49 114 86 40 
138 98 51 116 90 43 
138 99 51 117 90 41 
141 105 53 117 91 41 
147 108 57 119 93 41 
149 107 55 120 89 40 
153 107 56 120 93 44 
155 115 63 121 95 42 
155 117 60 125 93 45 
158 115 62 127 96 45 
159 118 63 128 95 45 
162 124 61 131 95 46 
177 132 67 135 106 47 

(c) Find simultaneous confidence intervals for the component mean differences. 
Compare with the Bonferroni intervals. 

Hin t: You may wish to consider logarithmic transformations of the 
observations. 

6.19. In the first phase of a study of the cost of transporting milk from farms to dairy 
plants, a survey was taken of firms engaged in milk transportation. Cost data 
on X1 = fuel, X2 = repair, and X3 = capital, all measured on a per-mile basis, 
are presented in Table 6.10 on page 340 for n 1 = 36 gasoline and n2 = 23 diesel 
trucks. 
(a) Test for differences in the mean cost vectors. Set a = .01 . 
(b) If the hypothesis of equal cost vectors is rejected in Part a, find the linear 
combination of mean components most responsible for the rejection. 

(c) Construct 99% simultaneous confidence intervals for the pairs of mean com
ponents. Which costs, if any, appear to be quite different? 
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(d) Comment on the validity of the assumptions used in your analysis. Note in 
particular that observations 9 and 21 for gasoline trucks have been identi
fied as multivariate outliers. (See Exercise 5.22 and [2] .) Repeat Part a with 
these observations deleted. Comment on the results. 

TABLE 6 . 1 0  MI LK TRANSPORTATION-COST DATA 

Gasoline trucks Diesel trucks 
xl x2 x3 xl x2 x3 
16.44 12.43 11 .23 8.50 12.26 9.11 
7.19 2.70 3.92 7.42 5.13 17.15 
9.92 1 .35 9.75 10.28 3.32 11 .23 
4.24 5.78 7.78 10.16 14.72 5.99 
11 .20 5.05 10.67 12.79 4.17 29.28 
14.25 5.78 9.88 9.60 12.72 11 .00 
13.50 10.98 10.60 6.47 8.89 19 .00 
13.32 14.27 9.45 11 .35 9.95 14.53 
29. 11 15 .09 3.28 9.15 2.94 13.68 
12.68 7.61 10.23 9.70 5.06 20.84 
7.51 5.80 8.13 9.77 17.86 35.18 
9.90 3.63 9.13 11 .61 11 .75 17.00 
10.25 5 .07 10.17 9.09 13.25 20.66 
11 . 1 1 6.15 7.61 8.53 10.14 17.45 
12.17 14.26 14.39 8.29 6.22 16.38 
10.24 2.59 6.09 15.90 12.90 19.09 
10.18 6.05 12.14 11 .94 5.69 14.77 
8.88 2.70 12.23 9.54 16 .77 22.66 
12.34 7.73 11 .68 10.43 17.65 10.66 
8.51 14.02 12.01 10.87 21.52 28.47 
26.16 17 .44 16.89 7.13 13 .22 19 .44 
12.95 8.24 7.18 11 .88 12.18 21 .20 
16.93 13.37 17.59 12.03 9.22 23 .09 
14.70 10.78 14.58 
10.32 5.16 17.00 
8.98 4.49 4.26 
9.70 11 .59 6.83 
12.72 8.63 5.59 
9.49 2.16 6.23 
8.22 7.95 6.72 
13 .70 11 .22 4.91 
8.21 9.85 8.17 
15.86 11 .42 13.06 
9.18 9.18 9.49 
12.49 4.67 11 .94 
17.32 6.86 4.44 

Source : Data courtesy of M. Keaton. 
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6.20. The tail lengths in millimeters ( x1 ) and wing lengths in millimeters ( x2) for 45 
male hook-billed kites are given in Table 6.11 . Similar measurements for female 
hook-billed kites were given in Table 5. 12. 
(a) Plot the male hook-billed kite data as a scatter diagram, and (visually) check 
for outliers. (Note, in particular, observation 31 with x1 = 284.) 

(b) Test for equality of mean vectors for the populations of male and female 
hook-billed kites. Set a = .05 . If H0 : p.. 1 - IL2 = 0 is rejected, find the lin
ear combination most responsible for the rejection of H0 • (You may want 
to eliminate any outliers found in Part a for the male hook-billed kite data 
before conducting this test. Alternatively, you may want to interpret 
x1 = 284 for observation 31 as a misprint and conduct the test with x1 = 184 
for this observation. Does it make any difference in this case how obser
vation 31 for the male hook-billed kite data is treated?) 

(c) Determine the 95% confidence region for ILl - IL2 and 95% simultaneous confidence intervals for the components of ILl - IL2 • 
(d) Are male or female birds generally larger? 

TABLE 6 . 1 1 MALE HOOK-B I LLED KITE DATA 

xl x2 xl x2 xl (Tail (Wing (Tail (Wing (Tail 
length) length) length) length) length) 
180 278 185 282 284 
186 277 195 285 176 
206 308 183 276 185 
184 290 202 308 191 
177 273 177 254 177 
177 284 177 268 197 
176 267 170 260 199 
200 281 186 274 190 
191 287 177 272 180 
193 271 178 266 189 
212 302 192 281 194 
181 254 204 276 186 
195 297 191 290 191 
187 281 178 265 187 
190 284 177 275 186 

Source : Data courtesy of S .  Temple. 

x2 (Wing 
length) 
277 
281 
287 
295 
267 
310 
299 
273 
278 
280 
290 
287 
286 
288 
275 

6.21. Using Moody's bond ratings, samples of 20 Aa (middle-high quality) corporate 
bonds and 20 Baa (top-medium quality) corporate bonds were selected. For 
each of the corresponding companies, the ratios 

X1 = current ratio (a measure of short-term liquidity) 
X2 = long-term interest rate (a measure of interest coverage) 
X3 = debt-to-equity ratio (a measure of financial risk or leverage) 
X4 = rate of return on equity (a measure of profitability) 



342 Chapter 6 Compar isons of Severa l M u ltivar i ate Means 

were recorded. The summary statistics are as follows: 
Aa bond companies : n1 == 20, x1 == [2.287 , 12.600, .347, 14.830 ] , and 

.459 .254 - .026 -.244 

.254 27.465 - .589 - .267 
- .026 - .589 
- .244 - .267 

.030 .102 

.102 6.854 
Baa bond companies: n2 == 20, x2 == [2.404, 7.155 , .524, 12.840 ] , 

and 

.944 - .089 .002 - .719 
- .089 16 .432 - .400 19.044 
.002 - .400 .024 - .094 
- .719 19.044 - .094 61 .854 

.701 .083 - .012 - .481 
Spooled == .083 21 .949 - .494 9.388 

- .012 - .494 .027 .004 
- .481 9.388 .004 34.354 

(a) Does pooling appear reasonable here? Comment on the pooling procedure 
in this case. 

(b) Are the financial characteristics of firms with Aa bonds different from those 
with Baa bonds? Using the pooled covariance matrix, test for the equality 
of mean vectors. Set a == .05. 

(c) Calculate the linear combinations of mean components most responsible 
for rejecting H0 : ILl - IL2 == 0 in Part b. 

(d) Bond rating companies are interested in a company's ability to satisfy its 
outstanding debt obligations as they mature. Does it appear as if one or 
more of the foregoing financial ratios might be useful in helping to classify 
a bond as "high" or "medium" quality? Explain. 

6.22. Researchers interested in assessing pulmonary function in non pathological pop
ulations asked subjects to run on a treadmill until exhaustion. Samples of air 
were collected at definite intervals and the gas contents analyzed. The results 
on 4 measures of oxygen consumption for 25 males and 25 females are given in 
Table 6.12 on page 343 . The variables were 

X1 == resting volume 02 (L/min) 
X2 == resting volume 02 ( mL/kgjmin) 
X3 == maximum volume 02 (L/min ) 
X4 == maximum volume 02 (mLjkg/min) 

(a) Look for gender differences by testing for equality of group means. Use 
a == .05. If you reject H0 : ILl - IL2 == 0, find the linear combination most 
responsible. 

(b) Construct the 95% simultaneous confidence intervals for each JLl i - JL2I ' 
i == 1, 2, 3, 4. Compare with the corresponding Bonferroni intervals. 



w 
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TABLE 6 . 1 2  OXYGE N-CONSUMPTION  DATA 

Males 
xl Xz x3 Resting 02 Resting 02 Maximum 02 (L/min) (mL/kg/min) (L/min) 
0.34 3.71 2.87 
0.39 5.08 3 .38 
0.48 5.13 4.13 
0.31 3.95 3 .60 
0.36 5.51 3.11 
0.33 4.07 3.95 
0.43 4.77 4.39 
0.48 6.69 3 .50 
0.21 3 .71 2.82 
0.32 4.35 3.59 
0.54 7.89 3 .47 
0.32 5.37 3.07 
0.40 4.95 4.43 
0.31 4.97 3.56 
0.44 6.68 3 .86 
0.32 4.80 3.31 
0.50 6.43 3.29 
0.36 5.99 3.10 
0.48 6.30 4.80 
0.40 6.00 3.06 
0.42 6.04 3 .85 
0.55 6.45 5.00 
0.50 5.55 5.23 
0.34 4.27 4.00 
0.40 4.58 2.82 

Source: Data courtesy of S. Rokicki. 

x4 
Maximum 02 (mL/kg/min) 
30.87 
43.85 
44.51 
46.00 
47.02 
48.50 
48.75 
48.86 
48.92 
48.38 
50.56 
51 .15 
55.34 
56.67 
58.49 
49.99 
42.25 
51 .70 
63.30 
46.23 
55.08 
58.80 
57.46 
50.35 
32.48 

- - -

Females 
xl Xz x3 Resting 02 Resting 02 Maximum 02 (L/min) (mL/kg/min) (L/min) 
0.29 
0.28 
0.31 
0.30 
0.28 
0.11 
0.25 
0.26 
0.39 
0.37 
0.31 
0.35 
0.29 
0.33 
0.18 
0.28 
0.44 
0.22 
0.34 
0.30 
0.31 
0.27 
0.66 
0.37 
0.35 

- - - -- - -

5 .04 
3 . 95 
4.88 
5 .97 
4.57 
1 .74 
4.66 
5.28 
7.32 
6.22 
4.20 
5.10 
4.46 
5.60 
2.80 
4.01 
6.69 
4.55 
5.73 
5.12 
4.77 
5.16 
11 .05 
5.23 
5.37 

- - - - - -

1 .93 
2.51 
2.31 
1 .90 
2.32 
2.49 
2.12 
1.98 
2.25 
1 .71 
2.76 
2.10 
2.50 
3.06 
2.40 
2.58 
3.05 
1 .85 
2.43 
2.58 
1 .97 
2.03 
2.32 
2.48 
2.25 

- - - - ----

x4 
Maximum 02 (mL/kg/min) 
33.85 
35.82 
36.40 
37.87 
38.30 
39 .19 
39.21 
39 .94 
42.41 
28.97 
37.80 
31 . 10 
38.30 
51 .80 
37.60 
36.78 
46. 16 
38.95 
40.60 
43 .69 
30.40 
39.46 
39.34 
34.86 
35.07 

-- - -- -- - ---
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(c) The data in Table 6.12 were collected from graduate-student volunteers, and 
thus they do not represent a random sample. Comment on the possible im
plications of this information. 

6.23. Construct a one-way MANOVA using the width measurements from the iris 
data in Table 11 .5 . Construct 95% simultaneous confidence intervals for dif-
ferences in mean components for the two responses for each pair of popula-
tions. Comment on the validity of the assumption that I1 == I2 == I3 . 

6.24. Researchers have suggested that a change in skull size over time is evidence of 
the interbreeding of a resident population with immigrant populations. Four mea-
surements were made of male Egyptian skulls for three different time periods: pe-
riod 1 is 4000 B.C. , period 2 is 3300 B.C. , and period 3 is 1850 B.C. The data are shown 
in Table 6.13 (see the skull data on the CD-ROM) . The measured variables are 

TABLE 6. 1 3  EGYPTIAN SKULL DATA 

MaxBreath BasH eight BasLength NasH eight Time 
(xi ) (x2 ) (x3 ) (x4 ) Period 
131 138 89 49 1 125 131 92 48 1 131 132 99 50 1 119 132 96 44 1 136 143 100 54 1 138 137 89 56 1 139 130 108 48 1 125 136 93 48 1 131 134 102 51 1 134 134 99 51 1 
124 138 101 48 2 133 134 97 48 2 138 134 98 45 2 148 129 104 51 2 126 124 95 45 2 135 136 98 52 2 132 145 100 54 2 133 130 102 48 2 131 134 96 50 2 133 125 94 46 2 
132 130 91 52 3 133 131 100 50 3 138 137 94 51 3 130 127 99 45 3 136 133 91 49 3 134 123 95 52 3 136 137 101 54 3 133 131 96 49 3 138 133 100 55 3 138 133 91 46 3 

Source: Data courtesy of J. Jackson. 
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X1 = maximum breadth of skull (mm) 
x2 = basibregmatic height of skull (mm) 
x3 = basialveolar length of skull (mm) 
X4 = nasal height of skull (mm) 

Construct a one-way MAN OVA of the Egyptian skull data. Use a = .05. Con
struct 95% simultaneous confidence intervals to determine which mean 
components differ among the populations represented by the three time peri
ods. Are the usual MANOVA assumptions realistic for these data? Explain. 

6.25. Construct a one-way MANOVA of the crude-oil data listed in Table 11 .7 . Con
struct 95% simultaneous confidence intervals to determine which mean 
components differ among the populations. (You may want to consider trans
formations of the data to make them more closely conform to the usual 
MANOVA assumptions. ) 

6.26. A project was designed to investigate how consumers in Green Bay, Wisconsin, 
would react to an electrical time-of-use pricing scheme. The cost of electricity 
during peak periods for some customers was set at eight times the cost of elec
tricity during off-peak hours. Hourly consumption (in kilowatt-hours) was mea
sured on a hot summer day in July and compared, for both the test group and 
the control group, with baseline consumption measured on a similar day before 
the experimental rates began. The responses, 

log( current consumption) - log(baseline consumption) 
for the hours ending 9 A.M. 11 A.M. (a peak hour), 1 P.M. ,  and 3 P.M. (a peak hour) 
produced the following summary statistics: 

Test group: 

Control group :  

and 

nl = 28, x1 = [ . 153, - .231 , - .322, - .339 ] 
n2 = 58, x2 = [ . 151 , .180, .256, .257 ] 

.804 .355 .228 .232 
Spooled = .355 .722 .233 .199 .228 .233 .592 .239 

.232 .199 .239 .479 
Source: Data courtesy of Statistical Laboratory, University of Wisconsin. 

Perform a profile analysis. Does time-of-use pricing seem to make a difference 
in electrical consumption? What is the nature of this difference, if any? Com
ment. (Use a significance level of a = .05 for any statistical tests. ) 

6.27. As part of the study of love and marriage in Example 6.12, a sample of hus
bands and wives were asked to respond to these questions: 

1. What is the level of passionate love you feel for your partner? 
2. What is the level of passionate love that your partner feels for you? 



346 Chapter 6 Compar isons of Severa l M u ltivar i ate Means 

3. What is the level of companionate love that you feel for your partner? 
4. What is the level of companionate love that your partner feels for you? 

The responses were recorded on the following 5-point scale. 
None 
at all 

Very 
little 

2 

Some 

3 

A great 
deal 

4 

Tremendous 
amount 

5 

Thirty husbands and 30 wives gave the responses in Table 6.14, where X1 == a 
5-point-scale response to Question 1 , X2 = a 5-point-scale response to 

TABLE 6. 1 4  SPOUSE  DATA 

Husband rating wife Wife rating husband 
xl x2 x3 x4 xl x2 x3 x4 
2 3 5 5 4 4 5 5 
5 5 4 4 4 5 5 5 
4 5 5 5 4 4 5 5 
4 3 4 4 4 5 5 5 
3 3 5 5 4 4 5 5 
3 3 4 5 3 3 4 4 
3 4 4 4 4 3 5 4 
4 4 5 5 3 4 5 5 
4 5 5 5 4 4 5 4 
4 4 3 3 3 4 4 4 
4 4 5 5 4 5 5 5 
5 5 4 4 5 5 5 5 
4 4 4 4 4 4 5 5 
4 3 5 5 4 4 4 4 
4 4 5 5 4 4 5 5 
3 3 4 5 3 4 4 4 
4 5 4 4 5 5 5 5 
5 5 5 5 4 5 4 4 
5 5 4 4 3 4 4 4 
4 4 4 4 5 3 4 4 
4 4 4 4 5 3 4 4 
4 4 4 4 4 5 4 4 
3 4 5 5 2 5 5 5 
5 3 5 5 3 4 5 5 
5 5 3 3 4 3 5 5 
3 3 4 4 4 4 4 4 
4 4 4 4 4 4 5 5 
3 3 5 5 3 4 4 4 
4 4 3 3 4 4 5 4 
4 4 5 5 4 4 5 5 

Source: Data courtesy of E. Hatfield. 
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Question 2, x3 == a 5-point-scale response to Question 3, and x4 == a 5-pointscale response to Question 4. 
(a) Plot the mean vectors for husbands and wives as sample profiles. 
(b) Is the husband rating wife profile parallel to the wife rating husband profile? 
Test for parallel profiles with a == .05. If the profiles appear to be parallel, 
test for coincident profiles at the same level of significance. Finally, if the 
profiles are coincident, test for level profiles with a == .05. What conclu
sion(s) can be drawn from this analysis? 

6.28. Two species of biting flies (genus Leptoconops) are so similar morphological
ly, that for many years they were thought to be the same. Biological differences 
such as sex ratios of emerging flies and biting habits were found to exist. Do the 
taxonomic data listed in part in Table 6.15 on page 348 and on the CD-ROM 
indicate any difference in the two species L. carteri and L. torrens? Test for the 
equality of the two population mean vectors using a == .05. If the hypotheses 
of equal mean vectors is rejected, determine the mean components (or linear 
combinations of mean components) most responsible for rejecting H0 • Justify 
your use of normal-theory methods for these data. 

6.29. Using the data on bone mineral content in Table 1.8 , investigate equality be
tween the dominant and nondominant bones. 
(a) Test using a == .05. 
(b) Construct 95% simultaneous confidence intervals for the mean differences. 
(c) Construct the Bonferroni 95% simultaneous intervals, and compare these 
with the intervals in Part b. 

6.30. Table 6.16 on page 349 contains the bone mineral contents, for the first 24 subjects 
in Table 1.8, 1 year after their participation in an experimental program. Com
pare the data from both tables to determine whether there has been bone loss. 
(a) Test using a == .05. 
(b) Construct 95% simultaneous confidence intervals for the mean differences. 
(c) Construct the Bonferroni 95% simultaneous intervals, and compare these 
with the intervals in Part b. 

6.31. Peanuts are an important crop in parts of the southern United States. In an ef
fort to develop improved plants, crop scientists routinely compare varieties with 
respect to several variables. The data for one two-factor experiment are given 
in Table 6.17 on page 349. Three varieties (5, 6, and 8) were grown at with two 
geographical locations (1 , 2) and, in this case, the three variables representing 
yield and the two important grade-grain characteristics were measured. The 
three variables are 
X1 == Yield (plot weight) 
X2 == Sound mature kernels (weight in grams-maximum of 250 grams) 
X3 == Seed size (weight, in grams, of 100 seeds) 

There were two replications of the experiment. 
(a) Perform a two-factor MANOVA using the data in Table 6.17 . Test for a 
location effect, a variety effect, and a location-variety interaction. Use 
a == .05. 
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TABLE 6. 1 5  B IT ING-FLY DATA 

xl x2 x3 x4 Xs x6 x7 (Wing ) (Wing) ( Thlrd ) (Third) (Fourth) ( Length of ) ( Length of ) palp palp palp antennal antennal length width length width length segment 12 segment 13  

85 41 31 13 25 9 8 
87 38 32 14 22 13 13 
94 44 36 15 27 8 9 
92 43 32 17 28 9 9 
96 43 35 14 26 10 10 
91 44 36 12 24 9 9 
90 42 36 16 26 9 9 
92 43 36 17 26 9 9 
91 41 36 14 23 9 9 
87 38 35 11 24 9 10 

L. torrens 106 47 38 15 26 10 10 
105 46 34 14 31 10 11 
103 44 34 15 23 10 10 
100 41 35 14 24 10 10 
109 44 36 13 27 11 10 
104 45 36 15 30 10 10 
95 40 35 14 23 9 10 104 44 34 15 29 9 10 
90 40 37 12 22 9 10 
104 46 37 14 30 10 10 
86 19 37 11 25 9 9 94 40 38 14 31 6 7 103 48 39 14 33 10 10 82 41 35 12 25 9 8 103 43 42 15 32 9 9 101 43 40 15 25 9 9 103 45 44 14 29 11 11 100 43 40 18 31 11 10 99 41 42 15 31 10 10 100 44 43 16 34 10 10 

L. carteri 99 42 38 14 33 9 9 110 45 41 17 36 9 10 99 44 35 16 31 10 10 103 43 38 14 32 10 10 95 46 36 15 31 8 8 101 47 38 14 37 11 11 103 47 40 15 32 11 11 99 43 37 14 23 11 10 105 50 40 16 33 12 11 99 47 39 14 34 7 7 
Source: Data courtesy of William Atchley. 
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TABLE 6 . 1 6  M IN ERAL CONTENT I N  BONES (AFTER 1 YEAR) 

Subject Dominant Dominant Dominant 
number radius Radius humerus Humerus ulna Ulna 
1 1.027 1 .051 2.268 2.246 .869 .964 
2 .857 .817 1 .718 1 .710 .602 .689 
3 .875 .880 1 .953 1 .756 .765 .738 
4 .873 .698 1.668 1.443 .761 .698 
5 .811 .813 1 .643 1 .661 .551 .619 
6 .640 .734 1 .396 1 .378 .753 .515 
7 .947 .865 1 .851 1 .686 .708 .787 
8 .886 .806 1 .742 1 .815 .687 .715 
9 .991 .923 1 .931 1 .776 .844 .656 
10 .977 .925 1 .933 2. 106 .869 .789 
11 .825 .826 1.609 1.651 .654 .726 
12 .851 .765 2.352 1.980 .692 .526 
13 .770 .730 1 .470 1 .420 .670 .580 
14 .912 .875 1 .846 1 .809 .823 .773 
15 .905 .826 1 .842 1.579 .746 .729 
16 .756 .727 1 .747 1.860 .656 .506 
17 .765 .764 1.923 1 .941 .693 .740 
18 .932 .914 2.190 1 .997 .883 .785 
19 .843 .782 1 .242 1 .228 .577 .627 
20 .879 .906 2.164 1 .999 .802 .769 
21 .673 .537 1 .573 1 .330 .540 .498 
22 .949 .900 2.130 2.159 .804 .779 
23 .463 .637 1 .041 1 .265 .570 .634 
24 .776 .743 1 .442 1 .411 .585 .640 

Source: Data courtesy of Everett Smith. 

TABLE 6 . 1 7  PEANUT DATA 

Factor 1 Factor 2 xl x2 x3 
Location Variety Yield SdMatKer SeedSize 
1 5 195.3 153.1 51.4 
1 5 194.3 167.7 53.7 
2 5 189.7 139.5 55.5 
2 5 180.4 121 .1 44.4 
1 6 203.0 156.8 49.8 
1 6 195.9 166.0 45.8 
2 6 202.7 166.1 60.4 
2 6 197.6 161 .8 54.1 
1 8 193.5 164.5 57.8 
1 8 187.0 165.1 58.6 
2 8 201.5 166.8 65.0 
2 8 200.0 173.8 67.2 

Source: Data courtesy of Yolanda Lopez. 
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(b) Analyze the residuals from Part a. Do the usual MAN OVA assumptions appear to be satisfied? Discuss. 
(c) Using the results in Part a, can we conclude that the location andjor variety 
effects are additive? If not, does the interaction effect show up for some 
variables, but not for others? Check by running three separate univariate 
two-factor ANOVAs. 

(d) Larger numbers correspond to better yield and grade-grain characteristics. 
Using location 2, can we conclude that one variety is better than the other 
two for each characteristic? Discuss your answer, using 95% Bonferroni 
simultaneous intervals for pairs of varieties. 

6.32. In one experiment involving remote sensing, the spectral reflectance of three 
species of 1-year-old seedlings was measured at various wavelengths during the 
growing season. The seedlings were grown with two different levels of nutrient: 
the optimal level, coded + , and a suboptimal level, coded - . The species of 
seedlings used were sitka spruce (SS) , Japanese larch (JL) , and lodgepole pine 
(LP). Two of the variables measured were 

X1 == percent spectral reflectance at wavelength 560 nm (green) 
X2 == percent spectral reflectance at wavelength 720 nm (near infrared) 

The cell means (CM) for Julian day 235 for each combination of species and nu
trient level are as follows. These averages are based on four replications. 

560CM 720CM Species Nutrient 
10.35 25.93 ss + 
13.41 38.63 JL + 
7.78 25.15 LP + 
10.40 24.25 ss 
17.78 41 .45 JL 
10.40 29 .20 LP 

(a) Treating the cell means as individual observations, perform a two-way 
MANOVA to test for a species effect and a nutrient effect. Use a == .05 . 

(b) Construct a two-way AN OVA for the 560CM observations and another two
way AN OVA for the 720CM observations. Are these results consistent with 
the MAN OVA results in Part a? If not, can you explain any differences? 

6.33. Refer to Exercise 6.32 . The data in Table 6 . 1 8 are measurements on the 
variables 

X1 == percent spectral reflectance at wavelength 560 nm (green) 
X2 == percent spectral reflectance at wavelength 720 nm (near infrared) 

for three species (sitka spruce [SS], Japanese larch [JL] , and lodgepole pine [LP] ) 
of 1-year-old seedlings taken at three different times (Julian day 150 [1 ] , Julian 
day 235 [2] , and Julian day 320 [3]) during the growing season. The seedlings 
were all grown with the optimal level of nutrient . 
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(a) Perform a two-factor MAN OVA using the data in Table 6.18 . Test for a 
species effect, a time effect and species-time interaction. Use a = .05. 

(b) Do you think the usual MAN OVA assumptions are satisfied for the these 
data? Discuss with reference to a residual analysis, and the possibility of 
correlated observations over time. 

TABLE 6. 1 8  SPECTRAL RE FLECTANCE DATA 

560 nm 720 nm Species Time Replication 
9.33 19 .14 ss 1 1 
8.74 19 .55 ss 1 2 
9.31 19 .24 ss 1 3 
8.27 16.37 ss 1 4 
10.22 25.00 ss 2 1 
10.13 25.32 ss 2 2 
10.42 27.12 ss 2 3 
10.62 26.28 ss 2 4 
15.25 38.89 ss 3 1 
16.22 36.67 ss 3 2 
17.24 40.74 ss 3 3 
12.77 67.50 ss 3 4 
12.07 33 .03 JL 1 1 
11 .03 32.37 JL 1 2 
12.48 31 .31 JL 1 3 
12.12 33.33 JL 1 4 
15.38 40.00 JL 2 1 
14.21 40.48 JL 2 2 
9.69 33.90 JL 2 3 
14.35 40.15 JL 2 4 
38.71 77.14 JL 3 1 
44.74 78.57 JL 3 2 
36.67 71 .43 JL 3 3 
37.21 45 .00 JL 3 4 
8.73 23 .27 LP 1 1 
7.94 20.87 LP 1 2 
8.37 22. 16 LP 1 3 
7.86 21 .78 LP 1 4 
8.45 26.32 LP 2 1 
6.79 22.73 LP 2 2 
8.34 26.67 LP 2 3 
7.54 24.87 LP 2 4 
14.04 44.44 LP 3 1 
13.51 37.93 LP 3 2 
13.33 37.93 LP 3 3 
12.77 60.87 LP 3 4 

Source: Data courtesy of Mairtin Mac Siurtain. 
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(c) Foresters are particularly interested in the interaction of species and time. Does interaction show up for one variable but not for the other? Check by 
running a univariate two-factor AN OVA for each of the two responses. 

(d) Can you think of another method of analyzing these data (or a different experimental design) that would allow for a potential time trend in the spectral reflectance numbers? 
6.34. Refer to Example 6.13 . 
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(b) Test that linear growth is adequate. Take a == .01 . 
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CHAPTER 

7 
Multivariate Linear 

Regression Models 

7 . 1  I NTRODUCTION 

Regression analysis is the statistical methodology for predicting values of one or 

more response (dependent) variables from a collection of predictor (independent) 
variable values. It can also be used for assessing the effects of the predictor variables 
on the responses. Unfortunately, the name regression, culled from the title of the 
first paper on the subject by F. Galton [14] , in no way reflects either the importance 
or breadth of application of this methodology. 

In this chapter, we first discuss the multiple regression model for the predic
tion of a single response. This model is then generalized to handle the prediction of 
several dependent variables. Our treatment must be somewhat terse, as a vast lit
erature exists on the subj ect. (If you are interested in pursuing regression analysis, 
see the following books, in ascending order of difficulty: Bowerman and O'Connell 
[5] , Neter, Wasserman, Kutner, and Nachtsheim [17] , Draper and Smith [12] , Cook 
and Weisberg [9] , Seber [20] , and Goldberger [15] .) Our abbreviated treatment high
lights the regression assumptions and their consequences, alternative formulations 
of the regression model, and the general applicability of regression techniques to 

seemingly different situations. 

7.2 TH E CLASSICAL LIN EAR REGRESS ION MODEL 

354 

Let z1 , z2 , • • •  , Zr be r predictor variables thought to be related to a response variable 
Y. For example, with r == 4, we might have 

Y == current market value of home 
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and 
z1 = square feet of living area 
z2 = location (indicator for zone of city) 
z3 = appraised value last year 
z4 = quality of construction (price per square foot ) 

The classical linear regression model states that Y is composed of a mean, which depends 
in a continuous manner on the z/s, and a random error s, which accounts for mea
surement error and the effects of other variables not explicitly considered in the model. 
The values of the predictor variables recorded from the experiment or set by the in
vestigator are treated as fixed. The error (and hence the response) is viewed as a ran
dom variable whose behavior is characterized by a set of distributional assumptions. 

Specifically, the linear regression model with a single response takes the form 
Y = f3o + f31Z1 + · · · + {3, z, + s 

[Response ] = [mean (depending on z1 , z2 , . . •  , Zr) ]  + [ error ] 
The term "linear" refers to the fact that the mean is a linear function of the unknown 
parameters {30 , {31 , . . . , f3r · The predictor variables may or may not enter the model as first -order terms. 

With n independent observations on Y and the associated values of zi , the complete model becomes 
Y1 = f3o + /31 Z1 1  + f32Z1 2 + · · · + f3r Z1 r  + 81 

Yn = f3o + /31Zn 1 + f32Zn 2 + · · · + f3rZn r + Bn 
where the error terms are assumed to have the following properties: 

or 

1. E(sj ) = 0; 
2. Var ( sj ) = a-2 (constant) ; and 
3. Cov (sj , sk )  = O, j  # k. 

In matrix notation, (7-1) becomes 
Yi 
y2 
Yn 

1 Z1 1 Z1 2 Z1 r f3o 
1 Z2 1 Z22 Z2 r  {3 1 

1 Zn 1 Zn 2 Zn r f3r 

Y =  Z f3 + e 
( nX 1 ) (n X ( r+ 1 ) )  ( (r+ 1 ) X 1 ) (n X 1 ) 

and the specifications in (7-2) become 
1. E(e) = 0 ;  and 
2. Cov ( e ) = E(ee ' )  = a-21. 

s1 

+ 
s2 

Bn 

(7-1) 

(7-2) 
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Note that a one in the first column of the design matrix Z is the multiplier of the 
constant term {30 • It is customary to introduce the artificial variable Zj o = 1, so that 

f3o + f31Zj 1  + · · · + f3rZj r  = f3oZjo + f31Zj 1  + · · · + f3rZjr 

Each column of Z consists of the n values of the corresponding predictor variable, 
while the jth row of Z contains the values for all predictor variables on the jth trial . 

Although the error-term assumptions in (7-2) are very modest, we shall later need to 
add the assumption of joint normality for making confidence statements and testing 
hypotheses. 

We now provide some examples of the linear regression model. 

Example 7 . 1  (F itti ng a stra ight- l i ne regression model) 

Determine the linear regression model for fitting a straight line 

Mean response = E(Y) = {30 + f31z1 

to the data 

0 1 2 3 4 

1 4 3 8 9 

Before the responses Y' = [Yi , }2, . . . , YS J are observed, the errors e ' = 
[ 81 , 82 , . . . , 85 ] are random, and we can write 

y = Z/3 + E 

where 

y1 1 Z1 1 81 

Y = 
Y2 1 Z2 1 p = 

[��] , 82 
' Z =  e =  

Ys 1 Zs 1 8s 

The data for this model are contained in the observed response vector y and the 
design matrix Z, where 
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1 1 0 
4 1 1 

y == 3 ' Z == 1 2 
8 1 3 
9 1 4 

Note that we can handle a quadratic expression for the mean response by 
introducing the term {32z2 , with z2 == zi . The linear regression model for the jth 
trial in this latter case is 

or 

Example 7 .2 {The design  matrix for one-way ANOVA 
as a regress ion model) 

• 

Determine the design matrix if the linear regression model is applied to the 
one-way AN OVA situation in Example 6 .6 . 

We create so-called dummy variables to handle the three population 
means: JL1 == JL + T1 , JL2 == JL + T2 , and JL3 == JL + T3 •  We set 

if the observation is 
from population 1 
otherwise 

if the observation is 

from population 3 
otherwise 

{ 1 if the observation is 
z2 == from population 2 

0 otherwise 

and {30 == JL, {3 1 == T1 , {32 == T2 , {33 == T3 • Then 

1j == f3o + f3IZj l + f32 Zj2 + f33 Zj 3 + Bj , j == 1 ,  2, . . . ' 8 

where we arrange the observations from the three populations in sequence. 
Thus, we obtain the observed response vector and design matrix 

9 1 1 0 0 
6 1 1 0 0 
9 1 1 0 0 

y 0 1 0 1 0 
== z == 

(8X 1 ) 2 (8 X4) 1 0 1 0 
3 1 0 0 1 
1 1 0 0 1 
2 1 0 0 1 • 

The construction of dummy variables, as in Example 7.2, allows the whole of 
analysis of variance to be treated within the multiple linear regression framework. 
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7.3 LEAST SQUARES ESTI MATION 

One of the obj ectives of regression analysis is t o  develop an equation that will allow 
the investigator to predict the response for given values of the predictor variables. 
Thus, it is necessary to "fit" the model in (7-3) to the observed yj corresponding to the 
known values 1 ,  Zj 1 , . . .  , Zj r · That is, we must determine the values for the regression 
coefficients f3 and the error variance a-2 consistent with the available data. 

Let b be trial values for /3 .  Consider the difference yj - b0 - b1 z j 1 - · · · - b, z 1 r 

between the observed response yj and the value b0 + b1 zj 1 + . .  · + brZj r that would 
be expected if b were the "true" parameter vector. Typically, the differences 
yj - b0 - b1zj 1 - . . · - b, Zj r will not be zero, because the response fluctuates (in a 
manner characterized by the error term assumptions) about its expected value. The 
method of least squares selects b so as to minimize the sum of the squares of the 
differences: 

n 

S (b ) == � ( yj - bo - b1Zj 1 - " · - brZj r ) 2 j= 1 
== (y - Zb) ' (y - Zb) 

(7-4) 

The coefficients b chosen by the least squares criterion are called least squqres esti
mates of the regression parameters /3. They will henceforth be denoted by f3 to em
phasize their role as es!imates of f3 .  

The coefficients f3 are consistentA with !he data in th� sense that they produce 
estimated (fitted) mean responses, {30 + {31zj 1 + . .  · + f3rZj r , the sum of whose 
squares of the differences from the observed yj is as small as possible. The deviations 

A A A 
Bj == Yj - f3o - /3 1 Zj 1 - " · - f3rZj r , j == 1 ,  2, . . . , n (7-5) 

are called residuals. The vector of residuals e == y - zp contains the information 
about the remaining unknown parameter a-2 • (See Result 7.2 . )  

Result 7.1. Let Z have full rank r + 1 < n. 1 The least squares estimate of f3 
in (7-3) is given by 

p == (Z ' z)-1Z ' y 
Let y == zp == Hy denote the fitted values of y, where H == Z (Z ' Z)-1Z' is called 
"hat" matrix. Then the residuals 

A A -1 e == y - y == [I - Z (Z 'Z )  Z ' ] y == ( I - H) y 
satisfy Z' e == 0 and y' e == 0. Also, the 

n 

residual sum ofsquares == � ( yj - �o - �1Zj 1 - . . .  - �rZj r ) 2 == e ' e j= l  
-1 A 

== y' [I - Z (Z 'Z )  Z' J y == y' y - y' Z/3 

1 If Z i s  not full rank, (Z 'Z ) - 1 i s  replaced by (Z 'Z ) - ,  a generalized inverse of Z 'Z. (See 
Exercise 7 . 6 . ) 
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" -1 " " "' Proof. Let f3 = (Z 'Z ) Z'y as asserted. Then £ = y - y = y - Z/3 = 
[I - Z (Z 'Z )-1Z ' ] y. The matrix [I - Z (Z 'Z )-1Z' ] satisfies 

1. [ I - Z (Z ' Z)-1Z' J ' = [I - Z (Z 'Z )-1Z ' ] (symmetric) ; 
2. [I - Z (Z 'Z )-1Z' J [I - Z (Z ' Z) -1Z ' ] 
= I - 2Z (Z ' Z)-1Z ' + Z (Z ' Z)-1Z 'Z (Z 'Z )-1Z ' (7-6) 

= [I - Z (Z 'Z )-1Z ' ] (idempotent) ; 
3. Z ' [I - Z (Z' Z)-1Z ' J = Z' - Z' = 0. 

Consequently, Z ' e = Z' (y - y) = Z' [I - Z (Z 'Z )-1Z ' ] y = O, so y' e = p ' Z ' e = o. 
Additionally, � ' £ = y' [I - Z (Z 'Zr1z ' ] [I - � (Z 'Zr1z' ] y  = y' [I - z (z' zr1z ' ] y 
= y' y - y' Z f3 . To verify the expression for f3 , we write 

so 

" "' "' "' y - Zb = y - Z f3 + Z f3 - Zb = y - Z f3 + Z ( f3 - b) 

S(b ) = (y - Zb) ' (y - Zb) 
" " " " = (y - Z/3 ) ' (y - Z/3 ) + ( /3 - b) ' Z ' Z ( /3 - b) " " 

+ 2(y - Zf3 ) ' Z ( f3 - b) " " "' " = (y - Z/3 ) ' (y - Z/3) + ( /3 - b) ' Z ' Z ( /3 - b ) 
since (y - ZP ) ' Z = e'Z = 0 ' . Th� first term in S(b) does not depend �n b and the sec�nd is the squared length of Z ( f3 - b) . Because Z has full rank, Z ( f3 - b) f 0 
if f3 # b, so the minimum sum of squares is unique and occurs for b = f3 = 
(Z 'Z )-1Z 'y. Note that (Z 'Z )-1 exists since Z 'Z has rank r + 1 < n . (If Z 'Z is not 
of full rank, Z' Za = 0 for some a # 0, but then a' Z' Za = 0 or Za = 0, which con
tradicts Z having full rank r + 1 . )  • 

Result 7 .1  shows how the least squares estimates p and the residuals e can be 
obtained from the design matrix Z and responses y by simple matrix operations. 

Example 7 .3  (Calcu lating the least squares estimates, the res idua ls, 
and the res idua l  sum of squares) 

Calculate the least square estimates p , the residuals e , and the residual sum of 
squares for a straight-line model 

fit to the data 
0 1 2 3 4 

y 1 4 3 8 9 
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We have 

Z' y Z 'Z (Z ' Z)-1 

1 

[� 1 1 1 !] 
4 [1� 10 J [ .6 - .2] 1 2 3 
3 

30 - .2 .1 8 
9 

Consequently, 

p = [�:] = (z ' zr1z 'y = [ - :� - :�] [��] = [�] 
and the fitted equation is 

y == 1 + 2z 

The vector of fitted (predicted) values is 

Y == zp == 

" " 

so e == y - y ==  

The residual sum of squares is 

0 
1 

1 
1 
1 
1 
1 

1 
4 

3 
8 
9 

0 
1 

[�] = 2 
3 
4 

1 
3 
5 
7 
9 

1 
3 
5 
7 
9 

0 
1 

== -2 
1 
0 

Z ' y  

[��] 

e ' e == [ o 1 -2 1 o J  -2 == o2 + 12 + ( -2)2 + 12 + o2 == 6 • 
1 
0 

Sum-of-Squares Decomposition 
I I  

According to Result 7 .1 ,  y' e == 0, so the total response sum of squares y'y == � Yi 
satisfies 1 = 1 

y' y == (y + y - y) ' (y + y - y) == ( y + i) ' ( y + e) == y' y + e ' e (7-7) 
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Since the first column of Z is 1, the condition Z'  f; == 0 includes the requirement 
n n n 

0 == l 'e == � ej == � yj - � yj , or y == y .  Subtracting ny2 == n (y ) 2 from both 
j= l  j= l  j= l  

sides of  the decomposition in (7-7), we obtain the basic decomposition of the sum of 
squares about the mean: 

or 

y'y - ny2 == y' y - n(y )2 + e' e 

n n n � ( yj _ y-)2 
== � (.Yj - y-)2 + � s7 (7-8) j= l  j= l  j= l  ( ��:�u

s:r: ) == (re:����n) + (residu�l ( error) ) 
about mean squares 

sum 0 squares 

The preceding sum of squares decomposition suggests that the quality of the models 
fit can be measured by the coefficient of determination 

n 
" "'2 £..J ej 
j= l  

R2 == 1 - -----n 
� (yj - y)2 
j= l  

n (7-9) 
� ( yj - y)2 
j = l  

The quantity R2 gives the proportion of  the total variation in the Y/S "explained" by, 
or attributable to, the predictor variables z1 , z2 , • • •  , Zr . Here R2 (or the multiple 
correlation coefficient R == + Vfii) equals 1 if the fitted equation passes through all 
tpe da!a points, s� that ej == 0 for all j. At the other extreme, R2 is 0 if ffio == y and 
{3 1 == {32 == · · · == f3r == 0. In this case, the predictor variables z1 , z2 , • . .  , Zr have no in
fluence on the response. 

Geometry of Least Squares 

A geometrical interpretation of the least squares technique highlights the nature of 
the concept. According to the classical linear regression model, 

1 Z1 1 Z1 r 

Mean response vector = E(Y) = zp = f3o 
1 + /31 

z2 1 + . . .  + /3, 
Z2 r  

1 Zn l Zn r 
Thus, E(Y) is a linear combination of the columns of Z. As f3 varies, Z/3 spans the 
model plane of all linear combinations. Usually, the observation vector y will not lie 
in the model plane, because of the random error e; that is, y is not (exactly) a linear 
combination of the columns of Z. Recall that 

y ( response) 
vector 

Z/3 ( vector ) in model 
plane 

+ 

( error ) 
vector 
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3 

e = y - y 

Figure 7.1 Least sq uares as a 
project ion for n = 3, r = 1 .  

Once the observations become available, the least squares solution is derived 
from the deviation vector 

y - Zb = ( observation vector ) - (vector in model plane ) 

The squared length (y  - Zb) ' ( y - Zb) is the sum of squares S (b ) .  As illustrated in 
Figure 7 . 1 , S(b )  is as small as possible when b is selected such that Zb is the point in 
the model plane closest to y. This point occurs at th� tip of th� perpendicular pro
jection of y on the plane. That is, for the choice b = f3 ,  y = Z/3 is the projection of 
y on the plane consisting of all linear combinations of the columns of Z. The resid
ual vector e = y - y is perpendicular to that plane. This geometry holds even when 
Z is not of full rank. 

When Z has full rank, the projection operation is expressed analytically as 
multiplication by the matrix Z ( Z' Z) -1 Z ' . To see this, we use the spectral decompo
sition (2-16) to write 

where A1 > A2 > · · · > Ar+ 1 > 0 are the eigenvalues of Z' Z and e1 , e2 , . . .  , er+ l are 
the corresponding eigenvectors. If Z is of full rank, 

1 1 1 (Z ' Z)-1 = - e1 e1 + - e2e2 + · · · + -- er+ 1 e�+ 1 A1 A2 Ar+ 1 
Consider qi == Ai 112Zei , which is a linear combination of the columns of Z. Then q; Qk 
== A-:-1/2 A -k1/2e �Z ' Zek = A-:-1/2 A -k112e �Akek = 0 if i # k or 1 if i = k That is the r + 1 l l l l • ' 

vectors qi are mutually perpendicular and have unit length. Their linear combinations 
span the space of all linear combinations of the columns of Z. Moreover, 

r+ 1 r+ 1 
Z (Z ' Z)-1Z ' = � Aj1ZeiejZ ' � qiq; i= 1 i= 1 
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According to Result 2A.2 and Definition 2A.12, the projection of y on a linear com-
r + l  ( r+ l  ) 

bination of { ql , q2 , . . . , q,+l } is � ( q;y) q; = � q;q; y = z (Z' Zf1Z 'y = z{3 . 
Thus, multiplication by Z (Z ' Z) -1Z ' projects a vector onto the space spanned by the 
columns of Z.2 

Similarly, [I - Z (Z' Z) -1Z ' J is the matrix for the proj ection of y on the plane 
perpendicular to the plane spanned by the columns of Z. 

Samp l ing Properties of Classical  Least Squares Estimators 

The least squares estimator /3 and the residuals e have the sampling properties de
tailed in the next result . 

Result 7.2. Under the general linear regression model in (7-3), the least squares ....... -1 estimator p = (Z 'Z ) Z'Y has 

E(P ) = P and Cov (P ) = a-2(Z ' Z )-1 
The residuals e have the properties 

E(e) = 0 and Cov ( e ) = a-2[I - Z (Z ' Z)-1Z' ] = a-2[I - H] 
Also, E (e ' e ) = (n - r - 1 )a-2 , so defining 

we have 

....... , ....... 2 e e s = 
n - ( r + 1 )  

Y' [ I - Z (Z 'Z )-1Z' ] Y Y' [ I - H] Y 
n - r - 1 n - r - 1  

E(s2) = a-2 
Moreover, p and e are uncorrelated. 

Proof. Before the response Y = zp + e is observed, it is a random vector. 
Now, 

p = (Z 'Z )-1Z 'Y = (Z' Z)-1Z ' (Zp + e) = p + (Z 'Z )-1Z ' e 
e = [I - Z (Z 'Z )-1Z' ] Y 
= [I - Z (Z 'Z )-1Z ' ] [Zp + e] = [I - Z (Z 'Z )-1Z' ] e  

r1 + 1 

(7-10) 

2 If Z is not of full rank, we can use the generalized inverse (Z 'Z ) - = _2: A;1 e1e; , where 
i = l  r1 + 1  

A1 ;;::: A2 ;;::: . . . ;;::: A,. 1 + 1 > 0 = A,. 1 + 2 = . . . = A, + 1 , as described in Exercise 7.6. Then Z (Z' Z)-Z'  = _2: q1q; 
i = l  

has rank r 1  + 1 and generates the unique projection o f  y on the space spanned by the linearly indepen-
dent columns of Z. This is true for any choice of the generalized inverse. (See [20] .) 
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since [I - Z (Z 'Z )-1Z ' ] Z = Z - Z = 0. From (2-24) and (2-45) ,  

E(P ) = f3 + (Z 'Z )-1Z ' E(e ) = f3 
Cov ( p )  = ( Z' Z)-1Z' Cov (e) Z ( Z' Z) -1 = a-2(Z ' Z)-1Z ' Z ( Z' Z) -1 

= a-2 ( z' z) -1 
E(e ) = [I - Z (Z 'Z ) -1Z ' ] E (e ) = 0 

Cov (e ) = [I - Z (Z 'Z )-1Z ' ] Cov (e ) [ I - Z (Z 'Z ) -1Z' J ' 
= a-2[I - Z (Z 'Z )-1Z ' ] 

where the last equality follows from (7-6). Also, 
Cov (p , e ) = E[ (p - f3 ) e' ] = (Z 'Z )-1Z ' E( ee' ) [I - Z (Z 'Z )-1Z ' ] 

= a-2(Z 'Z )-1Z' [I - Z (Z 'Z )-1Z ' J = 0 

because Z' [I - Z(Z 'Z )-1Z ' ] = 0. From (7-10), (7-6) , and Result 4.9, 

e ' e = e' [I - Z (Z 'Z )-1Z ' ] [I - Z (Z 'Z )-1Z' ] e  
= e' [I - Z (Z 'Z )-1Z' J e 
= tr [ e' (I - Z ( Z' Z) -1 Z' ) e J 

-1 = tr ( [ I - Z (Z 'Z ) Z' J ee ' ) 
Now, for an arbitrary n X n random matrix W, 

E(tr (W) ) = E(W1 1 + W22 + · · · + Wnn) 
= E(W1 1 ) + E(W22) + · · ·  + E(Wn n) = tr [E(W) ] 

Thus, using Result 2A.12, we obtain 
E(e ' e ) = tr ( [I - Z (Z 'Z )-1Z ' ]E(ee ' ) ) 

= a-2 tr [I - Z (Z 'Z)-1Z ' ] 
= a-2 tr (I) - a-2 tr [ Z ( Z' Z) -1 Z' J 
= a-2 n - a-2 tr [ ( Z' Z) -1 Z' Z] 
= na-2 - a-2 tr [ I ] (r+ 1 ) X (r+ 1 ) 
= a-2 ( n - r - 1 ) 

and the result for s2 = e ' ej ( n - r - 1 )  follows. 
" 

• 

The least squares estimator f3 possesses a minimum variance property that was 
first established by Gauss. The following result concerns "best" estimators of linear 
parametric functions of the form c' f3 = c0{30 + c1{3 1 + · · · + crf3r for any c. 

Result 7.3 (Gauss'3 least squares theorem). Let Y = Z/3 + e, where 
E( e) = 0, Cov (e) = a-2 I, and Z has full rank r + 1. For any c, the estimator 

" " " " 

c ' f3 = Cof3o + C1 {3 1 + . . .  + Crf3r 

3Much later, Markov proved a less general result, which misled many writers into attaching his 
name to this theorem. 
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of c' f3 has the smallest possible variance among all linear estimators of the form 
a'Y = a1Y1 + a2Y2 + · · · + anYn 

that are unbiased for c' f3. 
Proof For any fixed c, let a'Y be any unbiased estimator of c' f3 . Then 

E(a 'Y) = c' /3, whatever the value of f3 . Also, by assumption, E(a 'Y) = 
E( a' Z/3 + a' e) = a' Z/3 . Equating the two expected value expressions yields 
a' Z/3 = c' f3 or (c ' - a' Z )/3 = 0 for all /3 , including the choice f3 = (c' - a' Z) ' . 
This implies that c' = a' Z for any unbiased estimator. " - -1 Now, c' f3 = c' (Z ' Z) 1Z 'Y = a* 'Y with a* = Z (Z 'Z ) c. Moreover, from 
Result 7.2 E( P ) = f3, so c' P = a* 'Y is an unbiased estimator of c' f3 . Thus, for any 
a satisfying the unbiased requirement c' = a' Z, 

Var (a 'Y) = Var (a ' Z/3 + a ' e ) = Var (a ' e ) = a' Io2a 
= a-2(a - a* + a* ) ' ( a - a* + a* ) 
= a-2 [ (a - a* ) ' (a - a* ) + a* ' a* ] 

since (a - a* ) 'a* = (a - a* ) 'Z (Z 'Z )-1 c = 0 from the condition (a - a* ) 'Z = 
a' Z - a* ' Z = c' - c' = 0 ' . Because a* is fixed and (a - a* ) ' (a - a* ) is positive 
unless a =  a* , Var (a 'Y) is minimized by the choice a* 'Y = c' (Z ' Zf1Z 'Y = c' {3 . 

• 
" This powerful result states that substitution of fJ for f3 leads to the best estimator 

" of c' f3 for any c of interest . In statistical terminology, the estimator c' f3 is called the 
best (minimum-variance) linear unbiased estimator (BLUE) of c' /3 . 

7.4 IN FERENCES ABOUT TH E REGRESS ION MODEL  

We describe inferential procedures based on the classical linear regression model in 
(7-3) with the additional (tentative) assumption that the errors e have a normal dis
tribution. Methods for checking the general adequacy of the model are considered in Section 7.6 . 
I nferences Concerning the Regression  Parameters 

Before we can assess the importance of particular variables in the regression function 

E(Y) = f3o + {31 Z1 + · · · + f3r Zr (7-1 1 ) 

we must determine the sampling distributions of {3 and the residual sum of squares, 
e ' e .  To do so, we shall assume that the errors e have a normal distribution. 

Result 7.4. Let Y = Z/3 + e, where Z has full rank r + 1 and e is distributed as Nn (O, o-21) . Theil the maximum likelihood estimator of f3 is the same as the least squares estimator /3. Moreover, 
P = (Z' Zf1Z 'Y is distributed as N,+ l ( /3 ,  cr2 (Z ' Zf1 ) 
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and is distributed independently of the residuals e = Y - zp . Further, 
na2 = e' e is distributed as o-2 X�-r- 1 

where (J-2 is the maximum likelihood estimator of o-2 • 
Proof. Given the data and the normal assumption for the errors, the likeli

hood function for f3 ,  o-2 is 
( 2) rr

n 1 2/2 2 1 -c'  cj2a2 L {3,  lT = e-El a = e c- c-j= 1 V2iT lT (21T )nf2lTn 
1 e- ( y - z {3) I ( y - z {3)  /2a2 (21T )nf2lTn 

For a fixed value o-2, the likelihood is maximized by minimizing (y - Z/3 ) ' (y - Z/3 ) . 
But this minimization yields the least squares estimate {J = ( Z' Z) -1 Z'y, which does 
not depend upon o-2 • Therefore, under the normal assumption, !he maximum likeli
hood and least squares approaches provide the same estimator f3 .  Next, maximizing 
L( p , o-2) over o-2 [see (4-18)] gives 

L( {3 , 02) = 1 e-n/2 where cl-2 = (y - z{3 ) ' (y - z{3) 
( 21T )nf2 ( (J-2 )n/2 n (7-12) 

From (7-10) , we can express {3 and e as linear combinations of the normal variables 
e. Specifically, 

[-�-] = [-[f-=�z�i�;��;�J = [�J + [�-=�i(j};:��ii,-] e = a + Ae 

Because Z is fixed, Result 4.3 implies the joint normality of {3 and e .  Their mean vec
tors and covariance matrices were obtained in Result 7.2. Again, using (7-6), we get 

Cov ( [-�]) = A Cov ( e )A' = u{-(���r�-�-i=-z-(-i-,-z)-�i-z, J 
Since Cov ( p , e)  = 0 for the normal random vectors p and e ,  these vectors are in
dependent. (See Result 4.5.) 

Next, let (A, e) be any eigenvalue-eigenvector pair for I - Z (Z' Z)-1Z ' . Then, 
by (7-6), [I - Z (Z 'Z )-1Z ' ] 2 = [I - Z (Z 'Z) -1Z ' ] so 
Ae = [I - Z (Z 'Z )-1Z' ] e  = [I - Z (Z 'Z )-1Z ' J2e = A[I - Z (Z 'Z )-1Z' J e = A2e 
That is, A = 0 or 1 .  Now, tr [I - Z (Z 'Z )-1Z ' ] = n - r - 1 ( see the proof of 
Result 7.2), and from Result 4.9 , tr [I - Z (Z 'Z ) -1Z ' ] = A1 + A2 + · · · + An , where 
A1 > A2 > · · · > An are the eigenvalues of [I - Z (Z 'Z )-1Z ' . J Consequently, exactly 
n - r - 1 values of Ai equal one, and the rest are zero. It then follows from the spec
tral decomposition that 

(7- 13) 
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where e1 , e2 , . . .  , en-r- 1 are the normalized eigenvectors associated with the eigenvalues A1 = A2 = · · · = An-r- 1 = 1. Let 

V = e2 
- - - - - � - - - - - - e 
e�-r- 1 

Then V is normal with mean vector 0 and { e' 21e - 2e' e - 2 Cov (V; , Vk) = o:u k - u ; k 
- u ' 

That is, the Vi are independent N(O, o-2) and by (7-10), 

i = k 
otherwise 

na2 = e' e = e ' [l - Z (Z 'Z )-1Z ' J e = Vi + V� + · · · + V�-r- 1 . d. "b d 2 2 IS 1str1 Ute lT Xn-r- 1 ·  • 

A confidence ellipsoid for fJ is easily constructed. It is expressed in terms of the estimated covariance matrix s2 (Z 'Z )-1 , where s2 = e' ej ( n - r - 1 ) . 
Result 7.5. Let Y = ZfJ + e, where Z has full rank r + 1 and e is Nn(O, o-21) . Then a 100 ( 1 - a)% confidence region for fJ is given by 

(fJ-p ) 'Z 'Z ( fJ-P ) < ( r + 1 ) s2Fr+ 1 , n - r- 1 (a ) 
where Fr+ 1 , n - r- 1 (a) is the upper (100a)th percentile of an F-distribution with r + 1 
and n - r - 1 d.f. 

Also, simultaneous 100 ( 1 - a)% confidence intervals for the f3i are given by 
�i ± � V(r + 1 )Fr+ l , n - r- l (a ) , i = 0, 1, . . .  , r 

----- /\ -1 /\ where Var ( f3J is the diagonal element of s2 (Z 'Z ) corresponding to f3i · 
Proof. Consider the symmetric square-root matrix (Z ' Z )112 . [See (2-22) .] Set 1/2 /\ V = (Z 'Z ) (fJ - fJ ) and note that E(V) = 0, 

Cov (V) = (Z 'Z) 112 Cov ( p ) (Z ' Z) 112 = o-2(Z ' Z) 112 (Z ' Z )-1 (Z ' Z) 1;2 = a-21 
" and V is normally distributed, since it consists of linear combinations of the {3/s. 

Therefore, V'V = (P - fJ ) ' (Z 'Z ) 112 (Z 'Z ) 112 ( P - fJ ) = (P - fJ ) ' (Z 'Z ) ( P - fJ ) 
is distributed as o-2 X;+ 1 • By Result 7.4 (n - r - 1 ) s2 = e' e is distributed as 
o-2 x�-r- 1 , independently of {3 and, hence, independently of V. Consequently, [X;+ 1/ ( r + 1 ) ]/ [x�-r- 1/ (n - r - 1 ) ] = [V'V/ ( r + 1 ) ]/s2 has an Fr+ 1 , n- r- 1 ,...distribution, and the confidence ellipsoid for fJ follows. Projecting this ellipsoid for ( fJ - fJ ) 
using Result 5A.1 with A-1 = Z' Z/s2 , c2 = (r + 1 )Fr+ 1 , n - r- 1 (a) , and u' = 
[0, . . . , 0, 1 , 0, . . .  , 0 ] yields l /3 ; - �; I <  V(r + 1 )Fr+ l , n - r- l (a) � ' where ----- /\ -1 " Var (f3i ) is the diagonal element of s2 ( Z' Z) corresponding to f3i · • 
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The confidence ellipsoid is centered at the maximum likelihood estimate {3 ,  
and its orientation and size are determined by the eigenvalues and eigenvectors of Z' Z. If an eigenvalue is nearly zero, the confidence ellipsoid will be very long in the direction of the corresponding eigenvector. 

Practitioners often ignore the "simultaneous" confidence property of the interval estimates in Result 7.5 . Instead, they replace (r + 1 )Fr+ 1 , n- r- 1 (a) with the one-at-a-time t value tn- r- 1 ( a/2) and use the intervals 
� ± tn - r- l(�)v\iaf(�;) (7 -14) 

when searching for important predictor variables. 
Example 7.4 (Fitti ng a regression model to real -estate data) 

The assessment data in Table 7.1 were gathered from 20 homes in a Milwaukee, 
Wisconsin, neighborhood. Fit the regression model 

lj = f3o + {31 Zj 1 + {32Zj2 + Bj 
where z1 = total dwelling size (in hundreds of square feet) , z2 = assessed value 
(in thousands of dollars) , and Y = selling price (in thousands of dollars) , to 
these data using the method of least squares. A computer calculation yields 

TABLE 7 . 1  REAL-ESTATE DATA 

Z1 Total dwelling size 
( 100 ft2 ) 
15.31 
15 .20 
16 .25 
14.33 
14.57 
17.33 
14.48 
14.91 
15 .25 
13 .89 
15 .18 
14.44 
14.87 
18.63 
15 .20 
25 .76 
19 .05 
15 .37 
18.06 
16.35 

Z2 Assessed value 
($1000) 
57.3 
63 .8 
65.4 
57.0 
63.8 
63.2 
60.2 
57.7 
56.4 
55.6 
62.6 
63.4 
60.2 
67.2 
57.1 
89.6 
68.6 
60.1 
66.3 
65 .8 

y 
Selling price 
($1000) 
74.8 
74.0 
72.9 
70.0 
74.9 
76.0 
72.0 
73.5 
74.5 
73.5 
71.5 
71.0 
78.9 
86.5 
68.0 
102.0 
84.0 
69.0 
88.0 
76.0 
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[ 5. 1523 
(Z ' Z)-

1 == .2544 
- .1463 

.0512 ] 
- .0172 .0067 

[ 30.967 ] 
p == (Z ' Z)-

1Z ' y  == 2.634 
.045 

Thus, the fitted equation is 
y == 30.967 + 2.634z1 + .045z2 

(7.88 ) ( .785 ) ( .285 ) 
with s == 3.473 . The numbers in parentheses are the estimated standard devi
ations of the least squares coefficients. Also, R2 == . 834, indicating that the data 
exhibit a strong regression relationship. (See Panel 7.1 , which contains the re
gression analysis of these data using the SAS statistical software package.) If 
the residuals e pass the diagnostic checks described in Section 7 .6, the fitted 

PANEL 7.1 SAS ANALYSIS FOR EXAMPLE 7.4 US ING PROC REG .  

title 'Reg ress ion Ana lysis' ; 
data estate; 
i nfi le 'T7- 1 .dat'; 
in put z1 z2 y; 
proc reg data = estate; 
model y = z1 z2; 

Mode l :  MODEL 1 
Dependent Va r iab le :  

Sou rce 
Model 
E rror 
C Tota l  

DF  
2 

1 7  
1 9  

Deep Mean 
c.v. 

Va r iab le 
I NTERCEP 
z1  
z2 

DF 
1 

Ana lys is of Va r iance 

Sum of 
Sq uares 

1 032 .87506 
204.99494 

1 237.87000 

76 .55000 
4.53630 

Mean 
Square 

5 1 6 .43753 
1 2 .05853 

Adj R-sq 

Parameter Est imates 

PROGRAM COMMANDS 

F va l ue  
42.828 

0 .81 49 

T for HO :  
Parameter = 0 

3 .929 
3 .353 
0 . 1 58 

OUTPUT 

Prob > F 
0 .0001 

Prob > ITI 
0 .00 1 1 
0 .0038 
0.8760 
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equation could be used to predict the selling price of another house in the neigh
borhood from its size and assessed value. We note that a 95% confidence interval for {32 [see (7 -14)] is given by 

�2 ± t1 7 ( .025 ) � = .045 ± 2.110( .285 ) 
or 

( - .556, .647 ) 
Since the confidence interval includes {32 = 0, the variable z2 might be dropped from the regression model and the analysis repeated with the single predictor 
variable z1 . Given dwelling size, assessed value seems to add little to the prediction of selling price. • 

Like l i hood Ratio Tests for the Regress ion Pa rameters 

Part of regression analysis is concerned with assessing the effects of particular pre
dictor variables on the response variable. One null hypothesis of interest states that 
certain of the z/s do not influence the response Y. These predictors will be labeled 
Zq+ 1 , Zq+2 , . . •  , z, . The statement that Zq+ 1 , Zq+2 , . . .  , z, do not influence Y translates 
into the statistical hypothesis 

H0 : /3q+ 1 = /3q+2 = · · · = {3, = 0 or H0 : f3(2) = 0 

where /3(2) = [ /3q+ 1 , /3q+2 ' · · · , {3, J .  Setting 

z = [ Z1 Z2 ] , nX (q + 1 ) nX (r-q) 
we can express the general linear model as 

Y = Z/3 + e = [Z 1 1 Z2] [-�_Q)_J + e = Z1 P (1 ) + Z2P (2) + e f3 (2) 

(7 -15) 

Under the null hypothesis H0 : f3 (2) = 0, Y = Z1 f3 (1 ) + e. The likelihood ratio test of 
H0 is based on the 
Extra sum of squares = SSres (Z 1 ) - SSres (Z ) (7-16) 

= (y - Z1 P( 1 ) ) ' (y - Z1 P ( 1 ) ) - (y - zp ) ' (y - zp ) 
where P ( 1 ) = (Z 1Z 1 )-1Z 1y. 

Result 7.6. Let Z have full rank r + 1 and e be distributed as Nn(O, o-21) . The likelihood ratio test of H0 : f3(2) = 0 is equivalent to a test of H0 based on the 
extra sum of squares in (7-16) and s2 = (y - Zp ) ' (y - ZP )/ (n - r - 1 ) . In par
ticular, the likelihood ratio test rejects H0 if 

(SSres (Z 1 ) - SSres (Z) )/ ( r - q) ------2------ > Fr-q, n -r- 1 (a ) s 
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where Fr-q, n- r- 1 (a)  i s the upper ( 100a )th percentile of an F-distribution with r - q 
and n - r - 1 d.f. 

Proof. Given the data and the normal assumption, the likelihood associated 
with the parameters f3 and a-2 is 

L( p, u2 ) = 
1 

e-(y-Z(3 ) ' (y -Z(3)/2a2 
< 1 -n/2 

( 2'7T) n/2 (In - ( 27T) n/2 ;;.n e 

with the maximum occurring at {3 = (Z ' Z)-1Z' y  and B-2 = (y - Zp ) ' (y - ZP )In. 
Under the restriction of the null hypothesis, Y = Z1 f3 ( 1 ) + e and 

A -1 where the maximum occurs at f3 ( 1 ) = (Z 1Z 1 ) Z1y. Moreover, 
B-i = (y - Z1 P( 1 ) ) ' (y - Z1 {3 ( 1 ) )/n 

Rejecting H0 : f3 (2) = 0 for small values of the likelihood ratio 
max L ( /3 ( 1 ) ' a-2) ( "' 2)-n/2 ( "' 2 + "' 2 _ 

"' 2)-n/2 ( "' 2 _ 
"' 2)-n/2 _f3(-'--l )_,a_2 

___

_ _ _a-1 _ (I 0'1 (I 
_ 1 + 0'1 (I 

max L(/3 ,  a-2) - (;-2 - (;-2 - ;;.2 
{3, a2 

is equivalent to rejecting H0 for large values of ( B-i - B-2)/ B-2 or its scaled version, 
n ( B-i - B-2) I ( r - q) ( ssres ( z 1 ) - ssres ( z) )  I ( r - q) 
--------------- - - F nB-2 I ( n - r - 1 )  - s2 -

The preceding F-ratio has an F-distribution with r - q and n - r - 1 d.f. (See [19] 
or Result 7 .11 with m = 1 . )  • 

Comment. The likelihood ratio test is implemented as follows. To test whether 
all coefficients in a subset are zero, fit the model with and without the terms corre
sponding to these coefficients. The improvement in the residual sum of squares (the 
extra sum of squares) is compared to the residual sum of squares for the full model 
via the F-ratio. The same procedure applies even in analysis of variance situations 
where Z is not of full rank.4 

More generally, it is possible to formulate null hypotheses concerning r - q 
linear combinations of f3 of the form H0 : C/3 = A0 • Let the ( r - q) X ( r + 1 )  ma
trix C have full rank, let A0 = 0, and consider 

H0 : C/3 = 0 

(This null hypothesis reduces to the previous choice when C = [ o l I ] · ) ; (r- q) X (r-q ) 
Under the full model, Cp is distributed as Nr-q (C/3 , a-2C (Z ' Z )-1C' ) . We reject 

4 In situations where Z is not of full rank, rank(Z)  replaces r + 1 and rank (Z 1 ) replaces q + 1 in 
Result 7.6. 
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H0 : C/3 = 0 at level a if 0 does not lie in the 100 ( 1 - a)% confidence ellipsoid for 
C/3 . Equivalently, we reject H0 : C/3 = 0 if 

( Cp ) ' ( C (Z ' Z) -1C ' )  -1 ( Cp )  
-----2 ---- > ( r - q)Fr-q n-r- l (a ) (7- 17) s ' 

where s2 = (y - Zp ) ' (y - ZP)/ (n - r - 1 ) and Fr-q, n -r- 1 (a) is the upper (100a)th percentile of an F-distribution with r - q and n - r - 1 d.f. The test in (7-17) 
is the likelihood ratio test, and the numerator in the F-ratio is the extra residual sum of squares incurred by fitting the model, subject to the restriction that C f3 = 0. (See [22]) .  

The next example illustrates how unbalanced experimental designs are easily 
handled by the general theory just described. 
Example 7 . 5  (Testi ng the importance of addit ional pred ictors 

us ing the extra sum-of-squares approach) 

Male and female patrons rated the service in three establishments (locations) 
of a large restaurant chain. The service ratings were converted into an index. 
Table 7.2 contains the data for n = 18 customers. Each data point in the table 
is categorized according to location (1 , 2, or 3) and gender (male = 0 and 
female = 1) . This categorization has the format of a two-way table with un
equal numbers of observations per cell. For instance, the combination of loca
tion 1 and male has 5 responses, while the combination of location 2 and female 
has 2 responses. Introducing three dummy variables to account for location 
and two dummy variables to account for gender, we can develop a regression 
model linking the service index Y to location, gender, and their "interaction" 
using the design matrix 

TABLE 7 .2 RESTAURANT-S ERVICE DATA 

Location Gender Service (Y )  

1 0 15.2 
1 0 21 .2 
1 0 27.3 
1 0 21 .2 
1 0 21 .2 
1 1 36.4 
1 1 92.4 
2 0 27 .3 
2 0 15.2 
2 0 9.1 
2 0 18.2 
2 0 50.0 
2 1 44.0 
2 1 63.6 
3 0 15.2 
3 0 30.3 
3 1 36.4 
3 1 40.9 
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constant location gender interaction 
� � � 
1 1 0 0 1 0 1 0 0 0 0 0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
0 1 0 
0 1 0 
0 1 0 
0 1 0 
0 1 0 
0 1 0 
0 1 0 
0 0 1 
0 0 1 
0 0 1 
0 0 1 

1 0 
1 0 
1 0 
1 0 
0 1 
0 1 
1 0 
1 0 
1 0 
1 0 
1 0 
0 1 
0 1 
1 0 
1 0 
0 1 
0 1 

1 0 0 0 0 0 
1 0 0 0 0 0 
1 0 0 0 0 0 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 1 0 0 0 
0 0 1 0 0 0 
0 0 1 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
0 0 0 0 0 1 

5 responses 

} 2 responses 
5 responses 

} 2 responses 
} 2 responses 
} 2 responses 

The coefficient vector can be set out as 
f3 ' = [f3o , ,81 , ,82 , ,(33 , T1 , T2 , 'Y1 1 ' 'Y1 2 ' 'Y2 1 , 'Y22 , 'Y3 1 ' 'Y32 ] 

where the ,8/s ( i > 0 ) represent the effects of the locations on the determina
tion of service, the T/s represent the effects of gender on the service index, and 
the 'Yik's represent the location-gender interaction effects. The design matrix Z is not of full rank. (For instance, column 1 equals 
the sum of columns 2-4 or columns 5-6.) In fact , rank(Z) = 6. 

For the complete model, results from a computer program give 
SSres (Z ) = 2977 .4 

and n - rank(Z) = 18 - 6 = 12. 
The model without the interaction terms has the design matrix zl consisting of the first six columns of Z. We find that 

SSres (Z 1 ) = 3419 .1 
with n - rank(Z1 ) = 18 - 4 = 14 . To test H0: Y1 1 = Y1 2 = Y2 1 = Y22 = 'Y3 1 = y3 2 = 0 (no location-gender interaction) , we compute 

(SSres (Z I ) - SSres (Z ) )/ (6 - 4) (SSres (Z l ) - SSres (Z) )/2 F - - ----------
s2 - SSres (Z )/12 

(3419 .1 - 2977.4)/2 = 2977 .4/12 = '89 
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The F-ratio may be compared with an appropriate percentage point of an 
F-distribution with 2 and 12 d.f. This F-ratio is not significant for any reason
able significance level a. Consequently, we conclude that the service index does 
not depend upon any location-gender interaction, and these terms can be 
dropped from the model. 

Using the extra sum-of-squares approach, we may verify that there is no 
difference between locations (no location effect) , but that gender is significant; 
that is, males and females do not give the same ratings to service. 

In analysis-of-variance situations where the cell counts are unequal, the 
variation in the response attributable to different predictor variables and their 
interactions cannot usually be separated into independent amounts. To evalu
ate the relative influences of the predictors on the response in this case, it is 
necessary to fit the model with and without the terms in question and compute 
the appropriate F-test statistics. • 

7 .5  IN FERENCES FROM TH E ESTIMATED REGRESS ION FUNCTION 

Once an investigator is satisfied with the fitted regression model, it can be used to 
solve two prediction problems. �et z0 = [ 1 ,  z0 1 , . . . , Zo r ] be selected values for the predictor variables. Then z0 and f3 can be used (1) to estimate the regression func
tion {30 + {31 z0 1 + · · · + f3rZo r at z0 and (2) to estimate the value of the response Y 
at z0 . 
Esti mating the Regress ion Function at z0 

Let Y0 denote the value of the response when the predictor variables have values 
z0 = [ 1 ,  z0 1 , . . . , Zo r J .  According to the model in (7-3) ,  the expected value of Yo is 

E(Yo I zo ) = f3o + {31Zo 1 + · · · + f3rZo r = Zo/3 (7-18) 
" Its least squares estimate is z0f3 . 

" 

Result 7.7. For the linear regression model in (7-3) ,  z0f3 is the unbiased linear 
estimator of E(Y0 I z0) with minimum variance, Var (z0P ) = z0(Z' Z )-1z0o2 . If the 
errors e are normally distributed, then a 100 ( 1  - a)% confidence interval for 
E(YQ I zo ) = z0f3 is provided by 

zOIJ ± tn -r- l (�)v!(zQ(Z ' Zf1z0) s2 

where tn - r- 1 ( a/2) IS the upper 100 (  a/2 ) th percentile of a !-distribution with 
n - r - 1 d.f. 

Proof. For a fixed z0 , z'o/3 is just a linear combination of the {3/s, so "' "' -1 " Result 7.3 applies. Also, Var ( z0 f3) = z0 Cov ( f3 )z0 = z0( Z' Z) z0a-2 since Cov ( f3 ) == 

a-2(Z ' Z)-1 by Result 7 .2. Under the further assumption that e is normally distrib
uted, Result 7.4 asserts that p is Nr+ 1 ( f3 ,  a-2 (Z 'Z )-1 ) independently of s2/a-2 , which 
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is distributed as x�-r- 1/ (n - r - 1 ) . Consequently, the linear combination z'oP is 
N(z'o/3 , o-2z0 (Z ' Z)-1z0) and 

"' 
( z'oP - z'o{J )j\1 o-2z'o (Z ' Z)-1z0 ( z 'o{J - z'o{J ) 

v?J;? 
is distributed as tn-r- 1 • The confidence interval follows. 
Forecasti ng a New Observation at z0 

• 

Prediction of a new observation, such as YQ , at z'o = [ 1 ,  z0 1 , . . .  , Zo r J is more uncertain than estimating the expected value of Y0 • According to the regression model of (7 -3) ,  

or 
Y0 = z'ofJ + eo 

( new response Yo) = ( expected value of Y0 at z0 )  + (new error ) 
where eo is distributed as N(O, o-2) and is independent of e and, hence, of p and s2. 
The errors e influence the estimators /3 and s2 through the responses Y, but eo does not. 

Result 7.8. Given the linear regression model of (7-3) ,  a new observation Yo 
has the unbiased predictor 

"' "' "' "' 
z'ofJ = f3o + {3 1 Zo 1 + · · · + f3rZor 

"' The variance of the forecast error Yo - z0{J is 
"' 1 Var (Yo - z'o/3 ) = o-2 ( 1 + z0 (Z ' Z )- z0) 

When the errors e have a normal distribution, a 100( 1 - a)% prediction interval for 
Yo is given by 

zaP ± tn -r- l (�) Vs2 ( 1 + zo (z 'zr1zo ) 

where tn -r- 1 ( a/2) is the upper 100 ( a/2 ) th percentile of a t-distribution with 
n - r - 1 degrees of freedom. 

Proof. We forecast Yo by z'o/3 , which estimates E(Yo I z0) . By Result 7.7, z'o/3 
A A -1 has E(z'ofJ ) = z'o{J and Var (z'ofJ ) = z'o (Z ' Z) z0o-2 • The forecast error is then 

Yo - z'o/3 = Zo/J + eo - zo/3 = eo + Zo( fJ-p ) . Thus, E(Yo - zo/3 ) = E(eo ) + 
"' "' 

E( z0( fJ - fJ ) )  = 0 so the predictor is unbiased. Since eo and fJ are independent, "' "' 1 1 Var (Y0 - z0{J ) = Var ( eo ) + Var (z0f3 ) = a-2 + z0 (Z ' Z)- z0o-2 = a-2 ( 1 + z'o (Z' Z)- z0 ) . 
"' If it is further assumed that e has a normal distribution, then fJ is normal-

"' ly distributed, and so is the linear combination Y0 - z'o{J . Consequently, 
(Y0 - z'oP )j\1 o-2 ( 1 + z0(Z ' Z)-1z0) is distributed as N(O, 1 ) . Dividing this ratio by 
v?J;?, which is distributed as V X�- r- 1/ (n - r - 1 ) , we obtain 

"' 
(Yo - zo/3 ) 

Vs2( 1 + z0(Z ' Z)-1 z0) 
which is distributed as tn- r- 1 . The prediction interval follows immediately. • 
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The prediction interval for Yo is wider than the confidence interval for estimating 
the value of the regression function E(Yo I z0) = z0/J . The additional uncertainty in 
forecasting Y0 , which is represented by the extra term s2 in the expression 
s2 ( 1 + z0 (Z ' Z)-1z0) , comes from the presence of the unknown error term s0 • 

Example 7 .6  (I nterva l estimates for a mean response 
and a futu re response) 

Companies considering the purchase of a computer must first assess their future 
needs in order to determine the proper equipment. A computer scientist col
lected data from seven similar company sites so that a forecast equation of 
computer-hardware requirements for inventory management could be devel
oped. The data are given in Table 7.3 for 

z 1 = customer orders ( in thousands) 

z2 = add-delete item count ( in thousands) 

Y = CPU ( central processing unit ) time ( in hours) 

TABLE 7 .3  COM PUTER DATA 

Z1 Z2 y 
(Orders) (Add-delete items) (CPU time) 

123 .5 2.108 141.5 
146.1 9.213 168.9 
133.9 1 .905 154.8 
128.5 .815 146.5 
151 .5 1 .061 172.8 
136.2 8.603 160.1 
92.0 1 . 125 108.5 

Source: Data taken from H. P. Artis, Forecasting Computer Require
ments: A Forecaster's Dilemma (Piscataway, NJ: Bell Laboratories, 1979). 

Construct a 95% confidence interval for the mean CPU time, E (Yo I z0) = 

{30 + {31 Zo 1  + {32z02 at z0 = [ 1 ,  130, 7 .5 ] .  Also, find a 95% prediction interval 
for a new facility's CPU requirement corresponding to the same z0 • 

A computer program provides the estimated regression function 

y = 8.42 + 1 .08z1 + .42z2 [ 8.17969 ] (Z ' Z)-1 = - .06411 .00052 
.08831 - .00107 .01440 

and s = 1 .204. Consequently, 
" 

z0/J = 8.42 + 1 .08 ( 130) + .42( 7.5 ) = 151 .97 
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and sVzO(Z ' Zr1z0 = 1 .204 ( .58928 ) = .71 . We have t4 ( .025 ) = 2.776, so the 
95% confidence interval for the mean CPU time at z0 is 

zoP ± t4 ( .025 )sV'zO(Z ' Zr1zo = 151 .97 ± 2.776 ( .71 ) 
or ( 150.00, 153 .94) . 

Since sV
.--1
_
+
_
z
_
0
-
(Z
_
'
_
Z
_
)_
-1z

-
0 = ( 1 .204 ) ( 1 . 16071 ) = 1 .40, a 95% prediction 

interval for the CPU time at a new facility with conditions z0 is 
z'oP ± t4 ( .025 )sV'1 + z0 (Z ' Z)-1 z0 = 151 .97 ± 2.776 ( 1 .40 ) 

or ( 148.08, 155.86 ) . • 

7.6 MODEL CH ECKI NG AND OTH ER ASPECTS OF REGRESS ION 

Does the Model  Fit? 

Assuming that the model is "correct," we have used the estimated regression function 
to make inferences. Of course, it is imperative to examine the adequacy of the model 
before the estimated function becomes a permanent part of the decision-making 
apparatus. 

or 

All the sample information on lack of fit is contained in the residuals 
A A A 

B1 = Y1 - f3o - f3 1 Z1 1  - . .  · - f3rZ1 r  
A A A 

B2 = Y2 - f3o - /3 1 Z2 1 - · · · - f3rZ2r 
A A A 

en = Yn - f3o - {31 Zn 1 - . . . - f3rZn r 

e = [I - Z (Z ' Z)-1Z' ] y  = [I - H] y (7-19) 
If the model is valid, each residual ej is an estimate of the error sj , which is assumed to 
be a normal random variable with mean zero and variance a-2 • Although the residuals 
e have expected value O, their covariance matrix a-2 [I - Z (Z ' Z )-1Z ' ] = a-2 [I - H] 
is not diagonal. Residuals have unequal variances and nonzero correlations. Fortu
nately, the correlations are often small and the variances are nearly equal. 

Because the residuals e have covariance matrix a-2 [I - H] ,  the variances of the 
s j can vary greatly if the diagonal elements of H, the leverages h j j , are substantially 
different. Consequently, many statisticians prefer graphical diagnostics based on stu
dentized residuals. Using the residual mean square s2 as an estimate of a-2 , we have 

----
Var ( ej ) = s2 ( 1 - hjj) , 

and the studentized residuals are 
A 

e ·  
A* 1 
s . = ---:;:=::=:========= 1 " I 2 ' 

v s ( 1 - hjj ) 

j = 1 ,  2, . . . , n (7-20) 

j = 1, 2, . . .  , n (7-21) 

We expect the studentized residuals to look, approximately, like independent draw
ings from an N ( 0, 1 ) distribution. Some software packages go one step further and 
studentize ej using the delete-one estimated variance s2(j ) ,  which is the residual mean 
square when the jth observation is dropped from the analysis. 
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Residuals should be plotted in various ways to detect possible anomalies. For 
general diagnostic purposes, the following are useful graphs: 

1. Plot the residuals ej against the predicted values Yj = ffio + ffi l Zj l + . . . + ffi r z; r .  

Departures from the assumptions of the model are typically indicated by two 
types of phenomena: 
(a) A dependence of the residuals on the predicted value. This is illustrated in 

Figure 7.2(a) . The numerical calculations are incorrect, or a {30 term has 
been omitted from the model. 

(b) The variance is not constant. The pattern of residuals may be funnel shaped, 
as in Figure 7.2(b ) ,  so that there is large variability for large y and small 
variability for small y .  If this is the case, the variance of the error is not 
constant, and transformations or a weighted least squares approach (or 
both) are required. (See Exercise 7 .3 . )  In Figure 7.2( d) , the residuals form 
a horizontal band . This is ideal and indicates equal variances and no de
pendence on y .  

2. Plot the residuals ej against a predictor variable, such as z1 , or products of pre
dictor variables, such as zi or z1 z2 • A systematic pattern in these plots suggests 
the need for more terms in the model. This situation is illustrated in 
Figure 7.2(c) . 

3. Q-Q plots and histograms. Do the errors appear to be normally distributed? To 
answer this question, the residuals ej or ej can be examined using the techniques 
discussed in Section 4.6. The Q-Q plots, histograms, and dot diagrams help to 
detect the presence of unusual observations or severe departures from nor
mality that may require special attention in the analysis. If n is large, minor de
partures from normality will not greatly affect inferences about /3 .  

A �����----� y 

(a) 

(c) 

A 

�������� y 

(b) 

A 

�������� y 

(d) Figure 7.2 Resid ua l  p l ots .  
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4. Plot the residuals versus time. The assumption of independence is crucial, but 
hard to check. If the data are naturally chronological, a plot of the residuals ver
sus time may reveal a systematic pattern. (A plot of the positions of the resid
uals in space may also reveal associations among the errors. ) For instance, 
residuals that increase over time indicate a strong positive dependence. A sta
tistical test of independence can be constructed from the first autocorrelation, 

n 

2: "' 2 
e ·  1 j= l  

(7-22) 

of residuals from adj acent periods. A popular test based on the statistic � ( Sj - ej-d I� e; 0 2 ( 1 - rl ) is called the Durbin-Watson test. (See 

[13] for a description of this test and tables of critical values.) 

Example 7 .7  {Res idua l  p lots) 

Three residual plots for the computer data discussed in Example 7 .6 are shown 
in Figure 7 .3 .  The sample size n = 7 is really too small to allow definitive judg
ments; however, it appears as if the regression assumptions are tenable. • 

£ 

1 .0 

0 

- 1 .0 

(a) 

1 .0 

0 

- 1 .0 

£ 

1 .0 • 
• • 

zl 0 

- 1 .0 • • 

A 

�--�--�--��� y 

(c) 

• 

5 

• 

(b) 

Figure 7.3 Residua l  plots fo r the com puter data of Examp le  7 .6 .  

10  z2 
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If several observations of the response are available for the same values of the 
predictor variables, then a formal test for lack of fit can be carried out. (See [12] for 
a discussion of the pure-error lack-of-fit test .) 

Leverage and I nfl uence 

Although a residual analysis is useful in assessing the fit of a model, departures from 
the regression model are often hidden by the fitting process. For example, there may 
be "outliers" in either the response or explanatory variables that can have a consid
erable effect on the analysis yet are not easily detected from an examination of resid
ual plots. In fact, these outliers may determine the fit. 

The leverage h1 j is associated with the jth data point and measures, in the space 
of the explanatory variables, how far the jth observation is from the other n - 1 
observations. For simple linear regression with one explanatory variable z , 

1 ( zj - z)
2 

h · · = - + ----1 1  n n 
� (zj - z)2 j= l 

The average leverage is ( r + 1 )/n. (See Exercise 7 .8 . ) 
For a data point with high leverage, hjj approaches 1 and the prediction at Zj is 

almost solely determined by yj , the rest of the data having little to say about the mat
ter. This follows because ( change in yj ) = hjj ( change in yj) , provided that other y 
values remain fixed. 

Observations that significantly affect inferences drawn from the data are said 
to be influential. Methods for assessi�g influence are typically based on the change 
in the vector of parameter estimates, f3 ,  when observations are deleted. Plots based 
upon leverage and influence statistics and their use in diagnostic checking of regres
sion models are described in [2] , [4] , and [9] . These references are recommended for 
anyone involved in an analysis of regression models. 

If, after the diagnostic checks, no serious violations of the assumptions are de
tected, we can make inferences about f3 and the future Y values with some assur
ance that we will not be misled. 

Additional  Problems in Li near Regress ion 

We shall briefly discuss several important aspects of regression that deserve and re
ceive extensive treatments in texts devoted to regression analysis. (See [9] , [10] ,  [12] , 
and [20] . ) 

Selecting predictor variables from a large set. In practice, it is often difficult 
to formulate an appropriate regression function immediately. Which predictor vari
ables should be included? What form should the regression function take? 

When the list of possible predictor variables is very large, not all of the vari
ables can be included in the regression function. Techniques and computer programs 
designed to select the "best" subset of predictors are now readily available. The good 
ones try all subsets: z1 alone, z2 alone, . . .  , z1 and z2 , . • . • The best choice is decided by 
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examining some criterion quantity like R2 • [See (7-9) . ] However, R2 always increases 
with the inclusion of additional predictor variables. Although this problem can be cir
cumvented by using the adjusted R2 , R2 = 1 - ( 1 - R2) ( n - 1 )/ (n - r - 1 ) , a 
better statistic for selecting variables seems to be Mallow's C P statistic (see [11 ] ) ,  ( (residual sum of squares for subset model ) 

with p parameters, including an intercept) 
C = - (n - 2p) P (residual variance for full model ) 

A plot of the pairs (p, Cp) ,  one for each subset of predictors, will indicate models 
that forecast the observed responses well . Good models typically have (p, Cp) co
ordinates near the 45 ° line. In Figure 7.4, we have circled the point corresponding to 
the "best" subset of predictor variables. 

If the list of predictor variables is very long, cost considerations limit the num
ber of models that can be examined. Another approach, called stepwise regression (see 
[12] ) , attempts to select important predictors without considering all the possibili
ties. The procedure can be described by listing the basic steps (algorithm) involved 
in the computations: 

Step 1. All possible simple linear regressions are considered. The predictor 
variable that explains the largest significant proportion of the variation in Y 
(the variable that has the largest correlation with the response) is the first vari
able to enter the regression function . 

• (0) 
• (3) 

(2) . 

• ( 1 )  

• (2, 3 )  

• ( 1 , 3 )  

0 ( 1 , 2, 3) 

• ( 1 , 2) 

Numbers in parentheses 
correspond to predicator 
variables 

Figure 7.4 CP p lot fo r computer 
data from Examp le  7.6 with th ree 
pred icto r va r iables (z1 = orders, z2 = 
add-de lete cou nt, z3 = n u m ber of 
items; see the examp le  and or ig i na l  
sou rce) . 
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Step 2. The next variable to enter is the one (out of those not yet included) that 
makes the largest significant contribution to the regression sum of squares. The 
significance of the contribution is determined by an F-test. (See Result 7.6 . ) 
The value of the F-statistic that must be exceeded before the contribution of a 
variable is deemed significant is often called the F to enter. 
Step 3. Once an additional variable has been included in the equation, the in
dividual contributions to the regression sum of squares of the other variables 
already in the equation are checked for significance using F-tests. If the 
F-statistic is less than the one (called the F to remove) corresponding to a pre
scribed significance level, the variable is deleted from the regression function. 
Step 4. Steps 2 and 3 are repeated until all possible additions are nonsignifi
cant and all possible deletions are significant. At this point the selection stops. 

Because of the step-by-step procedure, there is no guarantee that this approach 
will select, for example, the best three variables for prediction. A second drawback 
is that the (automatic) selection methods are not capable of indicating when trans
formations of variables are useful. 

Colinearity. If Z is not of full rank, some linear combination, such as Za, must 
equal 0. In this situation, the columns are said to be colinear. This implies that Z 'Z 
does not have an inverse. For most regression analyses, it is unlikely that Za = 0 ex
actly. Yet, if linear combinations of the columns of Z exist that are nearly 0, the cal
culation of (Z 'Z )-1 is numerically unstable. Typically, the di�gonal entries of (Z ' Z)-1 
will be large. This yields large estimated variance� for the f3 /s and it is then difficult 
to detect the "significant" regression coefficients f3i . The problems caused by co lin
earity can be overcome somewhat by (1) deleting one of a pair of predictor variables 
that are strongly correlated or (2) relating the response Y to the principal compo
nents of the predictor variables-that is, the rows zj of Z are treated as a sample, and 
the first few principal components are calculated as is subsequently described in Sec
tion 8.3 . The response Y is then regressed on these new predictor variables. 

Bias caused by a misspecified model. Suppose some important predictor vari
ables are omitted from the proposed regression model. That is, suppose the true 
model has Z = [Z 1 ! Z2] with rank r + 1 and 

Y = [ Z1 l Z2 J (nX 1 ) (nx (q+ 1 ) ) l ( n X (r-q) ) 
= Z1 13(1 ) + Z2P (2) + e 

f3 (1 ) ( (q+ 1 ) X 1 ) - - - - - - - - - - - - - - + e f3(2) (nX 1 ) 
( (r-q ) X 1 ) 

(7-23) 

where E( e) = 0 and Var( e) = a21. However, the investigator unknowingly fits 
a model using only the first q predictors by minimizing the error sum of 
squares (Y - Z1 /3 ( 1 ) ) ' (Y - Z1 f3 ( 1 ) ) · The least squares estimator of f3( 1 ) is P ( 1 ) := (Z 1Z1 )-1Z1Y. Then, unlike the situation when the model is correct, 

E(p ( 1 ) ) = (Z 1Z 1 )-1Z 1E(Y) = (Z 1Z 1 )-1Z1 (Z1 f3 ( 1 ) + Z2P (2) + E(e) ) 
(7-24) 



" 
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That is, 13 ( 1 ) is a biased estimator of f3 (I ) unless the columns of Z1 are perpendicular to those of Z2 (that is, Z1 Z2 � 0) . If important variables are missing from the model, 
the least squares estimates f3 ( l ) may be misleading. 

7.7 M U LTIVARIATE M U LTIPLE REGRESS ION 

In this section, we consider the problem of modeling the relationship between m re
sponses Y]_ , Y2 , . . .  , Ym and a single set of predictor variables z1 , z2 , . . .  , z, .  Each re
sponse is assumed to follow its own regression model, so that 

Yi = 13o l + I31 1 Z1 + . . · + l3r 1 Zr + e1 
Y2 = 13o2 + I312 Z1 + · · · + 13r2 Zr + e2 (7-25) 

Ym = 13om + 13I m Z1 + · · · + l3rm Zr + em 
The error term e' = [e1 , e2 , . . .  , em] has E(e) = 0 and Var(e ) = I. Thus, the error 
terms associated with different responses may be correlated. 

To establish notation conforming to the classical linear regression model, let 
[ Zj o , Zj r ,  . . .  , Zj r] denote the values of the predictor variables for the jth trial, let Yj = [lj 1 , lj2 , . . .  , �·m] be the responses, and let ej = [ ej 1 , ej 2 , . . .  , ejm] be the er
rors. In matrix notation, the design matrix 

z 
(nX ( r+ l ) )  

Zn o Zn l Zn r 
is the same as that for the single-response regression model. [See (7-3) . ]  The other 
matrix quantities have multivariate counterparts. Set 

y = 
(nxm) 

/3 
( ( r+ l ) Xm) 

e = 
(nXm) 

= 

Y1 1  Yi 2 Yi m 
121  y22 12m 

Yn l Yn2 Ynm  

13o i 13o2 13om 
13 1 1  13 1 2 13 1m  

l3r l  l3r2 l3rm 

e1 1  e1 2 el m  
e2 1 e22 e2m 

en l en 2 en m  

e1 
e2 

- - - - -

e' n 

= [Y( l ) 

= [ /3 ( 1 ) 

= [ e( l ) 
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Simply stated, the ith response Y(i ) follows the linear regression model 

Y(i) = ZfJ (i) + B(i) , i = 1 ,  2, . . .  , m (7-27 ) 
with Cov ( B(i ) ) = crii I. However, the errors for different responses on the same trial 
can be correlated. 

Given the outcomes Y and the values of the preftictor variables Z with full col
umn rank, we determine the least squares estimates fJ (i) exclusively from the obser
vations Y(i) on the ith response. In conformity with the single-response solution, we 
take 

P u) = (Z ' Z)-
1
Z 'Y(i) 

Collecting these univariate least squares estimates, we obtain 

or 
iJ = [J} ( l l i P (2J i · · · i P (mJ ] = (Z 'Zr1Z ' [Y( l l ! Y(2J Y(mJ ] 

(7-28) 

(7-29) 

For any choice of parameters B = [b ( l ) ! b(z) ! · · · l b(m) J , the matrix of errors 
is Y - ZB. The error sum of squares and cross products matrix is 

(Y - ZB) ' (Y - ZB) 

= 
[ (Y(l l  - Zb( l J\(Y(l l  - Zb( l l ) 

(Y(m) - Zb (m) ) (Y(l ) - Zb ( l ) ) 

(Y( l l - Zb( l l ) ' ;(Y(ml - Zb(mJ ) ] 
(Y(m) - Zb (m) ) (Y(m) - Zb (m) ) 

(7 -30) 
" 

The selection b (i) = fJ (i) m1n1m1zes the ith diagonal sum of squares 

(Y( i ) - Zb(i) ) ' (Yu) ,...- Zb( i) ) · Consequently, tr [ (Y - ZB ) ' (Y - ZB ) ]  is minimized 
by the choice B = f3 .  Also, the generalized variance I (Y - ZB) '  (Y - ZB ) I is min
imized by the least squares estimates /J .  (See Exercise 7 . 11  for an additional gener-
alized sum of squares property.) ,... 

Using the least squares estimates f3 ,  we can form the matrices of 

Predicted values: Y = z{J = Z (Z ' Z)-
1
Z 'Y 

Residuals: e = Y - Y = [I - Z (Z 'Z )-
1
Z ' ] Y (7-3 1 )  



Sect ion 7 . 7  M u lt iva r iate M u lt ip le  Regress ion 385 

The orthogonality conditions among the residuals, predicted values, and columns of 
Z, which hold in classical linear regression, hold in multivariate multiple regression. 
They follow from Z' [I - Z (Z 'Z )-

1
Z' ] = Z' - Z' = 0. Specifically, 

Z ' e = Z' [I - Z (Z' Z)-
1
Z' ] Y = 0 (7-32) 

so the residuals e(i) are perpendicular to the columns of Z. Also, 

(7-33) 

confirming that }he predicted values Y(i) are perpendicular to all residual vectors e(k) . 
Because Y = Y + e , 

or 
Y'Y = Y'Y + e ' e ( total sum of squares) (predicted sum of squares) 

+ 
(resi�ual ( error) �urn) 

and cross products = and cross products 0 square
d
s an

t cross pro uc s 

The residual sum of squares and cross products can also be written as 

e � e  = Y' Y - Y'Y = Y'Y - iJ'z' ziJ 
Example 7 .8 (Fitti ng a mu ltivariate stra ight-l ine  reg ression model) 

" " 

(7-34) 

(7-35) 

To illustrate the calculations of /3 ' Y, and e ' we fit a straight-line regression 
model (see Panel 7.2 on page 386 for SAS output) , 

lf1 = f3o l + f31 1 Zj 1  + Bj l 

lj2 = f3o2 + f3I 2 Zj l  + Bj2 ' j = 1 ,  2, . . .  ' 5 

to two responses Yi and Y2 using the data in Example 7 .3 .  These data, aug
mented by observations on an additional response, are as follows: 

0 

1 
-1 

1 

4 
- 1  

2 

3 
2 

3 

8 
3 

4 

9 
2 

The design matrix Z remains unchanged from the single-response problem. We 
find that 

' = 
[ 1 1 1 1 1 ] z 

0 1 2 3 4 
(Z 'Z )-

1 
= 
[ . 6  - .2] 

- .2 . 1  
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PANEL 7.2  SAS ANALYSIS FOR EXAMPLE 7.8 US ING PROC. GLM.  

t it le 'Mu ltiva riate Reg ress ion Ana lysis'; 
data mra; 
inf i le  'Example  7-8 data; 
i n put y1 y2 z 1 ;  
proc g l m  data = mra; 
model y 1  y2 = z 1 /ss3; 
manova h = z 1 /pr i nte; 

PROGRAM COMMANDS 

General  L inear Models Proced u re 

Sou rce DF Sum of  Sq ua res Mean Sq uare 
Model  1 40.00000000 40.00000000 
Er ror 3 6 .00000000 2 .00000000 
Corrected Tota l 4 46.00000000 

R-Squa re C.V. Root MSE 
0.869565 28.28427 1 .41 42 1 4  

Sou rce DF Type I l l  SS  Mean Sq uare 
Z 1  1 40.00000000 40.00000000 

T for HO :  
Parameter = 0 

0 .9 1  
4.47 

Sou rce DF Sum of Sq ua res Mean Sq uare 
Model 1 1 0 .00000000 1 0.00000000 
E r ror 3 4.00000000 1 .33333333 
Corrected Tota I 4 1 4.00000000 

R-Sq ua re c.v. Root MSE  
0 .7 1 4286 1 1 5 .4701 1 . 1 5470 1 

Sou rce DF Type I l l  SS  Mean Sq uare 
Z1  1 1 0. 00000000 1 0 .00000000 

T for HO:  
Parameter = 0 

-1 . 1 2  
2 .74 

OUTPUT 
F Va l ue  Pr  > F 

20.00 0 .0208 

Y1  Mean 
5 .00000000 

F Va l ue  Pr > F 
20.00 0.0208 

Std Error of 
Pr  > ITI Esti mate 
0.4286 1 .095445 1 2  
0.0208 0 .4472 1 360 

F Va l ue  Pr  > F 
7 .50 0 .07 1 4  

Y2 Mean 
1 .00000000 

F Va l ue  Pr  > F 
7 .50 0 .07 1 4  

Std Error of 
Pr > ITI Est imate 
0.3450 0 .894427 1 9  
0 .07 1 4  0 .3651 4837 

(continues on next page) 
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Statistic 
Wi l ks' Lambda 
P i l l a i 's Trace 
Hotel l i ng-Lawley Trace 
Roy's G reatest Root 
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Y1 
Y2 

Y1  Y2 

Manova Test Criteria and  Exact F Statistics for 
the Hypothes is  of no Overa l l  Z1 Effect 

H = Type I l l  SS&CP Matrix for Z1 E = E rror SS&CP Matr ix 

Va l ue  
0.062 50000 
0.93750000 

1 5 .00000000 
1 5 .  00000000 

S = 1  M = O  N = O  

F 
1 5 .0000 
1 5 .0000 
1 5 .0000 
1 5 .0000 

N u m  DF 
2 
2 
2 
2 

Den DF Pr > F 
2 0 .0625 
2 0 .0625 
2 0 .0625 
2 0 .0625 

and 

so 

-1 
-1 
2 
3 
2 

A -1 [ .6 - .
. 
2
1
] [
2
5
0
] == [-11

] 
/3 (2) == (Z ' Z) Z' y(2) == - .2 

From Example 7.3 , 

Hence, 

A -1 [1 ] /3 ( 1 ) == (Z ' Z) Z ' y( 1 ) == 2 

jJ = [ 11 ( 1 ) i f} (2) ] = 
[ � -� J = (Z ' Zf1Z ' [Y( l ) i Y(2) ] 

The fitted values are generated from )\ == 1 + 2z1 and y2 == -1 + z2 . 
Collectively, 

1 0 1 -1 
1 1 [� -�] 

= 
3 0 

A A 

Y == z{J == 1 2 5 1 
1 3 7 2 
1 4 9 3 
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and 

Note that 

Since 

A [0 E = Y - Y =  0 
A [0 E 'Y = 0 

Y'Y = [ 1 
-1  

Y'Y = [ 165 
45 

1 -2 1 
-1 1 1 

4 3 8 
-1  2 3 

45 J 15 
and 

1 -2 1 OJ 
-1 1 1 -1  

1 - 1  

-n 3 0 
= [� 5 1 

7 2 
9 3 

1 -1  

�] 4 -1  
= [ 171 

3 2 
8 3 

43 

9 2 

A A [ 6 e ' e  = 
-2 

-!] 
the sum of squares and cross-products decomposition 

Y'Y = Y'Y + e' e 
is easily verified. 

�] 

43 J 19  

• 

Result 7.9. For the least squares estimator {J = [ Jl ( l ) J1 (2) i · · ·  i Jl (mJ l 
determined under the multivariate multiple regression model (7-26) with full 
rank(Z)  = r + 1 < n, 

and 

i, k = 1, 2, . . .  , m 

The residuals E = [ i( l ) i i(2l i · · · i i(mJ l = Y - z{J satisfy E (i(i) ) = 0 and 
E (e( i ) e(k ) ) = (n - r - 1 ) o-ik ' so 

" 

E( e) = 0 and E ( 1 e'  e) = I n - r - 1  

Also, e and {J are uncorrelated. 
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Proof. The ith response follows the multiple regression model 
Y(i) = Zf3(i) + e(i ) , E( eu) ) = 0, and E( e(i )e( i ) ) = a-iii 

Also, as in (7-10) , 

and 
P(i) - f3u) = (Z 'Z )-1Z 'Yu) - f3u) = (Z ' Z)-1Z ' eu) (7-36) 

e(i ) = Y(i) - Y(i) = [I - Z(Z 'Z )-1Z' J Y(i) = [I - Z(Z 'Z )-1Z' ] e(i) 
so E( p (i) ) = f3 (i) and E( iu) ) = 0. 

Next, 
Co v ( P u) , P ( k) ) = E ( P ( i) - /3 o)  ) ( P ( k) - /3 ( k) ) ' 

= (Z 'Z )-1Z ' E(eu) e(k ) ) Z (Z 'Z )-1 = o-ik (Z ' Z)-1 
Using Result 4.9 and the proof of Result 7.2, with U any random vector and 

A a fixed matrix, we have that E[U' AU] = E[tr (AUU' ) ] = tr [AE(UU' ) J . 
Consequently, 
E( i(i) e (k) ) = E( e(i) ( I - Z (Z' Z) -1Z ' ) e(k) ) = tr [ ( I - Z (Z' Z) -1Z' ) o-iki ] 

= a-i k tr [ (I - Z ( Z' Z) -1 Z' ) ] = a-i k ( n - r - 1 )  

as in the proof of Result 7.2. Dividing each entry e( i) e (k) of e '  e by n - r - 1 ,  we ob
tain the unbiased estimator of I. Finally, 

Cov ( p0) , e(k) ) = E[ (Z 'Z )-1Z ' e(i ) e(k ) ( I - Z (Z 'Z )-1Z ' ) ]  
= (Z 'Z )-1Z' E(e(i) e(k ) ) (I - Z (Z 'Z )-1Z ' ) 
= (Z 'Z )-1Z ' o-iki (I - Z (Z 'Z )-1Z ' ) 
= o-ik ( (Z 'Z )-1Z ' - (Z ' Z )-1Z ' ) = 0 

" so each element of /3 is uncorrelated with each element of e .  • 

The mean vectors and covariance matrices determined in Result 7.9 enable us 
to obtain the sampling properties of the least squares predictors. 

We first consider the problem of estimating the mean vector when the predic
tor variables have the values z0 = [ 1 , Zo r , . . .  ,,...Zo r ] . The mean of the ith response variable is z0f3 (i ) , and this is estimated by z0f3 (i) , the ith component of the fitted regression relationship. Collectively, 

" Z ' a - [z ' a : z ' a : : z ' a J OfJ - Of-' ( 1 ) : Of-' (2 ) : . . . : OP (m) (7-37) 

is an unbiased estimator z'o/3 since E(z'o/3i_i ) ) = z'olf( /3 (i) ) = z'o/3uJ for each 
component� From the covariance matrix for f3(i) and f3(k) , the estimation errors Zof3 (i ) - Zof3 ( i) have COVariances 
E[zb ( f3u) - Pu) ) ( f3 (k) - P(k) ) 'z o ] = zb(E (f3 ( i) - Pu) ) ( f3 (k) - P (k) ) ' )zo 

= a-i kzo (Z 'Z )-1zo (7-38) 
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The related problem is that of forecasting a new observation vector Y0 == 

[Y0 1 , Y02 , . . • , Yom] at z0 . According to the regression model, Yoi = z0fJ (i) + s0 i where the "new" error Eo = [ s0 1 , s02 , . . .  , sam ] is independent of the errors e and satisfies 
E(s0J = O and E(s0 isok ) = o-ik · The forecast error for the ith component of Y0 is 

A A Yoi - zafJ (i ) = Yoi - zbfJu) + zafJ (i ) - zafJ (i ) 
A 

= eo i - Zo( fJ (i) - fJ (i ) ) 
A A A so E(Yoi - z0fJu) ) = E(s0J - z0E( IJ (i) - fJu) ) = 0, indicating that z0fJu) is an unbiased predictor of Yoi · The forecast errors have covariances 

A A E(Yo i - zofJ (i) ) (Yak - zofJ (k) ) 
A A 

= E(so i - zo ( IJ (i) - IJ ( i) ) ) ( sok - zb( fJ (k) - fJ (k) ) ) 
= E(so isok ) + zbE(P u) - IJ (i) ) ( P (k) - fJ (k) ) ' zo 
- zbE( ( P (i) - IJ ( i) ) sok ) - E(so i ( P (k) - fJ (k) ) ' )z o 

= o-ik ( 1 + z0 (Z ' Z) -1z0 ) (7-39) 

Note that E( (P (i) - !l(i) ) eok ) = 0 sine� p (i) = (Z ' Zf1Z' e(i) + flu) is independent of E0 • A similar result holds for E(s0 i ( J3 (k) - f3(k) ) ' ) . Maximum likelihood estimators and their distributions can be obtained when 
the errors e have a normal distribution. 

Result 7.10. Let the multivariate multiple regression model in (7-26) hold with 
full rank (Z) = r + 1 , n > ( r + 1 ) + m, and let the errors e have a normal distri
bution. Then 

A is t�e maximum likelihood estimator of fJ and fJ ha� a normal distribution with ....... ....... -1 E(/J) = /J and Cov ( fJ (i) , fJ (k) ) = o-ik (Z 'Z ) . Also, /J is independent of the max-
imum likelihood estimator of the positive definite I given by 

and 

A 1 A A 1 A 
f 

A 

I = - e '  e = - (Y - Z/3) (Y - Z/3) n n 

n:i is distributed as wp,n-r- 1 (I )  

Proof. According to the regression model, the likelihood is determined 
from the data Y = [Y1 , Y2, . . .  , YnJ ' whose rows are independent, with Y1 
distributed as Nm(fJ' zj , I) . We first note that Y - ZfJ = [Y1 - /J'z 1 �  
Y2 - /J' z2 , . . .  , Yn - fJ' zn J ' so 

n 
(Y - Z/J) ' (Y - Z/J) = 2: (Yj - fJ' zj) (Yj - fJ' zj) ' j= 1 
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n n 
:L (Yj - /J ' zj ) 'I-1 (Yj - fJ ' zj ) = :L tr [ (Yj - /J ' zj ) ' I-1 (Yj - /J ' zj ) ]  j= 1 j= 1 n = :L tr [I-1 (Yj - fJ ' zj ) (Yj - fJ ' zj ) ' ] j= 1 = tr [I-1 (Y - Z/J) '  (Y - Z/J) ] (7-40) 

Another preliminary calcl!lation will enable us to express the likelihood in a simple 
form. Since e = Y - Z/J satisfies Z' e = 0 [see (7-32)] ,  

(Y - Z/J) ' (Y - Z/J) 
" " " " = [Y - zp + z (/J - fJ) ] '  [Y - zp + z (/J - fJ) J " " " " = (Y - Z/J) ' (Y - Z/J) + (/J - /J) 'Z 'Z (/J - /J) = e' e + (/J - /J) 'z ' z (/J - /3) (7-41) 

Using (7-40) and (7-41) ,  we obtain the likelihood 
n 1 1 1 ( a ' ) ' l-1 ( a ' ) L( a I) = IT e -2  Y1 -P z1 y1 - p  z1 p ,  j= 1 (21T )mf2 I I 1 1/2 

1 1 _ l tr [l-1 (£ ' i + (P- P ) ' z' z(p - 13)  J = e 2 
(21T )mn/2 1 I l n/2 

1 1 _ l tr [:I-1£ ' i ] -l tr [ Z(p - P)l-\ P - P) 'Z ' ] = e 2 2 
(21T )mn/2 1 I l n/2 

" " 

The ,...matrix Z (/3 - /J)I-1 (/J - /J) 'Z '  is the form A' A, with 
A = I-112 (/J - /J) 'Z ' ,  and, from Exercise 2 .16 ,  it is nonnegative definite. 
Therefore, its eigenvalues are nonnegative also. Since, by Result 4 .9 ,  " " 

tr [Z (/3 - /J)I-1 (/J - /J) 'Z ' ] is the sum of its eigenvalues, this trace will equal its 
" 

minimum value, zero, if fJ = fJ .  This choice is unique because Z is of full rank 
" " 

and Pu) - f3u) *,... 0, implies that Z ( f3 (i) - f3 (i ) ) =I= 0, in which case 
tr [?; (/3 - /J)I-1 (/3 - /J) 'Z ' ] > c ' I-1c > 0, where c' is any nonzero row of 
Z;_(/J - /J) . Applying Result 4.10 with B = e' e ,  b = n/2, and p = m, we find that 
fJ and i = n-1e ' e are the maximum likelihood estimators of fJ and I, respective
ly, and 

" 1 ( n )mn/2 e-nm/2 L(/J , i ) = (27T)mnj2 1 i ' i l n/2 e-nmj2 = (7-42) 
(21T )mn/2 1 I l n/2 

" 

It remains to establish the distributional results. From (7-36), we know that f3u) 
and eu) are linear combinations of the elements of e. Specifically, 

p( i) = (Z '  Z) -1Z' e(i) + f3u) 
e( i) = [I - Z (Z ' Z)-1Z ' J eu) ' i = 1 ,  2, . . .  , m 
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Therefore, by Result 4 .3 ,  {3 (1 ) ' {3 (2) ' 0 0 0 ' P(m) ' e( 1 ) ' e(2) ' 0 0 . ' e(m) are jointly normal. 
Their mean vectors and covariance matrices are given in Result 7.9 . Since e and {3 
have a zero covariance matrix, by Result 4.5 they are independent. Further, as in 

n -r- 1 
(7-1 3) ,  [I - Z(Z ' Z)-1Z ' ] = � eee€ , where e{;ek = 0, e # k, and e€ee = 1 .  Set €= 1 
Ve = e' ee = [e ( 1 )ee , e(2)ee , . . . , e(m )ee J ' = ee 1e1 + ee2e2 + · · · + eenen . Because Ve ,  e = 1 ,  2 ,  . . . , n - r - 1 ,  are linear combinations of the elements of e ,  they have a 

joint normal distribution with E(Ve) = E( e' ) ee = 0. Also, by Result 4.8, Ve and Vk 
have covariance matrix ( e{;ek) I = ( 0 )  I = 0 if e # k.  Consequently, the Ve are in
dependently distributed as Nm(O, I) . Finally, 

n-r- 1 n -r- 1 e ' e = e ' [I - Z (Z' Z)-1Z ' ] e  = � e' eeeee = � VeV€ €= 1 €= 1 
which has the wp,n- r- 1 (I )  distribution, by ( 4-22). II 

Result 7 .10 provides additional �upport for using least squares estimates. When 
the errors are normally distributed, /3 and n-1e ' e are the maximum likelihood esti
mators of {3 and I, respectively. Therefore, for large samples, they have nearly the 
smallest possible variances. 

Comment. The multivariate multiple regression model poses no 
A 
new 

computational problems. Least squares (maximum likelihood) estimates, f3 (i) = 
(Z 'Z )-1Z ' y( i) ' are computed individually for each response variable. Note, 
however, that the model requires that the same predictor variables be used for all 
responses. 

Once a multivariate multiple regression model has been fit to the data, it should 
be subjected to the diagnostic checks described in Section 7.6 for the single-response 
model. The residual vectors [ ej 1 , ej2 , • • •  , ejm] can be examined for normality or out
liers using the techniques in Section 4.6. 

The remainder of this section is devoted to brief discussions of inference for 
the normal theory multivariate multiple regression model. Extended accounts of 
these procedures appear in [1] and [22] . 

Li ke l i hood Ratio Tests for Regression Parameters 

The multiresponse analog of (7-15), the hypothesis that the responses do not depend 
on Zq + 1 , Zq +2 , • • • , Zr , becomes 

H0 :  /3(2) = 0 where {3 = 

/3( 1 ) ( (q+ 1 ) Xm) 
/3(2) ( ( r-q) Xm) 

(7-43) 



Sect ion 7 .7  M u lt ivar i ate M u lt ip le  Reg ress ion 393 

Setting Z = [ Z1 (n X (q+ l ) )  Z2 ] ' we can write the general model as (n X ( r-q ) ) 

Under H0: /3 (2 ) = 0, Y = Z1/3( l ) + e and the likelihood ratio test of H0 is based on 
the quantities involved in the 
extra sum of squares and cross products 

" " " " 

= (Y - Z1fJ( l ) ) ' (Y - Z1/3( l ) ) - (Y - Z{J) ' (Y - Z/3) 
= n (I 1 - I) 

where {J(l J = (Z !Z1r1ZlY and i1 = n-1 (Y - zl{J(l l ) ' (Y - zl{J( l J ) · From (7-42), the likelihood ratio, A,  can be expressed in terms of generalized 
variances: 

Equivalently, Wilks ' lambda statistic 

can be used. 
A2;n = 

I � I I I1 l 

(7-44) 

Result 7.11. Let the multivariate multiple regression model of (7-26) hold 
with Z of full rank r + 1 and ( r -t 1 ) + m < n. Let the errors e be normally dis
tri�uted:._ Under H0 : /3 (2) = 0, ni is distributed as Wp,n -r- 1 (I ) independently of 
n (I1 - I ) which, in turn, is distributed as Wp, r-q (I ) .  The likelihood ratio test of H0 is equivalent to rejecting H0 for large values of ( I I I ) l ni l -2 ln A = -n ln I il l  

= -n ln I ni + n (il - i) I 
For n large,5 the modified statistic 

-[n - r - 1 _ l:_ (m - r + q + 1 ) ] ln ( 1 � 1 )  2 I I1 I 
has, to a close approximation, a chi-square distribution with m( r - q) d.f. 

Proof. (See Supplement 7A.) 
" 

• 
If Z is not of full rank, but has rank r1 + 1 ,  then {3 = (Z ' Z)-Z 'Y, where 

(Z 'Z )- is the generalized inverse discussed in [19] . (See also Exercise 7.6 . ) The dis
tributional conclusions stated in Result 7 .11 remain the same, provided that r is re
placed by r1 and q + 1 by rank (Z 1 ) . However, not all hypotheses concerning {3 can 

5Technically, both n - r and n - m should also be large to obtain a good chi-square approximation. 
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be tested due to the lack of uniqueness in the identification of {3 caused by the lin
ear dependencies among the columns of Z. Nevertheless, the generalized inverse al
lows all of the important MANOVA models to be analyzed as special cases of the 
multivariate multiple regression model. 

Example 7 .9 (Testi ng the importance of addit ional pred ictors 
with a mu ltivariate response) 

The service in three locations of a large restaurant chain was rated according to 
two measures of quality by male and female patrons. The first service-quality 
index was introduced in Example 7 .5 .  Suppose we consider a regression model 
that allows for the effects of location, gender, and the location-gender interac
tion on both service-quality indices. The design matrix (see Example 7.5) re
mains the same for the two-response situation. We shall illustrate the test of no 
location-gender interaction in either response using Result 7 . 1 1 .  A computer 
program provides (residual sum of squares) 

= ni = 
[2977.39 1021 .72] 

and cross products 1021 .72 2050.95 (extra sum of squares) 
= n(I _ I) = 

[441 .76 246 .16] 
and cross products 1 246.16 366.12 

Let /3(2) be the matrix of interaction parameters for the two responses. Al
though the sample size n = 18 is not large, we shall illustrate the calculations 
involved in the test of H0 : /3(2) = 0 given in Result 7 .11 .  Setting a = .05, we test 
H0 by referring 

-

[n - rl - 1 - ! (m - r1 + q1 + 1 ) ] 1n ( A l n� l  A ) 
2 I ni + n(I1 - I ) I 

= -[ 18 - 5 - 1 - � (2 - 5 + 3 + 1 )  J ln ( .7605 ) = 3 .28 

to a chi-square percentage point with m ( r1 - q1 ) = 2(2) = 4 d.f. Since 
3 .28 < x�( .05 ) = 9.49, we do not rej ect H0 at the 5% level. The interaction 
terms are not needed. • 

More generally, we could consider a null hypothesis of the form H0 : C{J = f 0 ,  
where C is ( r - q )  X (r + 1 )  and is of full rank ( r - q) . For the choices 
C = [ o ! I ] and f0 = 0, this null hypothesis becomes H0 : C{J = {3 (2) = 0, 

( r - q) X (r-q) 
the case considered earlier. It can be shown that the extra sum of squares and cross 
products generated by the hypothesis H0 is 

n(I1 - I)  = (C{3 - f0) ' (C (Z 'Z )-1C ' ) -1 (C{J - f0) 
Under the nul! hypothesis, the statistic n(I1 - I) is distributed as Wr-q(I )  inde
pendently of I .  This distribution theory can be employed to develop a test of 
H0 : C{J = f0 similar to the test discussed in Result 7 . 1 1 .  (See, for example, [22] .) 
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Other Mu ltivariate Test Statistics 

Tests other than the likelihood ratio test have been proposed for testing H0 : /J(2) = 0 
in the multivariate multiple regression model. 

Popular computer-package programs routinely calculate four multivariate test 
statistics. To connect with their output, we introduce some alternative notation. Let 
E be the p X p error, or residual, sum of squares and cross products matrix 

E = ni 
that results from fitting the full model. The p X p hypothesis, or extra, sum of squares 
and cross-products matrix 

The statistics can be defined in terms of E and H directly, or in terms of 
the nonzero eigenvalues TJ1 > TJ2 > . . .  > TJs of HE-1 , where s = min (p, r - q ) . 
Equivalently, they are the roots of I (I 1 - I) - TJI I = 0. The definitions are 

s 1 
Wilks ' lambda = IT -i = l 1 + TJi 

l E I 
I E + H I 

Pillai 's trace = ± TJ; = tr [H(H + Et1 J i = l 1 + TJi 
s 

Hotelling-Lawley trace = :L TJi = tr [HE-1 ] i = l 
Til Roy's greatest root = 

1 + Til 
Roy's test selects the coefficient vector a so that the univariate F-statistic based on a 
a 'Yj has its maximum possible value. When several of the eigenvalues TJi are mod
erately large, Roy's test will perform poorly relative to the other three. Simulation 
studies suggest that its power will be best when there is only one large eigenvalue. 

Charts and tables of critical values are available for Roy's test. (See [1 8] and 
[16] .) Wilks ' lambda, Roy's greatest root, and the Hotelling-Lawley trace test are 
nearly equivalent for large sample sizes. 

If there is a large discrepancy in the reported P-values for the four tests, the 
eigenvalues and vectors may lead to an interpretation. In this text, we report Wilks ' 
lambda, which is the likelihood ratio test. 

Pred ictions from Mu ltivariate Mu ltip le Regressions 

Suppose the model Y = zfJ + e, with normal errors e, has been fit and checked for 
any inadequacies. If the model is adequate, it can be employed for predictive purposes. 

One problem is to predict the mean responses corresponding to fixed values z0 
of the predictor variables. Inferences about the mean responses can be made using 
the distribution theory in Result 7 .10. From this result, we determine that 

" fJ' Zo is distributed as Nm(fJ' Zo , z'o(Z '  z)-1zo I)  
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and 

n:i is independently distributed as wn-r- l (I ) 
The unknown value of the regression function at z0 is /3' z0 .  So, from the discussion 
of the T2-statistic in Section 5.2, we can write 

2 P Zo - P Zo n A ,.., Zo - ,.., Zo ( a'  a. '  ) ' ( )-1 ( a'  a ' ) 
T = 

v'zQ(Z ' Zflzo n - r - 1 
I 

v'zQ(Z ' Zflzo 
(7-45) 

and the 100 ( 1 - a)% confidence ellipsoid for {3'  z0 i s  provided by the inequality 

(7-46) 

where Fm, n - r-m( a ) is the upper ( 100a ) th percentile of an F-distribution with m and 
n - r - m d.f. 

The 100 ( 1 - a)% simultaneous confidence intervals for E(Yi)  = z0fJ (i ) are 

A �(m (n - r - 1 ) ) � ( n ) zQfJ (iJ ± n - r - m Fm, n-r-m(a) zQ (Z 'Zfl zo n - r - 1 
Ui i , 

i = 1 ,  2, . . . , m (7-47) 

where p (i ) is the ith column of jJ and ui i i s  the ith diagonal element of I. 
The second prediction problem is concerned with forecasting new responses 

Yo = {3' Zo + Eo at Zo . Here Eo is independent of e. Now, 
A A 

Y0 - {3' z0 = ({J - {J) ' z0 + Eo is distributed as Nm(O, ( 1 + z0 (Z ' Z)-1z0)I ) 
independently of n:i , so the 100 ( 1 - a)% prediction ellipsoid for Y0 becomes 

(Yo - {J' zo ) '  ( n _ : _ 1 
ir1 

(Yo - iJ' zo ) 

[ (m (n - r - 1 ) ) ] < ( 1 + Zo (Z ' Z)-1zo) Fm n- r-m(a) n - r - m  ' (7-48) 

The 100 ( 1 - a)% simultaneous prediction intervals for the individual responses Yoz 
are 

"' �(m (n - r - 1 ) ) � ( n ) 
Zo/J (i ) ± Fm n-r-m (a) ( 1 + zQ (Z ' Zf1zo) 1 ui i , 

n - r - m ' n - r -
i = 1 , 2, . . .  , m  (7-49) 

where P (i) ' a-i i ' and Fm, n-r-m(a) are the same quantities appearing in (7-47) .  Com
paring (7-47) and (7-49) ,  we see that the prediction intervals for the actual values of 
the response variables are wider than the corresponding intervals for the expected 
values. The extra width reflects the presence of the random error so i · 
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Example 7 . 1 0  {Constructi ng a confidence e l l i pse and a pred iction e l l i pse 
fo r bivariate responses) 

A second response variable was measured for the computer-requirement prob
lem discussed in Example 7 .6 .  Measurements on the response }2 ,  disk 
input/output capacity, corresponding to the z1 and z2 values in that example were 

y2 = [ 301 .8 , 396.1 ,  328.2, 307.4, 362.4, 369.5, 229 . 1 ]  

Obtain the 95% confidence ellipse for {3' z0 and the 95% prediction ellipse for 
Y0 = [Y0 1 , YQ2 ] for a site with the configuration z0 = [ 1 ,  130, 7 .5 ] .  

Computer calculations provide the fitted equation 

Y2 = 14.14 + 2.25z1 + 5 .67z2 

with s = 1 .812. Thus, P(2 ) = [ 14.14, 2.25, 5 .67 ] .  From Example 7.6, 

P( l ) = [8 .42, 1 .08, 42] ,  zoP ( 1 ) = 151 .97, and Zo(Z '  z )-1zo = .34725 

We find that 
A zof3 (2) = 14.14 + 2.25 ( 130) + 5 .67 (7 .5 ) = 349 .17 

and 

Since 

iJ' Zo = [-�;��-] Zo = [:-;-�-���-] = [ ���:�� J 
n = 7 r = 2 and m = 2 a 95% confidence ellipse for U '  z0 = [�-�-�-(�)-] is from 

' ' ' 
,.., zo/3(2 ) ' 

(7-46), the set 

' ' J [5 .80 
[ zof3 ( 1 ) - 151 .97, z0f3 (2) - 349 .17 ( 4 )  

5.30 
5 .3o]-1 [zo/3 (1 ) - 151 .97] 

13 .13 zo/3 (2) - 349.17 

< ( .34725 ) [ (2�4) ) F2, 3 ( .05 ) ] 
with F2, 3 ( .05 )  = 9.55. This ellipse is centered at ( 151 .97, 349.17 ) .  Its orienta
tion and the lengths of the major �nd minor axes can be determined from the 
eigenvalues and eigenvectors of ni. 

Comparing (7-46) and (7-48) , we see that the only change required for 
the calculation of the 95% prediction ellipse is to replace z0 (Z ' z)-1z0 = .34725 
with 1 + z0 (Z ' Z)-1z0 = 1 . 34725 . Thus, the 95% prediction ellipse for Y0 = 
[YQ1 , YQ2] is also centered at ( 151 .97, 349.17 ) ,  but is larger than the confidence 
ellipse. Both ellipses are sketched in Figure 7.5 .  
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Response 2 

0 

Prediction ellipse 

Confidence ellipse 

Figure 7.5 95% confidence and  
pred ict ion e l l i pses for the  com puter 
data with two responses. 

It is the prediction ellipse that is relevant to the determination of com-
puter requirements for a particular site with the given z0 • II 

7 .8  TH E CONCEPT OF LI N EAR REGRESS ION 

The classical linear regression model is  concerned with the association between a 
single dependent variable Y and a collection of predictor variables z1 , z2 , • • • , Zr . The 
regression model that we have considered treats Y as a random variable whose mean 
depends upon fixed values of the z/s. This mean is assumed to be a linear function 
of the regression coefficients {30 , {3r , . . .  , f3r · 

The linear regression model also arises in a different setting. Suppose all the 
variables Y, Z1 , Z2 , . . . , Zr are random and have a joint distribution, not necessarily 
normal, with mean vector IL and covariance matrix I . Partitioning It 

( r+ l ) X l  (r+ l ) X (r+ l ) 
and I in an obvious fashion, we write 

with 

JLy ( 1 X l ) 
ILz 
( rx l ) 

and I = 

I 
I 

lTy y I Uzy 
( l X l ) : ( l X r) -i;l�T�;�-

(7-50) 

Izz  can be taken to have full rank.6 Consider the problem of predicting Y using the 

linear predictor = b0 + b1Z1 + · · · + brZr = b0 + b 'Z  (7-51)  

6 If Izz  is not o f  full rank, one variable-for example, Zk-can be written as a linear combination 
of the other Z/s and thus is redundant in forming the linear regression function Z' {3. That is, Z may be 
replaced by any subset of components whose nonsingular covariance matrix has the same rank as Izz . 
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For a given predictor of the form of (7-51) ,  the error in the prediction of Y is 

prediction error == Y - b0 - b1Z1 - · · · - b,Z, == Y - b0 - b' Z (7-52) 

Because this error is random, it is customary to select b0 and b to minimize the 

mean square error == E(Y - b0 - b 'Z )2 (7-53) 

Now the mean square error depends on the joint distribution of Y and Z only through 
the parameters IL and I. It is possible to express the "optimal" linear predictor in 
terms of these latter quantities. 

Result 7.12. The linear predictor {30 + f3 '  Z with coefficients 

f3o == J.Ly - f3 '  ILz 

has minimum mean square among all linear predictors of the response Y. Its mean 
square error 1s 

E(Y - f3o - f3 ' Z )2 == E(Y - J.Ly - uzyiz1z(Z - JLz) )2 == a-yy - uzyiz1zuzy 

Also, /30 + f3 ' Z  == J.Ly + Uzyiz1z(Z - JLz) is the linear predictor having maximum 
correlation with Y; that is, 

Corr (Y, f30 + f3 'Z ) == max Corr (Y, b0 + b 'Z )  
bo, b 

= ) f3 ' "Izzf3 
= 

lTyy  

, �-1 Uzy  ... z zUzy 
lTyy  

Proof. Writing b0 + b '  Z == b0 + b '  Z - (J.Ly - b '  JLz) + (J.Ly - b' JLz) ,  we get 

E(Y - b0 - b 'Z )2 == E[Y - J.Ly - (b 'Z - b' JLz) + (J.Ly - b0 - b' 1Lz) ]2 

== E(Y - J.Ly )2 + E(b' ( Z - ILz) ) 2 + (J.Ly - b0 - b' 1Lz)2 

- 2E[b ' (Z - JLz) (Y - J.Ly) ]  

== lTyy + b 'Izzb + (J.Ly - b0 - b' JLz)2 - 2b ' Uzy 

Adding and subtracting Uzyiz�Uzy , we obtain 

E(Y - b0 - b' Z)2 == a-yy - uzyiz�Uzy + (J.Ly - bo - b ' 1Lz)2 

+ (b - Ii1zUzy ) 'Izz(b - Iz1zUzy) 

The mean square error is minimized by taking b == Iz�Uzy == /3 ,  making the last 
term zero, and then choosing b0 == J.Ly - (Iz�Uzy ) ' ILz == {30 to make the third term 
zero. The minimum mean square error is thus lTyy  - Uzyiz1zUzy . 

Next, we note that Cov (b0 + b 'Z, Y) == Cov (b ' Z, Y) == b' Uzy so 

' 2 -
[b ' Uzy ]2 

[Carr ( b0 + b Z, Y) ] - CTy y (b' Izzb)
, for all b0 , b 

Employing the extended Cauchy-Schwartz inequality of (2-49) with B == Izz , we 
obtain 
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or 

u' I-1 u 
[Corr (bo + b 'Z, Y ) ]2 < 

zy zz  zy 
lTy y 

with equality for b = Ii1
zUzy = /3 . The alternative expression for the maximum 

correlation follows from the equation Uzyiz�Uzy = Uzy f3 = uzyiz�Izz/3 === 

f3 ' Izzf3 .  B 
The correlation between Y and its best linear predictor is called the population 

multiple correlation coefficient 

PY(Z) = + ' �-1 
Uzy ... zzUzy 

lTyy  
(7-54) 

The square of the population multiple correlation coefficient, p}(z) ,  is called the 
population coefficient of determination. Note that, unlike other correlation coeffi
cients, the multiple correlation coefficient is a positive square root, so 0 < PY(Z) < 1 .  

The population coefficient of determination has an important interpretation. 
From Result 7. 12, the mean square error in using {30 + /3 '  Z to forecast Y is ( ' �-1 ) 

, -1 _ Uzy ... z zUzy _ 2 lTyy - UzyizzUzy - lTyy  - lTyy - lTyy ( 1  - PY(z) ) lTyy  
(7-55) 

If p}(z) = 0, there is no predictive power in Z. At the other extreme, p}(z) = 1 im
plies that Y can be predicted with no error. 

Example 7 . 1 1 (Determin ing the best l i near pred ictor, its mean sq uare error, 
and the mu lt ip le corre lat ion coefficient) 

Given the mean vector and covariance matrix of Y, Z1 , Z2 , [_I!:_Y__J [-�] [ lTy y 1 Uz y J [ - -�g _ _ l _} ___ _ _ =�-J IL = = 2 and I = _ _ _ _ _ _ _ _ _ !_ _ _ _ __ _ _ _ _ _ = 1 ! 7 3 
#Lz 0 Uzy ! Izz  -1  ! 3 2 

determine (a) the best linear predictor {30 + {31Z1 + {32Z2 , (b) its mean square 
error, and (c) the multiple correlation coefficient. Also, verify that the mean 
square error equals lTyy ( 1  - p}(z) ) · 

First, 

fJ = Iz�uzy = [� �l1 [ -� J = [ _ :: � :!] [ -�J = [ -�J 
f3o = /Ly - fJ' #Lz = 5 - [ 1 ,  -2] [ � J = 3 

so the best linear predictor is {30 + f3 ' Z = 3 + Z1 - 2Z2 . The mean square 
error is 

' �-1 [ J [ .4 - .6] [ 1 J lTyy  - Uzy ... zzUzy = 10 - 1 ,  -1  - .6 1 .4 _1 
= 10 - 3 = 7 
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and the multiple correlation coefficient is 

Z Y  Z Z  ZY  
== _ == .548 

u' I-1 u � 
PY(Z) == lTyy 10 

Note that lTyy ( 1 - p}(z) ) == 10( 1 - {0 ) == 7 is the mean square error. • 

It is possible to show (see Exercise 7.5) that 

2 - 1 1 - PY(Z) - ---yy p (7 -56) 

where pY Y  is the upper left-hand corner of the inverse of the correlation matrix de
termined from I. 

The restriction to linear predictors is closely connected to the assumption of 
normality. Specifically, if we take 

y 
z1 
Z2 to be distributed as Nr+1 ( � , I) 

zr 
then the conditional distribution of Y with z1 , z2 , • . •  , Zr fixed (see Result 4.6) is 

N(JLy + uzyiz1z (Z - ILz) , lTyy - uzyiz�Uzy ) 
The mean of this conditional distribution is the linear predictor in Result 7.12. That 
IS, 

E(Y I z1 , z2 , . . .  , zr) == JLy + uzyiz�(z - �z) (7-57) 
== f3o + f3 ' z 

and we conclude that E(Y I z1 , z2 , • • •  , Zr) is the best linear predictor of Y when the 
population is N,+ 1 ( IL, I) . The conditional expectation of Y in (7 -57) is called the 
linear regression function. 

When the population is not normal, the regression function E(Y I z1 , z2 , • • •  , z, ) 
need not be of the form {30 + f3 ' z. Nevertheless, it can be shown (see [19] ) that 
E(Y I z1 , z2 , • • •  , Zr ) , whatever its form, predicts Y with the smallest mean square error. 
Fortunately, this wider optimality among all estimators is possessed by the linear pre
dictor when the population is normal. 

Result 7.13. Suppose the joint distribution of Y and Z is Nr+ 1 ( � , I) . Let 

# = [�] and S = [��-;+��;] 
be the sample mean vector and sample covariance matrix, respectively, for a random 
sample of size n from this population. Then the maximum likelihood estimators of 
the coefficients in the linear predictor are 

{3 == Si1zSzy , Po == Y - SzySz1zZ == Y - P 'Z 
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Consequently, the maximum likelihood estimator of the linear regression function is 

�o + P ' z = Y + szySz1z (z - Z) 
and the maximum likelihood estimator of the mean square error E[Y - {30 - /3'  ZJ2 
IS 

,... _ n - 1 ( , -l ) lTyy . z - Syy - SzySzzSzy n 

Proof. We use Result 4 .11 and the invariance property of maximum likeli
hood estimators. [See ( 4-20) . ] Since, from Result 7.12, 

f3o = JLy - (Iz�Uzy )' JLz , 

and 
mean square error = lTyy . z = lTyy - Uzy'Iz1zUzy 

the conclusions follow upon substitution of the maximum likelihood estimators 
p = [I] and i = [-!:�-1- -i��J = ( n : 1 ) S 

for 
• 

It is customary to change the divisor from n to n - ( r + 1 )  in the estimator of 
the mean square error, o-yy . z = E(Y - {30 - f3 'Z)2, in order to obtain the unbiased 
estimator 

n /\ 
"' ,  2 

n - 1 , -1 - tf (lj - f3o - fJ Zi) ( 
1
) ( sy y  - SzySzzSzy ) - 1 n - r - n - r - (7-58) 

Example 7 . 1 2  (Maxi mum l i ke l ihood estimate of the regression function-
sing le response) 

For the computer data of Example 7 .6, the n = 7 observations on Y (CPU time) , 
Z1 (orders), and Z2 (add-delete items) give the sample mean vector and sample covariance matrix: 

# = [�] = [i��:�:�] 
s = [-��-�- - -�:-] = [�!::�:!-L��!:���-- - -�!:�!�] 
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Assuming that Y, Z1 , and Z2 are jointly normal, obtain the estimated regression function and the estimated mean square error. 
Result 7.13 gives the maximum likelihood estimates 
P = 8_1 = [ .003128 - .006422] [418.763] == [1 .079] zzSzy - .006422 .086404 35.983 .420 

�o = y - i r z = 150.44 - [1 .079, .420 ] [ 13
�
:
�:
7 J = 150.44 - 142.019 

= 8.421 
and the estimated regression function 

" " 

{30 + f3 ' z = 8.42 - 1 .08z1 + .42z2 
The maximum likelihood estimate of the mean square error arising from 

the prediction of Y with this regression function is ( n - 1 ) 
n 

( sy y - SzySz�Szy) 

= (�) (467.913 - [ 418.763 35.983 ] [ •003128 7 ' - .006422 = . 894 

- .006422] [418.763 ] ) 
.086404 35.983 

• 

Pred iction of Severa l Var iables 

The extension of the previous results to the prediction of several responses Y1 , Y2, • • •  , Ym is almost immediate. We present this extension for normal populations. Suppose 

with 

y (mX 1 ) 
z ( r X 1 ) 

is distributed as Nm+r( /-L , I) 

ILY (mX 1 ) 
ILz (rX 1 ) 

and I = 
I I Ivv ! Ivz (mxm) ! (mX r) 

- - - - - - - - �  - +  � - - - - - � - � -Izv l Izz (rXm) I ( rX r) 
By Result 4.6, the conditional expectation of [Y1 , }2, . . .  , Ym] ' , given the fixed values z 1 , z2 , • • •  , Zr of the predictor variables, is 

(7-59) 
This conditional expected value, considered as a function of Zr , z2 , • • •  , z, is called 
the multivariate regression of the vector Y on Z. It is composed of m univariate re
gressions. For instance, the first component of the conditional mean vector is 
JLy1 + Iy1ziz1z(z - ILz) = E(Yi I Zr , z2 , • • •  , Zr ) , which minimizes the mean square 
error for the prediction of Y1 . The m X r matrix {3 = Ivziz1z is called the matrix of 
regression coefficients . 
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The error of prediction vector 
Y - ILv - Ivzii� (Z - JLz) 

has the expected squares and cross-products matrix 
Ivv· z = E[Y - ILv - Ivzii�(Z - ILz) ] [Y - ILv - Ivziz1z(Z - ILz) ] '  

= Ivv - Ivziz1z (Ivz) ' - Ivzii�Izv + Ivziz1zizzii�(Ivz) ' (7-60) 
= Ivv - Ivziz1zizv 
Because IL and I are typically unknown, they must be estimated from a random 

sample in order to construct the multivariate linear predictor and determine expect
ed prediction errors. 

Result 7.14. Suppose Y and Z are distributed as Nm+r( JL , I) . Then the regression of the vector Y on Z is 
f3o + {Jz = ILv - Ivziz�ILz + Ivzii�z = ILv + Ivziz�(z - ILz) 

The expected squares and cross-products matrix for the errors is 
E(Y - f3o - {Jz) (Y - f3o - {JZ) ' = Ivv· z = Ivv - Ivziz1zizv 

Based on a random sample of size n,  the maximum likelihood estimator of the re
gression function is 

Po + {Jz = Y + SvzSi1z (z - Z) 
and the maximum likelihood estimator of Ivv· z is 

Proof. The regression function and the covariance matrix for the prediction 
errors follow from Result 4.6. Using the relationships 

f3o = ILv - Ivziz1zJLz , f3 = Ivziz� 
f3o + /3 z = ILv + Ivziz1z( z - ILz) 
Ivv·z = Ivv - Ivzii�Izv = Ivv - fJ Izz/3' 

we deduce the maximum likelihood statements from the in variance property [see 
( 4-20)] of maximum likelihood estimators upon substitution of 

It can be shown that an unbiased estimator of Ivv· z is 

(7-61) 
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Example 7 . 1 3 (Maxi mum l i ke l i hood esti mates of the reg ress ion 
fu nctions-two responses) 

We return to the computer data given in Examples 7.6 and 7.10 . For Yi = CPU 
time, y2 = disk 1/0 capacity, zl = orders, and z2 = add-delete items, we have 

and 

150.44 
327.79 
130 .24 

3 .547 

467.913 1148.556 l 418.763 35.983 

_!_!_�§_·-��-�-----�-Q7_��-�2_! __ _l__!_QQ_�:2_��------!�-Q�-�?.-�-

418.763 1008. 976 1 377.200 28.034 
35.983 140.558 i 28.034 13.657 

Assuming normality, we find that the estimated regression function is 
Po + {3z = y + SvzSz�(z - z) [ 150.44] [ 418.763 35.983] = 

327.79 
+ 

1008. 976 140.558 

x [ .003128 - .006422] [z1 - 130.24] 
- .006422 .086404 Z2 - 3.547 [ 150.44] [ 1 .079 (z1 - 130.24) + .420 (z2 - 3 .547 ) ] 

= 
327.79 

+ 
2.254 ( z1 - 130.24) + 5.665 ( z2 - 3 .547 )  

Thus, the minimum mean square error predictor of Yi is 
150.44 + 1 .079 ( z1 - 130.24 )  + .420( z2 - 3.547 ) = 8.42 + 1 .08z1 + .42z2 

Similarly, the best predictor of Y2 is 
14.14 + 2.25z1 + 5 .67z2 

The maximum likelihood estimate of the expected squared errors and cross
products matrix Ivv·z is given by ( n : 1 ) (Svv - SvzSZ�Szv) ( 6 ) ( [ 467.913 1148.536] 
= 7 1148.536 3072.491 [ 418.763 35.983] [ .003128 - .006422] [418.763 1008.976] ) 

1008.976 140.558 - .006422 .086404 35. 983 140.558 

= 
(�) [ 1 .043 1 .042] [ .894 .893] 

7 1 .042 2.572 - .893 2.205 
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The first estimated regression function, 8.42 + 1 .08z1 + .42z2 , and the associated mean square error, .894, are the same as those in Example 7 .12 for the 
single-response case. Similarly, the second estimated regression function , 
14.14 + 2.25z1 + 5.67z2 , is the same as that given in Example 7.10. 

We see that the data enable us to predict the first response, Yi, with small
er error than the second response, r;. The positive covariance .893 indicates 
that overprediction (underprediction) of CPU time tends to be accompanied by 
overprediction (underprediction) of disk capacity. II 

Comment. Result 7.14 states that the assumption of a joint normal distribu
tion for the whole collection Y1 , Y2_,  . . .  , Ym , Zb Z2 , . . . , Zr leads to the prediction equations 

We note the following: 

A A A 5\ = f3o l + f31 1 Z1 + · · · + f3r 1 Zr 
A A A 

Y2 = f3o2 + f31 2Z1 + · · · + f3r2Zr 
A A A 

Ym = f3om + f3I mZ1 + · · · + f3rmZr 

1. The same values, z1 , z2 , . • .  , Zr are used to predict each }i . 
A 

2. The l3ik are estimates of the ( i, k)th entry of the regression coefficient matrix 
/3 = Ivziz1z for i, k > 1 .  

We conclude this discussion of the regression problem by introducing one fur
ther correlation coefficient. 
Partia l  Corre lation Coefficient 

Consider the pair of errors 
Yi - JLy1 - Iy1ziz�(Z - JLz) 
Y2 - JLY2 - IY2ziz1z (Z - JLz) 

obtained from using the best linear predictors to predict Yi and r;. Their correla
tion, determined from the error covariance matrix Ivv· z = Ivv - Ivzii�Izy, measures the association between Yi and Y2 after eliminating the effects of Z1 , 
Z2 , . . .  , Zr . We define the partial correlation coefficient between Yi and r;, eliminating Z1 , 
Z2 , • • •  , Z, by 

PY1Y2 · Z = " I " I 
v lTylyl . z v lTy2y2 . z (7-62) 

where lTy1yk . z is the ( i , k)th entry in the matrix Ivv. z = Ivv - Ivzii1zizv · The 
corresponding sample partial correlation coefficient is 

(7-63 ) 
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with syiyk . z  the ( i , k)th element of Syy - SyzSi�Szy .  Assuming that Y and Z have 
a joint multivariate normal distribution, we find that the sample partial correlation 
coefficient in (7-63) is the maximum likelihood estimator of the partial correlation co
efficient in (7 -62) . 

Example 7 . 14  (Calcu lati ng a partia l  correlation) 

From the computer data in Example 7 .13 ,  

Therefore, 

-1 - [ 1 .043 1 .042] 
Syy - SvzSzzSzv - 1 .042 2.572 

1 .042 
= 64 vT.043 V2372 . (7-63) 

Calculating the ordinary correlation coefficient, we obtain ry1y2 = .96. Com
paring the two correlation coefficients, we see that the association between Yi 
and l2 has been sharply reduced after eliminating the effects of the variables Z 
on both responses. • 

7.9 COMPARING TH E TWO FORM U LATIONS OF TH E REGRESS ION MODEL 

In Sections 7.2 and 7.7, we presented the multiple regression models for one and sev
eral response variables, respectively. In these treatments, the predictor variables had 
fixed values zj at the jth trial. Alternatively, we can start-as in Section 7.8-with a set of variables that have a joint normal distribution. The process of conditioning on 
one subset of variables in order to predict values of the other set leads to a conditional 
expectation that is a multiple regression model. The two approaches to multiple re
gression are related. To show this relationship explicitly, we introduce two minor 
variants of the regression model formulation. 
Mean Corrected Form of the Regression Model 

For any response variable Y, the multiple regression model asserts that 

The predictor variables can be "centered" by subtracting their means. For instance, 
{31Z1 j  = {31 ( z1 j - z1 ) + {31 z1 and we can write 

lj = ( f3o + f3I Z1 + . . .  + f3rZr) + f3I ( Zl j  - zl ) + . . .  + f3r ( Zrj - Zr) + Cj 
= {3* + f3 I ( Zl j - Z1 ) + · · · + f3r ( Zr j - Zr) + Bj (7-64) 
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with {3* = {30 + {31 z1 + · · · + f3rZr ·  The mean corrected design matrix correspond
ing to the reparameterization in (7 -64) is 

1 Z1 1  - Z 1 Z1 r - Zr 
1 Z2 1 - Z 1 Z2 r - Z r  z = c 
1 Zn l - Z 1 Zn r - Zr 

where the last r columns are each perpendicular to the first column, since 
n 

� 1 ( Zj i - Zi ) = 0, j = l  
i = 1 ,  2 ,  . . .  , r 

Further, setting Zc = [ 1 1 Zc2 ] with Z�21 = 0, we obtain 

so 
" 

{3* 

" 

f3r 

(7-65) 

That is, the regression coefficients [ /3 r ,  {32 , . . .  , f3r J '  are unbiasedly estimated by 
(Z� 2Zc2 )-1Z�2 y and {3* is estimated by y. Because the definitions /3r ,  {32 , . . .  , f3r remain unchanged by the reparameterization in (7-64) , their best estimates computed 
from the design matrix Zc are exactly the sallle as t)le ,...best e§._timates computed from the design matrix Z. Thus, setting /3� = [ {3 1 ,  {32 , . . .  , f3r ] ,  the linear predictor of Y can be written as 

(7-66) 

with (z - z) = [ zl - Zl , Z2 - Z2 , . . .  ' Zr - Zr] ' .  Finally, 

(7-67) 
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Comment. The multivariate multiple regression model yields the same mean 
corrected design matrix for each response. The least squares estimates of the coef
ficient vectors for the ith response are given by 

/J (iJ = [ (��:�-:-��E�-��:-�;:J , i = 1 , 2, - . .  , m (7-68) 
Sometimes, for even further numerical stability, "standardized" input variables 

( Zj i - zi )/ f± ( Zj ; - ZY = ( Zj ; - Z; )/'V(n - l ) sz, z, are used. In this case, the \} j = 1 
slope coefficients f3i in the regression model are replaced by {ii = f3i V ( n - 1 ) s2 z . " l l 

The least squares estimates of the beta coefficients {ii become fji = � i V ( n - 1 ) sz{zl , i = 1 , 2, . . . , r. These relationships hold for each response in the multivariate multi
ple regression situation as well. 
Relati ng the Form ulations  

When the variables Y, Z1 , Z2 , . . .  , Zr are jointly normal, the estimated predictor of Y 
(see Result 7.13) is 

(7-69) 
where the estimation procedure leads naturally to the introduction of centered z/s. 

Recall from the mean corrected form of the regression model that the best lin
ear predictor of Y [see (7 -66)] is 

.Y = �* + P�(z - z) 
with �* = y and P� = y' Zc2 (Z� 2Zc2 )-1 • Comparing (7-66) and (7-69), we see that 
�* = Y = �o and Pc = P since7 

' s-1 ' Z  (Z '  Z )-1 (7 70) Sz y z z = Y c 2 c 2 c 2 -
Therefore, both the normal theory conditional mean and the classical regression 
model approaches yield exactly the same linear predictors. 

A similar argument indicates that the best linear predictors of the responses in 
the two multivariate multiple regression setups are also exactly the same. 
Example 7 . 1 5 (Two approaches yie ld the same l i near pred ictor) 

The computer data with the single response Yi = CPU time were analyzed in 
Example 7.6 using the classical linear regression model. The same data were an
alyzed again in Example 7.12, assuming that the variables Yi ,  Z1 , and Z2 were jointly normal so that the best predictor of Yi is the conditional mean of Yi given 
z1 and z2 • Both approaches yielded the same predictor, 

y = 8.42 + 1 .08z1 + .42z2 • 

7The identify in (7-70) is established by writing y = (y - yl) + yl so that 

y' z c 2 = ( y - yl) ' z  c 2 + yl' z c 2 = ( y - yl) ' z  c 2 + 0 ' = ( y - yl) ' z  c 2 
Consequently, 

yZc2 (Z�2Zc2 )-1 = (y - yl) ' Zc 2 (Z�2Zc2) -1 
= (n - l ) sz y [ ( n - l ) Szz]-

1 = SzySz1z 
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Although the two formulations of the linear prediction problem yield the same 
predictor equations, conceptually they are quite different. For the model in (7-3) or 

(7-26) , the values of the input variables are assumed to be set by the experimenter. 
In the conditional mean model of (7-57) or (7-59) , the values of the predictor variables 
are random variables that are observed along with the values of the response vari
able (s) . The assumptions underlying the second approach are more stringent, but 
they yield an optimal predictor among all choices, rather than merely among linear 
predictors. 

We close by noting that the multivariate regression calculations in either case 
can be couched in terms of the sample mean vectors y and z and the sample sums of 

squares and cross-products: 
I n : n 

L (yj - y) ( yj - y) ' l L (yj - y) ( zj - z) ' 
_i �I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  J_ _ i_ �! _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ n : n 
L ( zi - Z) (yi - Y) ' ! L ( zi - Z) (zi - Z) '  j= l  i j = l  

= n [-�::-r�:�-] 
This is the only information necessary to compute the estimated regression coeffi
cients and their estimated covariances. Of course, an important part of regression 
analysis is model checking. This requires the residuals (errors) , which must be cal
culated using all the original data. 

7. 1 0  MULTIPLE REGRESS ION MODELS WITH TI M E  DEPENDENT ERRORS 

For data collected over time, observations in different time periods are often relat
ed, or autocorrelated. Consequently, in a regression context, the observations on the 
dependent variable or, equivalently, the errors, cannot be independent. As indicat
ed in our discussion of dependence in Section 5.8, time dependence in the observa
tions can invalidate inferences made using the usual independence assumption. 
Similarly, inferences in regression can be misleading when regression models are fit 
to time ordered data and the standard regression assumptions are used. This issue is 
important so, in the example that follows, we not only show how to detect the pres
ence of time dependence, but also how to incorporate this dependence into the mul
tiple regression model. 
Example 7 . 1 6  (I ncorporati ng time dependent errors 

in a reg ress ion model) 

Power companies must have enough natural gas to heat all of their customers ' 
homes and businesses, particularly during the coldest days of the year. A major 
component of the planning process is a forecasting exercise based on a model 
relating the sendouts of natural gas to factors, like temperature, that clearly 
have some relationship to the amount of gas consumed. More gas is required 
on cold days. Rather than use the daily average temperature, it is customary to 
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use degree heating days (DHD) == 65 deg - daily average temperature. A 
large number for DHD indicates a cold day. Wind speed, again a 24 hour av
erage, can also be a factor in the sendout amount . Because many businesses 
close for the weekend, the demand for natural gas is typically less on a week
end day. Data on these variables for one winter in a major northern city are 
shown, in part, in Table 7.4. (See the CD-ROM for the complete data set. There 
are n == 63 observations. ) 

TABLE 7.4 NATURAL GAS DATA 

y zl z2 z3 z4 
Send out DHD DHDLag Wind speed Weekend 

227 32 30 12 1 
236 31 32 8 1 
228 30 31 8 0 
252 34 30 8 0 
238 28 34 12 0 

333 46 41 8 0 
266 33 46 8 0 
280 38 33 18 0 
386 52 38 22 0 
415 57 52 18  0 

Initially, we developed a regression model relating gas sendout to degree 
heating days, wind speed and a weekend dummy variable. Other variables like
ly to have some affect on natural gas consumption, like percent cloud cover, 
are subsumed in the error term. After several attempted fits, we decided to in
clude not only the current DHD but also that of the previous day. (The degree 
heating day lagged one time period is denoted by DHDLag in Table 7.4.) The 
fitted model is 

Sendout == 1 .858 + 5 .874 DHD + 1 .405 DHDLag 
+ 1 .315 Windspeed - 15 .857 Weekend 

with R2 == . 952 . All the coefficients, with the exception of the intercept, are sig
nificant and it looks like we have a very good fit. (The intercept term could be 
dropped. When this is done, the results do not change substantially. ) Howev
er, if we calculate the correlation of the residuals that are adjacent in time, the 
lag 1 autocorrelation, we get 

n 

� ejej- 1 j= 2 lag 1 autocorrelation == rl (e )  == --n -- == .52 
� ej j= l 
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The value, .52, of the lag 1 autocorrelation is too large to be ignored. A plot of 

the residual autocorrelations for the first 15 lags shows that there might also 
be some dependence among the errors 7 time periods, or one week, apart . This 
amount of dependence invalidates the t-tests and P-values associated with the 
coefficients in the model. 

The first step toward correcting the model is to replace the presumed in
dependent errors in the regression model for send out with a possibly dependent series of noise terms � . That is, we formulate a regression model for the � 
where we relate each � to its previous value Nj_ 1 , its value one week ago, Nj_7 , 
and an independent error sj . Thus, we consider 

where the sj are independent normal random variables with mean 0 and vari
ance a-2• The form of the equation for � is known as an autoregressive model. 
(See [7] .) The SAS commands and part of the output from fitting this combined 
regression model for sendout with an autoregressive model for the noise are 
shown in Panel 7.3 on page 413. 

The fitted model is 
Sendout = 2.130 + 5.810 DHD + 1 .426 DHDLag 

+ 1 .207 Windspeed - 10.109 Weekend 
and the time dependence in the noise terms is estimated by 

� = .470�-1 + .240Nj-7 + Cj 
The variance of s is estimated to be B-2 = 228 .89. 

From Panel 7.3, we see that the autocorrelations of the residuals from the 
enriched model are all negligible. Each is within two estimated standard er
rors of 0. Also, a weighted sum of squares of residual autocorrelations for a 
group of consecutive lags is not large as judged by the P-value for this statistic. 
That is, there is no reason to reject the hypothesis that a group of consecutive 
autocorrelations are simultaneously equal to 0. The groups examined in Panel 
7.3 are those for lags 1-6, 1-12, 1-18, and 1-24. 

The noise is now adequately modeled. The tests concerning the coeffi
cient of each predictor variable, the significance of the regression, and so forth, 
are now valid.8 The intercept term in the final model can be dropped. When this 
is done, there is very little change in the resulting model. The enriched model 
has better forecasting potential and can now be used to forecast sendout of nat
ural gas for given values of the predictor variables. We will not pursue predic
tion here, since it involves ideas beyond the scope of this book. (See [7] . ) II 

8These tests are obtained by the extra sum of squares procedure but applied to the regression plus 
autoregressive noise model. The tests are those described in the computer output. 
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When modeling relationships using time ordered data, regression models with 
noise structures that allow for the time dependence are often useful. Modern soft
ware packages, like SAS, allow the analyst to easily fit these expanded models. 

PANEL 7.3 SAS ANALYSIS FOR EXAMPLE 7 . 1 6  US ING PROC ARIMA 

data a; 
infi l e  'T7-4 .dat'; 
t ime = _n_; 
i n put obsend dhd  dhd lag  wind  xweekend; 

proc ar ima data = a; 
identify va r = obsend crosscor = ( 
dhd dhd lag wind xweekend ); 

PROGRAM COMMANDS 

est imate p = ( 1  7) method = m l  i n put = ( 
dhd d hd lag wind xweekend ) p lot; 

esti mate p = (1 7) noconsta nt method = m l  i n p ut = ( 
dhd  dhd lag wind xweekend ) p lot; 

ARI MA Proced u re 

Maxim u m  Likel i hood Estimat ion 

Pa rameter 
MU 
AR1 ,  1 
AR 1 ,  2 
N U M 1  
N U M 2  
NUM3 
NUM4 

Constant Estimate = 0 .6 1 770069 

Std E rror Estimate 
AIC 
SBC 

= 1 5 . 1 292441  
= 528.49032 1  
= 543 .492264 

Number of Residua l s  = 63 

Autocorrelat ion Check of Residua l s  

To Ch i 
Lag Sq uare DF  

6 6 .04 4 
1 2  1 0 .27 1 0  
1 8  1 5 .92 1 6  
24 23 .44 22  

Approx. 
Std E rror 
1 3 . 1 2340 
0 . 1 1 779 
0 . 1 1 528 
0 .24047 
0 .24932 
0.44681 
6 . 03445 

0.079 
0 . 1 44 
0 .0 1 3 
0 .0 1 8 

T Rat io 
0 . 1 6  
3 .99 
2 .08 

24. 1 6  
5 .72 
2 .70 

- 1 .68 

Lag 
0 

7 
0 
0 
0 
0 

Autocorrelat ions 

0 .0 1 2  0 .022 0 . 1 92 
-0.067 -0. 1 1 1  -0 .056 

0 . 1 06 -0. 1 37 -0 . 1 70 
0 .004 0 .250 -0 .080 

OUTPUT 

Var iab le Sh ift 
OBSEND 0 
OBSEND 0 
OBSEND 0 
DHD 0 
DHDLAG 0 
WI ND 0 
XWEEKEND 0 

-0. 1 27 0 . 1 6 1 
-0.056 -0. 1 08 
-0.079 0 .0 1 8  
-0 .069 -0.05 1  

(continues on next page) 
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PANEL 7.3 (continued) 

Autocorrelation P lot of Resi dua l s  

Lag Cova r iance Corre lat ion 
0 228.894 1 .00000 
1 1 8. 1 94945 0 .07949 
2 2 .763255 0 .0 1 207 
3 5 .038727 0 .02201 
4 44.05983 5 0. 1 9249 
5 -29 . 1 1 8892 -0 . 1 2722 
6 36.904291  0 . 1 6 1 23 
7 33 .008858 0 . 1 442 1 
8 -1 5 .4240 1 5 -0 .06738 
9 -25 .379057 -0 . 1 1 088 

1 0  -1 2 .890888 -0.05632 
1 1  -1 2 .777280 -0 .05582 
1 2  -24.825623 -0 . 1 0846 
1 3  2 .970 1 97 0 .0 1 298 
1 4  24. 1 50 1 68 0 . 1 055 1  
1 5  -3 1 .4073 1 4  -0 . 1 3721  

-1 9 8 7 6 5 4 3 2 0 1 2 3 4 5 6 7 8 9 1 
I * *******************  
I * *  

I**** . 
***  I 

I * **  
I * **  

* I 
* * I 

* I 
* I 

* * I 
I 
I * *  

***  I 

II
. 

II marks two sta ndard errors 



SU PPLE M E NT 7A 

The Distribution of the Likelih ood 

Ratio for the Multivariate Multiple 

Regression Model 

The development in this supplement establishes Result 7 .11 .  
A 1 A We know that ni = Y' (I - Z(Z 'Z )- Z ' )Y and under H0 , ni 1 = 

Y' [I - Z1 (Z1Z l )-1Z 1 ]Y with Y = Z1/3( 1 ) + e. Set P = [I - Z(Z 'Z )-1Z' J . 
Since 0 = [ I - Z(Z' Z)-1Z ' ] Z = [I - Z(Z 'Z )-1Z' J [Z 1 ! Z2] = [PZ1 ! PZ2] the 
columns of Z are perpendicular to P. Thus, we can write 

ni = (Z/3 + e) ' P (Z/3 + e) = e' Pe 
ni 1 = (Z l/3( 1 ) + e) ' P1 (Z 1/3( l ) + e) = e ' P1e 

-1 where P1 = I - Z1 (Z 1Z 1 ) Z1 . We then use the Gram-Schmidt process (see Result 
2A.3) to construct the orthonormal vectors [g1 , g2 , . . .  , gq+ l ] = G from the columns 
of Z1 . Then we continue, obtaining the orthonormal set from [ G, Z2] , and finally complete the set to n dimensions by constructing an arbitrary orthonormal set of 
n - r - 1 vectors orthogonal to the previous vectors. Consequently, we have 

from columns from columns of Z2 arbitrary set of of zl but perpendicular orthonormal 
to columns of Z1 vectors orthogonal to columns of Z 

Let (A., e) be an eigenvalue-eigenvector pair of Z1 (Z 1Z1 )-1Z1 . Then, since 
[Z1 (Z1Z1 ) -1Z 1 ] [Z 1 (Z1Z 1 )-1Z1 ] = Z1 (Z 1Z1 )-1Z 1 , it follows that 

A.e = Zl (Z 1Z l )-1Z1 e = (Z l (Z 1Zl )-1Z 1 ) 2e == A. (Z l (Z 1Z1 )-1Z 1 ) e = A.2e 
and the eigenvalues of Z1 (Z 1Z1 )-1Z 1 are 0 or 1 .  Moreover, tr (Z1 (Z 1Z1 )-1Z 1 ) 
= tr ( (Z 1Z 1 )-1Z1Z1 ) = tr ( I ) = q + 1 = A1 + A2 + · · · + Aq+ 1 , where (q+l ) X (q + l ) 

41 5 
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A1 > A2 > · · ·  > Aq+ l > 0 are the eigenvalues of Z1 (Z 1Z 1 )-1Z1 . This shows th at 

Z1 (Z 1Z 1 )-1Z 1  has q + 1 eigenvalues equal to 1 .  Now, (Z 1 (Z 1Z 1 )-1Z 1 ) Z 1 = Z1 , so 

any linear combination Z1be of unit length is an eigenvector corresponding to the 

eigenvalue 1 .  The orthonormal vectors ge , e = 1 ,  2, . . .  , q + 1 ,  are therefore eigen
vectors of Z1 (Z 1Z 1 ) -1Z 1 , since they are formed by taking particular linear combi
nations of the columns of Z1 . By the spectral decomposition (2-16) ,  we have q+ 1 
Z1 (Z 1Z 1 ) -1Z 1  = L geg€ . Similarly, by writing (Z  (Z ' Z )-1Z ' ) Z = Z, we readily see €= 1 
that the linear combination Zbe = ge , for example, is an eigenvector of Z (Z 'Z ) -1Z '  

r+ 1 with eigenvalue A = 1 ,  so that Z (Z ' Z)-1Z ' = L geg€ . €= 1 
Continuing, we have PZ = [I - Z (Z' Z)-1Z ' ] Z  = Z - Z = 0 so ge = Zbh e < r + 1, are eigenvectors of P with eigenvalues A = 0. Also, from the way the g£ , e > r + 1 ,  were constructed, Z' ge = 0, so that Pge = ge . Consequently, these g/s 

are eigenvectors of P corresponding to the n - r - 1 unit eigenvalues. By the spec-n 
tral decomposition (2-16) ,  P = L geg€ and t'=r+2 

n n 
ni = e' Pe = L (e ' ge) (e ' ge) ' = L VeV€ €= r+2 €= r+2 

where, because Cov(Vfi , Vjk) = E( g€eu) e(k) gj ) = o-ikgegj = 0, f * j, the e ' g£ == 

Ve = [Ve b . . .  , Vei , . . .  , Vem] ' are independently distributed as Nm(O, I) .  Conse
quently, by (4-22), ni is distributed as Wp,n -r- 1 (I ) .  In the same manner, 

n 

{ ge e > q + 1 Plgc = o e < q + 1 

so P1 = L geg€ . We can write the extra sum of squares and cross products as €=q+2 
r+ 1 r+ 1 

n (I1 - I ) = e' (P1 - P)e = L (e ' ge ) (e ' ge ) ' = L VeV€ €=q+2 €=q+2 
where the Ve are independently distributed as Nm(O, I ) .  By ( 4-22) , n(I1 - i ) is dis
tributed as Wp, r-q (I ) independently of ni , since n(I1 - i ) involves a different set 
of independent Ve's. 

The large sample distribution for - [  n - r - 1 - � (m - r + q + 1 ) ] 
ln ( I I I/ I I1 1 ) follows from Result 5.2, with v - v0 = m(m + 1 )/2 + m(r + 1 ) 

m(m + 1 )/2 - m(q + 1 )  = m(r - q) d.f. The use of (n - r - 1 -
� (m - r + q + 1 ) ) instead of n in the statistic is due to Bartlett [3] following Box [6] , 

and it improves the chi-square approximation. 
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7.1. Given the data 
10 5 7 19 1 1  8 
15 9 3 25 7 13 

fit the linear regression model lj == {30 + {3 1zj 1 + sj , j  = 1 , 2, . . .  , 6 . Specifi
cally, calculate the least squares estimates /3 ,  the fitted values y, the residuals 
i ,  and the residual sum of squares, e ' e .  

7.2. Given the data 

y 

fit the regression model 

10 
2 

15 

5 
3 
9 

7 19 1 1  18 
3 6 7 9 
3 25 7 13 

lj == {31Zj l  + {32Zj 2 + Bj , j == 1, 2, . . .  , 6. 

to the standardized form (see page 409) of the variables y, z1 , and z2 . From this fit, deduce the corresponding fitted regression equation for the original 
(not standardized) variables. 

7.3. (Weighted least squares estimators . ) Let 
Y == Z f3 + e 

(n X l ) (n X (r+ l ) )  ( ( r+ l ) X l ) (n X l ) 
where E(e) == 0 but E(ee' ) == a-2 V, with V(n X n ) known and positive defi
nite. For V of full rank, show that the weighted least squares estimator is 

Pw == (Z 'V-1Z)-1Z 'V-1Y 
If a-2 is unknown, it may be estimated, unbiasedly, by (n - r - 1 )-1 X 

(Y - ZPw ) 'V-1 (Y - ZPw ) . 
Hint: v-112Y == (V-112Z) f3 + v-112e is of the classical linear regression form 
Y* == Z* /3 + e* , with E(e* ) == 0 and E(e* e* ' )  == a-21. Thus, Pw == P* == 
(Z*Z* )-1Z* 'Y* . 

7.4. Use the weighted least squares estimator in Exercise 7.3 to derive an expres
sion for the estimate of the slope f3 in the model �· == {3zj + sj , j == 1 ,  2, . . . , n, 
when (a) Var (sj) == a-2 , (b) Var ( sj ) == a-2zj , and (c) Var (sj) == a-2zJ . Com
ment on the manner ip which the unequal variances for the errors influence 
the optimal choice of f3w . 

7.5. Establish (7 -56) : P�(Z) = 1 - 1/ pYY . 
Hint: From (7-55) and Exercise 4.1 1  

' �-1 2 _ Ciyy - Uzy�zzUzy 1 - PY(Z) - O'yy 
l izz i (a-yy - uzyiz�Uzy ) 
I Izz I a-yy 

I I I 
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From Result 2A.8(c), o-YY 
== I Izz 1 / 1  I I , where o-YY is the entry of I-1 in the 

first row and first column. Since (see Exercise 2.23) p == v-112IV-112 and 
p-1 == (V-112IV-112 )-1 == V112I-1V112 , the entry in the ( 1 , 1 ) position of p-1 is 
p

yy 
== lTYY lTyy . 

7.6. (Generalized inverse of Z 'Z) A matrix (Z 'Z )- is called a generalized inverse 
of Z 'Z if Z 'Z (Z 'Z )-Z 'Z == Z' Z. Let r1 + 1 == rank(Z) and suppose A1 > A2 > · · · > A,1 + l > 0 are the nonzero eigenvalues of Z' Z with corre
sponding eigenvectors e1 , e2 , . . . , e,1 + 1 · 

(a) Show that 
'1 + 1 (Z 'Z )- == � Ai1 eie; i= l  

is a generalized inverse of Z ' Z. " 
(b) The coefficients f3 that minimize the sum of squared errors " (y - Zf3 ) ' (y - Z/3 ) satisfy the normal e9uations (Z ' Z,...) /3 == Z'y. Show 
that these equations are satisfied for any f3 such that Z/3 is the projection 
of y on the c�lumns of Z. 

(c) Show that Z/3 == Z (Z' Z)-Z 'y is the projection of y on the columns of Z. 
(See Footnote 2 in t�is chapter.) 

(d) Show directly that f3 == (Z 'Z )-Z ' y is a solution to the normal equations 
(Z 'Z ) [ (Z' �)-Z 'y] == Z'y. " 

Hint: (b) If Z/3 is the projection, then y - Z/3 is perpendicular to the columns 
of Z. 
(d) The eigenvalue-eigenvector requirement implies that (Z ' Z) ( Ai1ei ) == e1 for 

i < r1 + l and O == e; (Z ' Z) ei for i > r1 + 1 . Therefore, (Z 'Z ) ( Ai1ei) e;Z ' == eieiZ ' . Summing over i gives 
(Z 'Z ) (Z ' zrz' = Z 'z('� Ai1 e;e:)z' 

== ('£ e;e;) Z' == ( � e;e:) Z' == IZ ' == Z' L = l  L = l 
since eiZ ' == 0 for i > r1 + 1. 

7.7. Suppose the classical regression model is, with rank (Z) == r + 1, written as 
y == zl 13 ( 1 ) + z2 13 (2) + e (n X l ) (n X (q+ l ) ) ( ( q+ l ) X l ) (n X ( r-q ) ) ( ( r-q ) x l ) (n X l ) 

where rank(Z 1 ) == q + 1 and rank(Z2) == r - q. If the parameters f3(2) are identified beforehand as being of primary interest, show that a 100 ( 1 - a ) %  
confidence region for f3 (2) is given by 
(P (2) - 13 (2) ) ' [Z2Z2 - Z2Zl (Z 1Zl )-1Z 1Z2 ] ( P (2) - 13(2) ) 

< s2 ( r - q)Fr-q, n -r- 1 (a )  
Hint: By Exercise 4.12, with l 's and 2's interchanged, 

_1 [c 1 1 c1 2J where (Z' Z) == C2 1 C22 
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Multip� 
A 
by the square-root matrix ( C22f112 , and conclude that 

(C22 )-1 ( fJ (2) - fJ (2) )/o-2 is N(O, I) ,  so that 

( P (2) - P (2) ) ' ( C22) -1 ( P (2) - P (2) ) is a-2x;-q . 
7.8. Recall that the hat matrix is defined by H = Z (Z 'Z )-1Z ' with diagonal ele

ments hjj . 
(a) Show that H is an idempotent matrix. [See Result 7 .1 and (7-6) . ] n 
(b) Show that 0 < hjj < 1 ,  j = 1 ,  2, . . . , n ,  and that � hjj = r + 1 ,  where r is 

j= 1 
the number of independent variables in the regression model. (In fact, 
( 1/n ) < hjj < 1 . ) 

(c) Verify, for the simple linear regression model with one independent 
variable z, that the leverage, h j j ,  is given by 

1 (zj - z)2 h · ·  = - + -----

] ]  n n 
� ( zj - z)2 j= 1 

7.9. Consider the following data on one predictor variable z1 and two responses Yi 
and }2:  

-2 -1 0 
5 3 4 

-3 - 1 - 1 

1 
2 
2 

2 
1 
3 

Determine the least squares estimates of the parameters in the straight-line re
gression model 

lj1 = f3o 1 + f3 1 1  Zj 1  + Bj 1  
lj2 = f3o2 + f3 1 2Zj 1  + Bj2 , j = 1 , 2, 3 , 4, 5  

" 
" 

Also, calculate the matrices of fitted values Y and residuals e with 
Y = [y1 ! y2] .  Verify the sum of squares and cross-products decomposition 

7.10. Using the results from Exercise 7.9 , calculate each of the following. 
(a) A 95% confidence interval for the mean response E( Ycn )  = f3o 1 + f31 1 Zo 1 

corresponding to z0 1 = 0.5 
(b) A 95% prediction interval for the response Y0 1 corresponding to z0 1 = 0.5 
(c) A 95% prediction region for the responses Y0 1 and Y02 corresponding to 

z0 1 = 0.5 
7.11. (Generalized least squares for multivariate multiple regression.) Let A be a pos

itive definite matrix, so that dj (B ) = (yj - B ' zj ) ' A(yj - B ' zj ) is a squared sta
tistical distance from the jth observation yj to its regression B'  z j . Show that 
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the choice B = {J = ( Z' Z) -l Z'Y minimizes the sum of squared statistical dis-
n 

tances, � dy(B) , for any choice of positive definite A. Choices for A include j= 1 
I-1 and I. 
Hint: Repeat the steps in (7-40) and (7-41) with I-1 replaced by A. 

7.12. Given the mean vector and covariance matrix of Y, Z1 , and Z2 , 

determine each of the following. 
(a) The best linear predictor {30 + {3121 + f32Z2 of Y 
(b) The mean square error of the best linear predictor 
(c) The population multiple correlation coefficient 
(d) The partial correlation coefficient pyz1 . z2 

7.13. The test scores for college students described in Example 5 .5 have 

[ z1 ] [ 527.74] 
z = z2 = 54.69 , 

Z3 25.13 

[ 5691 .34 ] 
s = 600.51 126.05 

217.25 23 .37 23 . 11  

Assume joint normality. 
(a) Obtain the maximum likelihood estimates of the parameters for predicting 

z1 from z2 and z3 . 
(b) Evaluate the estimated multiple correlation coefficient Rz1 (z2, z3 ) . 
(c) Determine the estimated partial correlation coefficient Rz1 , z2 . z3 • 

7.14. Twenty-five portfolio managers were evaluated in terms of their performance. 
Suppose Y represents the rate of return achieved over a period of time, Z1 is the 
manager's attitude toward risk measured on a five-point scale from "very con
servative" to "very risky," and Z2 is years of experience in the investment busi
ness. The observed correlation coefficients between pairs of variables are 

Y z1 [ 1 .0 - .35 
R = - .35 1 .0 

.82 - .60 

z2 
.82] 

- .60 
1 .0 

(a) Interpret the sample correlation coefficients ryz1 = - .35 and ryz2 = - . 82 . 
(b) Calculate the partial correlation coefficient ryz1 . z2 and interpret this quan

tity with respect to the interpretation provided for ryz1 in Part a. 

The following exercises may require the use of a computer. 

7.15. Use the real-estate data in Table 7 . 1  and the linear regression model in 
Example 7.4. 



(a) Verify the results in Example 7.4. 
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(b) Analyze the residuals to check the adequacy of the model. (See Sec
tion 7 .6 . )  

(c) Generate a 95% prediction interval for the selling price (Y0 ) corresponding 
to total dwelling size z1 = 17 and assessed value z2 = 46. 

(d) Carry out a likelihood ratio test of H0 : {32 = 0 with a significance level of 
a = .05. Should the original model be modified? Discuss. 

7.16. Calculate a C P plot corresponding to the possible linear regressions involving 
the real-estate data in Table 7 . 1 .  

7.17. Consider the Fortune 500 data in Exercise 1 .4. 
(a) Fit a linear regression model to these data using profits as the dependent 

variable and sales and assets as the independent variables. 
(b) Analyze the residuals to check the adequacy of the model. Compute the 

leverages associated with the data points. Does one (or more) of these com
panies stand out as an outlier in the set of independent variable data points? 

(c) Generate a 95% prediction interval for profits corresponding to sales of 
40,000 (millions of dollars) and assets of 70,000 (millions of dollars) . 

(d) Carry out a likelihood ratio test of H0 : {32 = 0 with a significance level of 
a = .05. Should the original model be modified? Discuss. 

7.18. Calculate a C P plot corresponding to the possible regressions involving the For
tune 500 data in Exercise 1 .4. 

7.19. Satellite applications motivated the development of a silver-zinc battery. Table 
7 .5 contains failure data collected to characterize the performance of the bat
tery during its life cycle. Use these data. 
(a) Find the estimated linear regression of ln (Y)  on an appropriate ("best") 

subset of predictor variables. 
(b) Plot the residuals from the fitted model chosen in Part a to check the nor

mal assumption. 
7.20. Using the battery-failure data in Table 7.5 , regress ln (Y )  on the first principal 

component of the predictor variables z1 , z2 , • • •  , z5 • (See Section 8.3 . ) Com
pare the result with the fitted model obtained in Exercise 7 .19(a) .  

7.21. Consider the air-pollution data in Table 1 .5 .  Let Yi = N02 and Y2 = 03 be the 
two responses (pollutants) corresponding to the predictor variables Z1 = wind 
and z2 = solar radiation. 
(a) Perform a regression analysis using only the first response Yi . 

(i) Suggest and fit appropriate linear regression models. 
(ii) Analyze the residuals. 
(iii) Construct a 95% prediction interval for N02 corresponding to z1 = 10 

and z2 = 80. 
(b) Perform a multivariate multiple regression analysis using both responses Y1 

and }2 .  
(i) Suggest and fit appropriate linear regression models. 
(ii) Analyze the residuals. 
(iii) Construct a 95% prediction ellipse for both N02 and 03 for z1 = 10 and 

z2 = 80. Compare this ellipse with the prediction interval in Part a (iii) . 
Comment. 
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TABLE 7 .5  BATTERY-FA I LURE  DATA 

zl z2 z3 z4 Zs y 
Depth of End of 

Charge Discharge discharge charge 
rate rate (% of rated Temperature voltage Cycles to 

(amps) (amps) ampere-hours) ( oC) (volts) failure 

.375 3 .13 60.0 40 2.00 101 
1 .000 3 . 13 76.8 30 1 .99 141 
1 .000 3 . 13  60.0 20 2.00 96 
1 .000 3 . 13 60.0 20 1 .98 125 
1 .625 3 . 13 43.2 10 2.01 43 
1 .625 3 .13 60.0 20 2.00 16  
1 .625 3 . 13 60.0 20 2.02 188 
.375 5 .00 76.8 10 2 .01 10 

1 . 000 5 .00 43.2 10 1 .99 3 
1 .000 5 .00 43.2 30 2.01 386 
1 .000 5 .00 100.0 20 2.00 45 
1 .625 5.00 76.8 10 1 .99 2 
.375 1 .25 76.8 10 2.01 76 

1 .000 1 .25 43.2 10 1 .99 78 
1 .000 1 .25 76.8 30 2.00 160 
1 .000 1 .25 60.0 0 2.00 3 
1 .625 1 .25 43.2 30 1 .99 216 
1 .625 1 .25 60.0 20 2.00 73 
.375 3 .13 76.8 30 1 .99 314 
.375 3 .13 60.0 20 2.00 170 

Source: Selected from S. Sidik, H. Leibecki, and J. Bozek, Failure of Silver-Zinc Cells with Competing 
Failure Modes-Preliminary Data Analysis, NASA Technical Memorandum 81556 (Cleveland: Lewis 
Research Center, 1980) . 

7.22. Using the data on bone mineral content in Table 1 .8: 
(a) Perform a regression analysis by fitting the response for the dominant ra

dius bone to the measurements on the last four bones. 
(i) Suggest and fit appropriate linear regression models. 
(ii) Analyze the residuals. 

(b) Perform a multivariate multiple regression analysis by fitting the respons
es from both radius bones. 

7.23. Using the data on the characteristics of bulls sold at auction in Table 1 . 10: 
(a) Perform a regression analysis using the response Y1 = SalePr and the pre

dictor variables Breed, YrHgt, FtFrBody, PrctFFB, Frame, BkFat, SaleHt, 
and SaleWt. 
(i) Determine the "best" regression equation by retaining only those pre

dictor variables that are individually significant. 
(ii) Using the best fitting model, construct a 95% prediction interval for 

selling price for the set of predictor variable values (in the order listed 
above) 5, 48.7, 990, 74.0, 7 , . 18 ,  54.2 and 1450. 
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(iii) Examine the residuals from the best fitting model. 
(b) Repeat the analysis in Part a, using the natural logarithm of the sales price 

as the response. That is, set Yi = Ln (SalePr ) .  Which analysis do you 
prefer? Why? 

7.24. Using the data on the characteristics of bulls sold at auction in Table 1 . 10: 
(a) Perform a regression analysis, using only the response Yi = SaleHt and the 

predictor variables Z1 = YrHgt and Z2 = FtFrBody. 
(i) Fit an appropriate model and analyze the residuals. 
(ii) Construct a 95% prediction interval for SaleHt corresponding to 

z1 = 50.5 and z2 = 970. 
(b) Perform a multivariate regression analysis with the responses Y1 = SaleHt 

and Y2 = SaleWt and the predictors Z1 = YrHgt and Z2 = FtFrBody. 
(i) Fit an appropriate multivariate model and analyze the residuals. 
(ii) Construct a 95% prediction ellipse for both SaleHt and SaleWt for 

z1 = 50.5 and z2 = 970. Compare this ellipse with the prediction in
terval in Part a (ii) . Comment. 

7.25. Amitriptyline is prescribed by some physicians as an antidepressant. Howev
er, there are also conjectured side effects that seem to be related to the use of 
the drug: irregular heartbeat, abnormal blood pressures, and irregular waves 
on the electrocardiogram, among other things. Data gathered on 17 patients 
who were admitted to the hospital after an amitriptyline overdose are given in 
Table 7 .6 .  The two response variables are 

TABLE 7 .6 AM ITR I PTYLI N E  DATA 

Y1 Y2 Z1 Z2 Z3 Z4 Zs 
TOT AMI GEN AMT PR DIAP QRS 

3389 3149 1 7500 220 0 140 
1 101 653 1 1975 200 0 100 
1131 810 0 3600 205 60 111  
596 448 1 675 160 60 120 
896 844 1 750 185 70 83 

1767 1450 1 2500 180 60 80 
807 493 1 350 154 80 98 

1 1 1 1  941 0 1500 200 70 93 
645 547 1 375 137 60 105 
628 392 1 1050 167 60 74 

1360 1283 1 3000 180 60 80 
652 458 1 450 160 64 60 
860 722 1 1750 135 90 79 
500 384 0 2000 160 60 80 
781 501 0 4500 180 0 100 

1070 405 0 1500 170 90 120 
1754 1520 1 3000 180 0 129 

Source: See [21] .  
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Yi == Total TCAD plasma level (TOT) 
Y2 == Amount of amitriptyline present in TCAD plasma level (AMI) 

The five predictor variables are 

Z1 == Gender: 1 if female , 0 if male (GEN) 
Z2 == Amount of antidepressants taken at time of overdose (AMT) 
Z3 == PR wave measurement (PR) 
Z4 == Diastolic blood pressure (DIAP) 
Z5 == QRS wave measurement (QRS ) 

(a) Perform a regression analysis using only the first response Yi . 
(i) Suggest and fit appropriate linear regression models. 
(ii) Analyze the residuals. 
(iii) Construct a 95% prediction interval for Total TCAD for z1 == 1 , 

z2 == 1200, z3 == 140, z4 == 70, and z5 == 85. 
(b) Repeat Part a using the second response }2 . 
(c) Perform a multivariate multiple regression analysis using both responses Yi 

and Y2 • 
(i) Suggest and fit appropriate linear regression models. 
(ii) Analyze the residuals. 
(iii) Construct a 95% prediction ellipse for both Total TCAD and Amount 

of amitriptyline for z1 == 1 ,  z2 == 1200, z3 == 140, z4 == 70, and z5 == 85 . 
Compare this ellipse with the prediction intervals in Parts a and b. 
Comment. 
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CHAPTER 

8 
Principal Components 

8. 1 INTRODUCTION 

A principal component analysis is concerned with explaining the variance-covariance 
structure of a set of variables through a few linear combinations of these variables. 
Its general objectives are (1) data reduction and (2) interpretation. 

Although p components are required to reproduce the total system variabili
ty, often much of this variability can be accounted for by a small number k of the prin
cipal components. If so, there is (almost) as much information in the k components 
as there is in the original p variables. The k principal components can then replace 
the initial p variables, and the original data set, consisting of n measurements on p 
variables, is reduced to a data set consisting of n measurements on k principal 
components. 

An analysis of principal components often reveals relationships that were not 
previously suspected and thereby allows interpretations that would not ordinarily 
result . A good example of this is provided by the stock market data discussed in 
Example 8 .5 .  

Analyses of principal components are more of a means to an end rather than 
an end in themselves, because they frequently serve as intermediate steps in much 
larger investigations. For example, principal components may be inputs to a multiple 
regression (see Chapter 7) or cluster analysis (see Chapter 12) . Moreover, (scaled) 
principal components are one "factoring" of the covariance matrix for the factor 
analysis model considered in Chapter 9. 

8.2 POPU LATION PRI NCIPAL COMPONENTS 

426 

Algebraically, principal components are particular linear combinations of the p ran
dom variables X1 , X2 , . • •  , XP . Geometrically, these linear combinations represent 
the selection of a new coordinate system obtained by rotating the original system 
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with X1 , X2 , • • •  , XP as the coordinate axes. The new axes represent the directions 
with maximum variability and provide a simpler and more parsimonious description 
of the covariance structure. 

As we shall see, principal components depend solely on the covariance matrix 
I (or the correlation matrix p) of X1 , X2 , . . •  , XP . Their development does not re
quire a multivariate normal assumption. On the other hand, principal components 
derived for multivariate normal populations have useful interpretations in terms of 
the constant density ellipsoids. Further, inferences can be made from the sample 
components when the population is multivariate normal. (See Section 8.5 . ) 

Let the random vector X' == [ X1 ,  X2 , • • •  , XP] have the covariance matrix I 
with eigenvalues A1 > A2 > · · · > AP > 0. 

Consider the linear combinations 

Yi == a! X == a1 1X1 + a1 2X2 + · · · + a1 PXP 
Y2 == a2_X == a2 1X1 + a2 2X2 + · · · + a2PXP 

Then, using (2-45) , we obtain 

Var (Y:) == a;Iai 

Cov (Y: ,  Yk) == a;Iak 

i == 1 ,  2, . . .  ' p 

i, k == 1 ,  2, . . .  ' p 

(8-1 ) 

(8-2) 

(8-3) 

The principal components are those uncorrelated linear combinations Yi ,  r;, . . . , YP 
whose variances in (8-2) are as large as possible. 

The first principal component is the linear combination with maximum vari
ance. That is, it maximizes Var (Yi )  == a1Ia1 . It is clear that Var (Y1 )  == a1Ia1 can be 
increased by multiplying any a1 by some constant. To eliminate this indeterminacy, 
it is convenient to restrict attention to coefficient vectors of unit length. We there
fore define 

First principal component == linear combination a! X that maximizes 

Var ( a1 X) subject to a1 a1 == 1 
Second principal component == linear combination a1 X that maximizes 

Var (a2X) subject to a2_a2 == 1 and 

Cov (a1X, a2X) == 0 

At the ith step, 

ith principal component == linear combination a; X that maximizes 

Var ( ai X) subject to a;ai == 1 and 

Cov (ai X, akX) == 0 for k < i 
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Result 8.1. Let I be the covariance matrix associated with the random vector 
X' = [X1 , X2 , . • .  , XP] . Let I have the eigenvalue-eigenvector pairs ( A.1 , e 1 ) ,  
( A.2 , e2 ) , . . . , (A.p , ep) where A1 > A2 > · · · > AP > 0. Then the ith principal compo
nent is given by 

r: = e;x = ei lxl + ei 2x2 + . . .  + ei pxp , 
With these choices, 

i = 1 ,  2, . . .  ' p 

Var (Y)  = e ��e = A · l l .... l l i = 1 , 2, . . . ' p 
Cov (I: ,  Yk) = e;Iek = 0 i # k 

(8 -4) 

(8-5) 

If some Ai are equal, the choices of the corresponding coefficient vectors, ez , and 
hence I: ,  are not unique. 

Proof. We know from (2-51) ,  with B = I, that 

a' Ia 
max -,- =  A1 a * O  a a 

( attained when a = e1 ) 

But e1 e1 = 1 since the eigenvectors are normalized. Thus, 

a 'Ia e1Ie1 max -, - =  A1 = , = e1Ie1 = Var (Yi )  
a * O  a a elel 

Similarly, using (2-52) , we get 

For the choice a = ek+ l ' with ek+ l ei = 0, for i = 1, 2, . . .  , k and k = 1, 2, . . .  , p - 1 , 

ek+ liek+ l fek+ l ek+ l = ek+ liek+ l = Var (Yk+ l ) 

But ek+ 1 (Iek+ l ) = "-k+ lek + lek+ l = "-k+ l so Var (Yk+ l ) = "-k+ l · It remains to show 
that ei perpendicular to ek (that is, e;ek = 0, i =I= k) gives Cov (I: ,  Yk) = 0. Now, the 
eigenvectors of I are orthogonal if all the eigenvalues A1 , A2 , . . .  , AP are distinct. If 
the eigenvalues are not all distinct, the eigenvectors corresponding to common eigen
values may be chosen to be orthogonal. Therefore, for any two eigenvectors ei and 
ek , ei ek = 0, i # k. Since Iek = Akek , premultiplication by e; gives 

Cov (I: ,  Yk) = e;Iek = eiA.kek = A.keiek = 0 

for any i # k, and the proof is complete. • 

From Result 8 .1 ,  the principal components are uncorrelated and have variances 
equal to the eigf�nvalues of I. 

Result 8.2. Let X' = [ X1 , X2 , . . •  , Xp ] have covariance matrix I, with 
eigenvalue-eigenvector pairs ( A.1 , e1 ) , ( A.2 , e2 ) , . . .  , ( A.p , ep) where 
A1 > A2 > · · · > AP > 0. Let Yi = e!X, Y2 = e2X, . . .  , YP = e�X be the principal 
components. Then 

p p 
o-1 1  + o-22 + . . .  + o-PP = L Var (XJ = "-1 + "-2 + . . .  + AP = L Var (I:) 

i= l  i = l  
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Proof. From Definition 2A.28, o-1 1 + o-22 + · · ·  + o-PP == tr (I ) . From (2-20) 
with A == I, we can write I == PAP' where A is the diagonal matrix of eigenvalues 
and P == [e 1 , e2 , . . . , ep ] so that PP' == P 'P  == I . Using Result 2A.12(c) , we have 

Thus, 
tr (I )  == tr (PAP' ) == tr ( AP 'P )  == tr (A )  == A1 + A2 + · · ·  + AP 

p p 
L Var(  Xz) == tr (I )  == tr( A )  == L Var( Y;) 
i= l  i= l  

Result 8.2 says that 

Total population variance == o-1 1 + o-22 + · · · + a-P P 
== A1 + A2 + · · · + AP 

• 

(8-6) 

and consequently, the proportion of total variance due to (explained by) the kth prin
cipal component is 

Proportion of total 
population variance 
due to kth principal 

component 
A + A  + · · · + A  1 2 p 

k == 1 ,  2, . . .  ' p (8-7) 

If most (for instance, 80 to 90%) of the total population variance, for large p, can be 
attributed to the first one, two, or three components, then these components can 
"replace" the original p variables without much loss of information. 

Each component of the coefficient vector e; == [ ei 1 , . . .  , ei k ' . . .  , ei p ] also merits 
inspection. The magnitude of ei k measures the importance of the kth variable to the 
ith principal component, irrespective of the other variables. In particular, ei k is pro
portional to the correlation coefficient between }j and Xk . 

Result 8.3. If Y1 == e� X, Y2 == e�X, . . .  , YP == e�X are the principal components 
obtained from the covariance matrix I, then 

e · k\II l l 
PYPXk == � � 

V lTkk 
i, k == 1 ,  2, . . .  ' p (8-8) 

are the correlation coefficients between the components }j and the variables Xk . 
Here (A1 , e 1 ) ,  (A2 , e2 ) ,  . . .  , ( Ap , ep) are the eigenvalue-eigenvector pairs for I. 

Proof. Set ak == [0 , . . .  , 0 , 1 , 0, . . .  , 0 ] so that Xk == akX and Cov (X10 }j) == 

Cov ( akX, e;X) == akiei , according to (2-45). Since Iei == Aiei , Cov ( Xk , li) == akAiei == 

Aiei k · Then Var(}j) == Ai [see (8-5)] and Var (Xk )  == o-kk yield 

Cov (}j , Xk) Aiei k ei k\0\ . k 1 PY, .xk = 
Vvar (Y;)  Vvar (Xk ) 

= \0\ � = � z ,  
= ' 2 ' · · · , p  • 

Although the correlations of the variables with the principal components often 
help to interpret the components, they measure only the univariate contribution of 
an individual X to a component Y. That is, they do not indicate the importance of an 
X to a component Y in the presence of the other X's. For this reason, some 
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statisticians (see, for example, Rencher [17]) recommend that only the coefficients e1 1\ ,  
and not the correlations, be used to interpret the components. Although the coeffi
cients and the correlations can lead to different rankings as measures of the impor
tance of the variables to a given component, it is our experience that these rankings 
are often not appreciably different. In practice, variables with relatively large coef
ficients (in absolute value) tend to have relatively large correlations, so the two mea
sures of importance, the first multivariate and the second univariate, frequently give 
similar results. We recommend that both the coefficients and the correlations be ex
amined to help interpret the principal components. 

The following hypothetical example illustrates the contents of Results 8 . 1 ,  
8.2, and 8 .3 .  

Example 8 . 1  (Ca lcu lati ng the popu lation pr incipal components) 

Suppose the random variables X1 , X2 and X3 have the covariance matrix 

I = [ -� -� �] 
It may be verified that the eigenvalue-eigenvector pairs are 

A1 = 5.83, 
A2 = 2.00, 
A3 = 0.17, 

e1 = [ . 383, - . 924, OJ 
e2 = [0 , 0, 1 J 
e3 = [ .924, .383, O J 

Therefore, the principal components become 

Yi = e1X = .383X1 - .924X2 
Y2 = e2X = X3 
Y3 = e3X = . 924X1 + .383X2 

The variable X3 is one of the principal components, because it is uncorrelated 
with the other two variables. 

Equation (8-5) can be demonstrated from first principles. For example, 

Var (Yi )  = Var ( .383X1 - .924X2) 
= ( .383 )2 Var (X1 )  + ( - . 924)2 Var (X2) 

+ 2( .383 )  ( - .924) Cov (X1 , X2) 
= . 147 ( 1 )  + .854 (5 )  - .708 ( -2) 
= 5 .83 = A1 

Cov (Yi , ¥2) = Cov ( .383X1 - .924X2 , X3 ) 
= .383 Cov (X1 , X3 ) - .924 Cov (X2 , X3 ) 
= .383 (0 ) - .924 (0 )  = 0 

It is also readily apparent that 

o-1 1 + o-22 + o-3 3  = 1 + 5 + 2 = A1 + A2 + A3 = 5 .83 + 2.00 + .17 
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validating Equation (8-6) for this example. The proportion of total variance ac
counted for by the first principal component is A1/ ( A1 + A2 + A3 )  = 5.83/8 = .73 . 
Further, the first two components account for a proportion ( 5 .83 + 2)/8 = .98 of 
the population variance. In this case, the components Yi and Y2 could replace the 
original three variables with little loss of information. 

Next, using (8-8) , we obtain 

Notice here that the variable X2 , with coefficient - . 924, receives the great
est weight in the component Y1 . It also has the largest correlation (in absolute 
value) with Y1 . The correlation of X1 , with Yi ,  .925, is almost as large as that for 
X2 , indicating that the variables are about equally important to the first prin
cipal component. The relative sizes of the coefficients of X1 and X2 suggest, 
however, that x2 contributes more to the determination of Yi than does xl . 
Since, in this case, both coefficients are reasonably large and they have oppo
site signs, we would argue that both variables aid in the interpretation of Yi .  

Finally, 

( as it should ) 

The remaining correlations can be neglected, since the third component is 
unimportant. • 

It is informative to consider principal components derived from multivariate 
normal random variables. Suppose X is distributed as Np(JL , I) .  We know from 
( 4-7) that the density of X is constant on the IL centered ellipsoids 

which have axes ±c\/T; ei , i = 1, 2, . . .  , p, where the (Ai , ei ) are the eigenvalue
eigenvector pairs of I. A point lying on the ith axis of the ellipsoid will have coordi
nates proportional to ei = [ ei l , ei 2 , • . •  , eip ] in the coordinate system that has origin IL 
and axes that are parallel to the original axes x1 , x2 , • • •  , x P . It will be convenient to 
set IL = 0 in the argument that follows. 1 

From our discussion in Section 2.3 with A = I-1 , we can write 

1 This can be done without loss of generality because the normal random vector X can always be 
translated to the normal random vector W = X - J.t and E(W) = 0. However, Cov (X) = Cov (W) .  
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where e1 x, e2 x, . . .  , e� x are recognized as the principal components of x. Setting 
Y1 = e1 x, y2 = e2 x, . . . , yP = e� x, we have 

and this equation defines an ellipsoid (since A1 , A2 , . . .  , AP are positive) in a coordinate 
system with axes y1 , y2 , . . .  , yP lying in the directions of e1 , e2 , . . .  , eP , respectively. If 
A1 is the largest eigenvalue, then the major axis lies in the direction e1 . The remain
ing minor axes lie in the directions defined by e2 , • • •  , eP . 

To summarize, the principal components y1 = e1 x, y2 = e2 x, . . .  , Yp = e� x lie in 
the directions of the axes of a constant density ellipsoid. Therefore, any point on the 
ith ellipsoid axis has x coordinates proportional to e; = [ ei 1 , ei2 , • . •  , eip ] and, neces
sarily, principal component coordinates of the form [0, . . .  , 0, Yi , 0, . . .  , O J . 

When IL * 0, it is the mean-centered principal component Yi = e; (x - IL) that 
has mean 0 and lies in the direction ei . 

A constant density ellipse and the principal components for a bivariate normal 
random vector with IL = 0 and p == .75 are shown in Figure 8 .1 .  We see that the prin
cipal components are obtained by rotating the original coordinate axes through an 
angle (} until they coincide with the axes of the constant density ellipse. This result 
holds for p > 2 dimensions as well. 

p, = O 
p = .75 

Figure 8.1 The constant density e l l i pse 
x ' I-1 x = c2 and the principal 
components y1 , y2 for a bivariate normal 
random vector X having mean 0. 

Pri ncipal Components Obta i ned from Standardized Variables 

Principal components may also be obtained for the standardized variables 

Zl = (XI - JLI ) 
� 

z2 = (X2 - JL2) 
� 

z == 
(Xp - JLp) 

p va:;:; 

(8-9) 
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In matrix notation, 

(8-10) 

where the diagonal standard deviation matrix V112 is defined in (2-35) . Clearly, 
E(Z)  = 0 and 

Cov (Z)  = (V112 )-1I (V112 )-1 = p 
by (2-37) .  The principal components of Z may be obtained from the eigenvectors of 
the correlation matrix p of X. All our previous results apply, with some simplifica
tions, since the variance of each Zi is unity. We shall continue to use the notation Yi 
to refer to the ith principal component and ( Ai , ei ) for the eigenvalue-eigenvector pair 
from either p or I. How ever, the ( Ai , ei ) derived from I are, in general, not the same 
as the ones derived from p. 

Result 8.4. The ith principal component of the standardized variables 
Z'  = [Z1 , Z2 , . . . , ZP] with Cov (Z)  = p, is given by 

Moreover, 

and 

Yi = e;z = e; (V112 ) -1 (X - IL ) , i = 1, 2, . . .  , p 

p p 
L Var (Yi)  = L Var (Zi )  = p 
i= l  i= l  

Py Z = e . k\II l' k l l i, k = 1 ,  2, . . .  ' p  

(8-1 1 )  

In this case, ( A.1 , e 1 ) ,  ( A2 , e2 ) , . . . , ( A.p , ep) are the eigenvalue-eigenvector pairs for 
p, with A1 > A.2 > · · · > AP > 0. 

Proof. Result 8 .4 follows from Results 8 . 1 ,  8.2, and 8.3, with Z1 , Z2 , . . . , ZP in 
place of X1 , X2 , • • •  , XP and p in place of I. • 

We see from (8-1 1 )  that the total (standardized variables) population variance 
is simply p, the sum of the diagonal elements of the matrix p. Using (8-7) with Z in 
place of X, we find that the proportion of total variance explained by the kth princi
pal component of Z is 

population variance due = _!5._ ,  
(Proportion of ( standardized) ) A 

to kth principal component P 

where the Ak's are the eigenvalues of p. 

k = 1 ,  2, . . . ' p  

Example 8.2 (Pri nci pal components obta i ned from covariance and 
corre lation matrices are different) 

Consider the covariance matrix 

I = [! 10� J 

(8-12) 
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and the derived correlation matrix 

p = [ .! -�] 
The eigenvalue-eigenvector pairs from I are 

A1 == 100.16 , 
A2 == .84, 

e1 == [ .040, .999 ] 
e2 == [ .999, - .040] 

Similarly, the eigenvalue-eigenvector pairs from p are 

A1 == 1 + p == 1 .4, 
A2 == 1 - p == .6 , 

e1 == [ .707, .707 ] 
e2 == [ .707, - .707 ] 

The respective principal components become 

and 

I: 
Yi == .040Xl + .999X2 
Y2 == .999X1 - .040X2 

Y1 = .707Zl + .707Z2 = .707 ( X1 � ILl ) + .707 ( X2 
1
� IL2) 

p: == .707 (X1 - JL1 )  + .0707 (X2 - JL2 ) 

¥2 = .707Zl - .707Z2 = .707 ( X1 � ILl ) - .707 ( X2 
1
� IL2) 

== .707 (X1 - JL1 )  - .0707 (X2 - JL2 ) 

Because of its large variance, X2 completely dominates the first principal com
ponent determined from I. Moreover, this first principal component explains 
a proportion 

A1 == 100. 16 == .992 
' � A1 + A2 101 

of the total population variance. 
When the variables X1 and X2 are standardized, however, the resulting 

variables contribute equally to the principal components determined from p. 
Using Result 8.4, we obtain 

PY1 , z1 == e1 1 VA;- == .707vT.4 == .837 

and 

PY z2 == e2 1 VA;- == .707vT.4 == .837 1 ·  

In this case, the first principal component explains a proportion 

A1 == 1 .4 == .7 
p 2 

of the total (standardized) population variance. 
Most strikingly, we see that the relative importance of the variables to, for 

instance, the first principal component is greatly affected by the standardization. 
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When the first principal component obtained from p is expressed in terms of 
X1 and X2 , the relative magnitudes of the weights .707 and .0707 are in direct 
opposition to those of the weights .040 and .999 attached to these variables in 
the principal component obtained from I. • 

The preceding example demonstrates that the principal components derived 
from I are different from those derived from p. Furthermore, one set of principal 
components is not a simple function of the other. This suggests that the standard
ization is not inconsequential. 

Variables should probably be standardized if they are measured on scales with 
widely differing ranges or if the units of measurement are not commensurate. For ex
ample, if X1 represents annual sales in the $10,000 to $350,000 range and X2 is the ratio 
(net annual income)/(total assets) that falls in the .01 to .60 range, then the total vari
ation will be due almost exclusively to dollar sales. In this case, we would expect a 
single (important) principal component with a heavy weighting of X1 . Alternative
ly, if both variables are standardized, their subsequent magnitudes will be of the same 
order, and X2 (or Z2) will play a larger role in the construction of the principal com
ponents. This behavior was observed in Example 8.2. 

Principal Components for Covariance Matrices 
with Specia l  Structures 

There are certain patterned covariance and correlation matrices whose principal com
ponents can be expressed in simple forms. Suppose I is the diagonal 1natrix 

I == 

lTl l  0 0 
0 

0 0 

Setting ei == [ 0, . . .  , 0, 1 ,  0, . . . , 0 J , with 1 in the ith position, we observe that 

lTl l  0 0 
0 lT22 0 

0 0 lT pp 

0 0 

0 0 
1 1o-i i  
0 0 

0 0 

or Ie ·  == o- . .  e ·  l l l  l 

(8-13) 

and we conclude that ( o-i i , ez) is the ith eigenvalue-eigenvector pair. Since the lin
ear combination ei X = Xi , the set of principal components is just the original set of 
uncorrelated random variables. 

For a covariance matrix with the pattern of (8-13), nothing is gained by extracting 
the principal components. From another point of view, if X is distributed as Np ( /L, I) , 
the contours of constant density are ellipsoids whose axes already lie in the directions 
of maximum variation. Consequently, there is no need to rotate the coordinate system. 
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Standardization does not substantially alter the situation for the I in (8-13 ) .  
In that case, p == I, the p X p identity matrix. Clearly, pei == lei , so  the eigenvalue 
1 has multiplicity p and e; == [0, . . .  , 0, 1 ,  0, . . . , O J ,  i == 1 ,  2, . . . , p, are convenient 
choices for the eigenvectors. Consequently, the principal components determined 
from p are also the original variables Zr , . . .  , ZP . Moreover, in this case of equal 
eigenvalues, the multivariate normal ellipsoids of constant density are spheroids. 

Another patterned covariance matrix, which often describes the correspon
dence among certain biological variables such as the sizes of living things, has the 
general form 

I == 

The resulting correlation matrix 

p == 

1 p 
p 1 

p 
p 

p p 1 

(8-14) 

(8-15 )  

i s  also the covariance matrix of the standardized variables. The matrix in (8-15) im
plies that the variables X1 , X2 , • . •  , XP are equally correlated. 

It is not difficult to show (see Exercise 8.5) that the p eigenvalues of the corre
lation matrix (8-15) can be divid-ed into two groups. When p is positive, the largest is 

A1 == 1 + (p - l )p 
with associated eigenvector 

el = [ �, �, . . .  , �] 
The remaining p - 1 eigenvalues are 

A2 == A.3 == · · · == AP == 1 - p 
and one choice for their eigenvectors is 

e2 = [ �, � , o , . . .  , o] 
e) = [� · � · � , o , . . .  , o] 

[ 1 1 - ( i - 1 ) J e; = 
V( i - 1 ) i

, . . . , V( i - 1 ) i
' V( i - 1 ) i

, O, . . . , O 

[ 1 1 - (p - 1 ) J e� = 
V (p - 1 ) p

' · · . ' V (p - 1 ) p 
' V (p - 1 ) p 

(8-16) 

(8-17) 
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The first principal component 

is proportional to the sum of the p standarized variables. It might be regarded as an 
"index" with equal weights. This principal component explains a proportion 

1 + (p - 1 )p 1 - p 
----- == p + --p p (8 -18) 

of the total population variation. We see that A.1/ p · p for p close to 1 or p large. For 
example, if p == .80 and p == 5, the first component explains 84% of the total variance. 
When p is near 1, the last p - 1 components collectively contribute very little to the total 
variance and can often be neglected. In this special case, the first principal component 
for the original variables, X, is the same. That is, Yi == ( 1/v]J) [ 1 ,  1 ,  . . .  , 1 ] X, a measure 
of total size and it explains the same proportion (8-18) of total variance. 

If the standardized variables Z1 , Z2 , . . .  , ZP have a multivariate normal distrib
ution with a covariance matrix given by (8-15) , then the ellipsoids of constant densi
ty are "cigar shaped," with the major axis proportional to the first principal component 
Yi == ( 1/v]J) [ 1 ,  1 ,  . . .  , 1 ]  Z. This principal component is the projection of Z on the 
equiangular line 1 ' == [ 1 ,  1 ,  . . .  , 1 ] . The minor axes (and remaining principal com
ponents) occur in spherically symmetric directions perpendicular to the major axis 
(and first principal component) .  

8.3 SUMMARIZ ING SAMPLE VARIATION BY PRI NCIPAL COM PONENTS 

We now have the framework necessary to study the problem of summarizing the 
variation in n measurements on p variables with a few judiciously chosen linear 
combinations. 

Suppose the data x1 , x2 , . . . , xn represent n independent drawings from some 
p-dimensional population with mean vector IL and covariance matrix I. These data 
yield the sample mean vector x , the sample covariance matrix S, and the sample cor
relation matrix R. 

Our objective in this section will be to construct uncorrelated linear combina
tions of the measured characteristics that account for much of the variation in the sam
ple . The uncorrelated combinations with the largest variances will be called the 
sample principal components. 

Recall that the n values of any linear combination 

j == 1 ,  2, . . .  , n 
have sample mean a1 x and sample variance a1 Sa1 . Also, the pairs of values 
(a 1xj , a2xj ) ,  for two linear combinations, have sample covariance a1 Sa2 [see (3-36) ] .  

The sample principal components are defined a s  those linear combinations 
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The sample principal components are defined as those linear combinations 
which have maximum sample variance. As with the population quantities, we restrict 
the coefficient vectors ai to satisfy a;ai = 1 .  Specifically, 

First sample linear combination a1x1 that maximizes 
principal component = the sample variance of a1x1 subject 

to a1a1 = 1 

Second sample linear combination a2x1 that maximizes the sample 
principal component = variance of a2x1 subject to a2a2 = 1 and zero sample 

covariance for the pairs (a 1x1 ,  a2x1 ) 

At the ith step, we have 

ith sample linear combination a;x1 that maximizes the sample 
principal component = variance of ajx1 subject to ajai = 1 and zero sample 

covariance for all pairs (a;x1 ,  akx1 ) , k < i 

The first principal component maximizes a1 Sa1 or, equivalently, 

(8-19) 

"' 

By (2-51 ) ,  the maximum is the largest eigenvalue A1 attained for the choice 
a1 = �eigenvectpr e1 of S. Successive choices of ai maximize (8-19) subj ect to 
0 = ajSek = aji\kek , or ai perpendicular to ek . Thus, as in the proofs of Results 
8. 1-8 .3 , we obtain the following results concerning sample principal components: 
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We shall denote the sample principal components by y1 , y2 , . . .  , yP , irrespective 
of whether they are obtained from S or R. 2 The components constructed from S and 
R are not the same, in general, but it will be clear from the context which matrix is 
being used, and the single notation Yi is convenient . It is also convenient to label the 
component coefficient vectors ei and the component variances Ai for both situations. 

The observations xj are often "centered" by subtracting x . This has no effect 
on the sample covariance matrix S and gives the ith principal component 

"' - "' ' ( - ) Yi - ei x - x ' i = 1 ,  2, . . . ' p (8-21) 

for any observation vector x. If we consider the values of the ith component 

"' - "' ' ( -) Y . .  - e - X · - X J l l 1 ' j = 1 ,  2, . . .  , n (8-22) 

generated by substituting each observation x1 for the arbitrary x in (8-21 ) ,  then 
_ 1 n 1 ( n  ) 1 
"' - "' '  - - "' ' 

- - "' ' -Yi - - :L ei (xj - x )  - - ei :L (xj - x )  - - ei 0 - 0 
n j= l n j= l n 

(8-23) 

That is, the sample m�an of each principal component is zero. The sample variances 
are still given by the A./s, as in (8-20) . 

Example 8.3 (Summariz ing sample variab i l ity with two sample principal 
components) 

A census provided information, by tract, on five socioeconomic variables for 
the Madison, Wisconsin, area. The data from 14 tracts are listed in Table 8 .5 in 
the exercises at the end of this chapter. These data produced the following sum-
mary statistics: 

x' = [4 .32, 14 .01 , 1 .95, 2. 17, 2.45 ] 
total median total health services median 

population school employment employment home value 
(thousands) years (thousands) (hundreds) ($10,000s) 

and 

4.308 1 .683 1 .803 2. 155 - .253 
1 .683 1 .768 .588 . 177 . 176 

S = 1 .803 .588 .801 1 .065 - .158 
2. 155 . 177 1 .065 1 .970 - .357 
- .253 . 176 - .158 - .357 .504 

Can the sample variation be summarized by one or two principal components? 

2Sample principal components can also be obtained from i = Sn , the maximum likelihood estimate 
of the covariance matrix I-, if the X1 are normally distributed. (See Result 4.11 . )  In this case, provided that 
the eigenvalues of I- are distinct, the sample principal components can be viewed as the maximuf!l 
likelihood estimates of the corresponding population counterparts. (See [1] . )  We shall not consider !
because the assumption of normality is not required in this section. Also, i has eigenvalues [ (n - 1 )/n ]A1 
and corresponding eigenvectors el ' where ( Al ' eJ are the eigenvalue-eigenvector pairs for S. Thus, both 
S and i g�ve tp.e satpe sample principal components e;x_jsee (8-20)] and the same proportion of explained 
variance Ai / (A1 + A2 + . .  · + Ap) · Finally, both S �nd I- give the same sample correlation matrix R, so if 
the variables are standardized, the choice of S or I- is irrelevant. 
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We find the following: 

COEFF IC I ENTS FOR TH E PR I NC IPAL COM PONENTS 
(Corre lat i on  Coeff ic ients i n  Parentheses) 

Variable el ( ryl , xk ) e2 ( ry2, xk )  " " " e3 e4 es 

Total population .781 ( .99) - .071 ( - .04) .004 .542 - .302 
Median school 

years .306 ( .61) - .764 ( - .76) - .162 - .545 - .010 
Total employment .334 ( .98) .083 ( . 12) .015 .050 .937 
Health services 

employment .426 ( .80) .579 ( .55) .220 - .636 - .173 
Median home 

value - .054 ( - .20 ) - .262 ( - .49 ) .962 - .051 .024 
" 

Variance (Ai ) :  6 .931 1 .786 .390 .230 .014 
Cumulative 

percentage of total 
variance 74.1 93.2 97.4 99.9 100 

The first principal component explains 74.1% of the total sample variance. 
The first two principal components, collectively, explain 93.2% of the total sam
ple variarirce. Consequently, sample variation is summarized very well by two 
principal components and a reduction in the data from 14 observations on 5 
variables to 14 observations on 2 principal components is reasonable. 

Given the foregoing component coefficients, the first principal component 
appears to be essentially a weighted average of the first four variables. The sec
ond principal component appears to contrast health services employment with 
a weighted average of median school years and median home value. M 

As we said in our discussion of the population components, the component co
efficients ei k and the correlations ryl ' xk should both be examined to interpret the prin
cipal components. The correlations allow for differences in the variances of the 
original variables, but only measure the importance of an individual X without regard 
to the other X's making up the component. We notice in Example 8 .3 , however, that 
the correlation coefficients displayed in the table confirm the interpretation provid
ed by the component coefficients. 

The Number of Principal Components 

There is always the question of how many components to retain. There is no defini
tive answer to this question. Things to consider include the amount of total sample vari
ance explained, the relative sizes of the eigenvalues (the variances of the sample 
components) , and the subject-matter interpretations of the components. In addition, 
as we discuss later, a component associated with an eigenvalue near zero and, hence, 
deemed unimportant, may indicate an unsuspected linear dependency in the data. 
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Figure 8.2 A scree p lot. 

A useful visual aid to determining an appropriate number of principal 
components is a scree plot.3 With the eigenvalues ordered from largest to smallest, 
a scree plot is a plot of Ai versus i-the magnitude of an eigenvalue versus its num
ber. To determine the appropriate number of components, we look for an elbow 
(bend) in the scree plot. The number of components is taken to be the point at which 
the remaining eigenvalues are relatively small and all about the same size. Figure 
8.2 shows a scree plot for a situation with six principal components. 

An �lbow occurs in the plot in Figure 8.2 at about i = 3. That is, the eigenval
ues after A2 are all relatively small and about the same size. In this case, it appears, 
without any other evidence, that two (or perhaps three) sample principal compo
nents effectively summarize the total sample variance. 

Example 8.4 (Summariz ing sample variabi l ity with one sample 
pr incipal component) 

In a study of size and shape relationships for painted turtles, Jolicoeur and Mosi
mann [11] measured carapace length, width, and height. Their data, reproduced 
in Exercise 6 .18, Table 6.9, suggest an analysis in terms of logarithms. (Jolicoeur 
[10] generally suggests a logarithmic transformation in studies of size-and-shape 
relationships.) Perform a principal component analysis. 

The natural logarithms of the dimensions of 24 male turtles have sample 
mean vector x' = [ 4.725, 4.478, 3 .703 J and covariance matrix 

3 Scree is the rock debris at the bottom of a cliff. 
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[ 1 1 .072 8.019 8 .160] 
s == 1o-3 8 .019 6.417 6.005 

8 .160 6.005 6.773 

A principal component analysis (see Panel 8 .1 on page 443 for the output 
from the SAS statistical software package) yields the following summary: 

COEFF IC I ENTS FOR PR I NC IPAL COMPONENTS 
(Corre lati on Coeff ic ients i n  Pa rentheses) 

Variable 

ln (length) 
ln (width) 
ln (height) 

" 

Variance ( Ai ) :  
Cumulative 

percentage of total 
variance 

el ( ryl , xk ) 
.683 ( .99) 
.510 ( .97) 
.523 ( .97) 

23 .30 X 10-3 

96 .1 

" " 

e2 e3 

- . 159 - .713 
- .594 .622 

.788 .324 

.60 X 10-3 .36 X 10-3 

98.5 100 

A scree plot is shown in Figure 8.3. The very distinct elbow in this plot oc
curs at i == 2. There is clearly one dominant principal component . 

The first principal component, which explains 96% of the total variance, 
has an interesting subject-matter interpretation. Since 

y1 == .683 ln ( length) + .510 ln (width ) + .523 ln (height ) 
== ln [ ( length ) ·683 (width ) .s 10 (height) ·523 ] 

2 3 
Figure 8.3 A scree p lot for the 
turt le  data . 
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PANEL 8.1 SAS ANALYSIS FOR EXAMPLE 8 .4 USING PROC PR INCOMP. 

t it le 'Pr inc ipa l  Component Ana lysis'; 
data tu rt le; 
i nf i le  ' E8-4.dat'; 
i n put length width he ig ht; PROGRAM COMMANDS 
x1 = log( length); x2 = log(width); x3 = log(heig ht); 
p roc pr incomp cov data = tu rt le  out = resu lt; 
var x1 x2 x3; 

24 Observat ions 
3 Va r iab les 

PR I N 1  
PR IN2 
PR IN3 

Mean 
StD 

X1  

X2 

X3 

X 1  
X2 
X3 

Pri nc ipa l  Com ponents Ana lysis 

S imp le  Statistics 
X1 X2 

4. 725443647 
0 . 1 05223590 

X 1  

4.477573765 
0 .0801 04466 

X2 

0 .0080 1 9 1 4 1 9  

Tota l  Va ria nce = 0 .024261 488 

X3 
3 .703 1 85794 
0 .08229677 1 

X3 

0 .008 1 596480 

0 .0060052707 

Difference 
0 .022705 
0 .000238 

Proportion 
0 .960508 
0 .024661 
0 .0 1 4832 

OUTPUT 
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the first principal component may be viewed as the ln (volume) of a box with 
adjusted dimensions. For instance, the adjusted height is (height ) ·523 , which ac
counts, in some sense, for the rounded shape of the carapace. • 

I nterpretation of the Sample Pri ncipal Com ponents 

The sample principal components have several interpretations. First, suppose the 
underlying distribution of X is nearly Np(JL ,  I ) .  Then the sample principal compo
nents, .Yz == ei (x - x) are realizations of population principal components 
li == ej (X - p.. ) , which have an Np(O, A)  distribution. The diagonal matrix A has 
entries A.1 , A.2 , . . .  , AP and ( "-z , ei )  are the eigenvalue-eigenvector pairs of I. 

Also, from the sample values x1 ,  we can approximate IL by x and I by S. If S 
is positive definite, the contour consisting of all p X 1 vectors x satisfying 

(x  - x) 's-1 (x - x) == c2 (8-24) 

estimates the constant density contour (x  - IL ) 'I-1 (x - IL ) == c2 of the underlying 
normal density. The approximate contours can be drawn on the scatter plot to indi
cate the normal distribution that generated the data. The normality assumption is 
useful for the inference procedures discussed in Section 8.5 , but it is not required 
for the development of the properties of the sample principal components summa
rized in (8-20) .  

Even when the normal assumption is suspect and the scatter plot may depart some
what from an elliptical pattern, we can still extract the eigenvalues from S and obtain the 
sample principal components. Geometrically, the data may be plotted as n points in 
p-space. The data can then be expressed in the new coordinates, which coincide with the 
axes of the contour of (8-24). Now, (8-24) defines a hyperellipsoid that is centered at x 
and whose axes are given by the eigenvectors of s-1 or, equivalently, of S. (See Section 
2.3 and Result 4 . 1 ,  with S in place of I.) The lengths of these hyperellipsoid 
axes are proportional to \lA;, i = 1, 2, . . .  , p, where A1 > A2 > · · · > AP > 0 are the 
eigenvalues of S. 

Because ei has length 1 ,  the absolute value of the ith principal component , 
1 .Yi 1 == 1 ei ( x  - x) I ,  gives the length of the projection of the vector (x - x) on the 
unit vector ei . [See (2-8) and (2-9) . ]  Thus, the sample principal components 
.Yi == ei (x  - x) , i == 1, 2, . . .  , p, lie along the axes of the hyperellipsoid , and their ab
solute values are the lengths of the projections of x - x in the directions of the axes 
ei . Consequently, the sample principal components can be viewed as the result of 
translating the origin of the original coordinate system to x and then rotating the 
coordinate axes until they pass through the scatter in the directions of maximum 
variance. 

The geometrical interpretation of the sample principal components is illustrat
ed in Figure 8.4 f2r p � 2. Figure 8.4(a) shows an ellipse of constant distance, cen
tered at x , with A1 > A2 . The sample principal components are well determined .  
They lie along the axes of the ellipse in the perpendicular directions of maximum 
�ampl� varial!_ce. Fjgure 8.4(b) shows a constant distance ellipse, centered at x , with 
A 1 · A2 . If A1 == A.2 , the axes of the ellipse (circle) of constant distance are not 
uniquely determined and can lie in any two perpendicular directions, including the di
rections of the original coordinate axes. Similarly, the sample principal components 
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( x - x ) ' S - l ( x - x )  = c2 

• 

( x  - x ) '  s - l  (x - x )  = c2 

(a) 5:, 1 > �2 (b) � l � �2 
Figure 8.4 Sam p le  pr inc ipa l  components and  e l l i pses of constant d i stance. 

can lie in any two perpendicular directions, including those of the original coordi
nate axes. When the contours of constant distance are nearly circular or, equiva
lently, when the eigenvalues of S are nearly equal, the sample variation is 
homogeneous in all directions. It is then not possible to represent the data well in 
fewer than p dimensions. 

A 

If the last few eigenvalues Ai are sufficiently small such that the variation in the 
corresponding ei directions is negligible, the last few sample principal components 
can often be ignored, and the data can be adequately approximated by their repre
sentations in the space of the retained components. (See Section 8.4.) 

Finally, Supplement 8A gives a further result concerning the role of the sample 
principal components when directly approximating the mean-centered data xj - x . 

Standard iz ing the Sample Pri ncipal Components 

Sample principal components are, in general, not invariant with respect to changes in 
scale. (See Exercises 8.6 and 8.7) . As we mentioned in the treatment of population 
components, variables measured on different scales or on a common scale with wide
ly differing ranges are often standardized. For the sample, standardization is ac
complished by constructing 

xj l  - xl 
� 

xj2 - x2 
Vs; j == 1 ,  2, . . .  , n (8-25) 
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The n X p data matrix of standardized observations 

z 1 Z1 1  Z1 2  Z1 p Z ==  z2 Z2 1 Z2 2 Z2p 

z ' n Zn l Zn2 Zn p 

X1 1 - X1 X 1 2  - X1 
� � 

X2 1 - X2 X2 2  - X2 
� vS;; 

Xn l  - Xp Xn 2  - Xp 
� vs;; 

yields the sample mean vector [see (3-24) ] 

and sample covariance matrix [see (3-27)] 

s == 1 (z _ l ll'z) '(z _ l ll' Z) z n - 1 n n 
1 (Z - lZ' ) ' (Z - lZ' ) n - 1 
1 Z'Z 

n - 1 
( n  - 1 )s1 1  

S1 1  
1 

( n  - 1 )s1 2  
�Vs;; n - 1 

( n  - 1 ) s1 P 
�vs;; 

( n  - 1 )s1 2  
�Vs;; 
( n  - 1 )s2 2  

S2 2 

( n  - 1 ) s2P 
vS;; vs;; 

xl p  - xl 
� 

x2p - x2 
vs;; 

Xn p  - Xp 
vs;; 

= 0 

(n  - 1 )s1 P 
�vs;; 
( n  - 1 )s2P 
vS;; vs;; 
( n  - 1 )sPP 

Spp 

(8-26) 

(8-27) 

== R (8-28) 

The sample principal components of the standardized observations are given by 
(8-20) , with the matrix R in place of S. Since the observations are already "centered" 
by construction, there is no need to write the components in the form of (8-21) .  
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Using (8-29), we see that the proportion of the total sample variance explained 
by the ith sample principal component is (Proportion of ( standardized ) ) A .  

sample variance due to  ith == __!_ 
sample principal component P i == 1 ,  2, . . . ' p (8-30) 

"' 

A rule of thumb suggests retaining only those components whose variances Ai are 
greater than unity or, equivalently, only those components which, individually, ex
plain at least a proportion 1/ p of the total variance. This rule does not have a great 
deal of theoretical support, however, and it should not be applied blindly. As we 
have mentioned, a scree plot is also useful for selecting the appropriate number of 
components. 

Example 8. 5 (Sample pr inc ipal  components from standard ized data) 

The weekly rates of return for five stocks (Allied Chemical, du Pont, Union 
Carbide, Exxon, and Texaco) listed on the New York Stock Exchange were de
termined for the period January 1975 through December 1976. The weekly 
rates of return are defined as (current Friday closing price - previous Friday 
closing price )/(previous Friday closing price) , adjusted for stock splits and div
idends. The data are listed in Table 8.4 in the Exercises. The observations in 100 
successive weeks appear to be independently distributed, but the rates of return 
across stocks are correlated, since, as one expects, stocks tend to move togeth
er in response to general economic conditions. 

Let x1 , x2 , . • .  , x5 denote observed weekly rates of return for Allied 
Chemical, du Pont, Union Carbide, Exxon, and Texaco, respectively. Then 

x '  == [ .0054, .0048, .0057, .0063, .0037 ] 
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and 

1 .000 .577 .509 .387 .462 
.577 1 .000 .599 .389 .322 

R = .509 .599 1 .000 .436 .426 
.387 .389 .436 1 .000 .523 
.462 .322 .426 .523 1 .000 

We note that R is the covariance matrix of the standardized observations 
- -

x1 - x1 x2 - x2 x5 - x5 
Z1 = � , Z2 = \IS;; , 

· · · 
, Zs = � 

The eigenvalues and corresponding normalized eigenvectors of R, determined 
by a computer, are 

"' 

A1 = 2.857, 
"' 

"-2 = .809, 
"' 

A3 = .540, 
"' 

"-4 = .452, 
"' 

A5 = .343, 

e1 = [ .464, .457, .47o, .421 , .421 J 

e2 = [ .24o, .5o9, .26o, - .526, - .582 J 

e3 = [ - .612, .178, .335, .541 , - .435] 

e4 = [ .387, .2o6, - .662, .472, - .382 J 

e5 = [ - .451 ,  .676, - .4oo, - . 176, .385 J 

Using the standardized variables, we obtain the first two sample principal 
components: 

5\ = e1z = .464zl + .457z2 + .470z3 + .421z4 + .421zs 
.Y2 = e2z = .240zl + .5o9z2 + .26oz3 - .526z4 - .582zs 

These components, which account for 

of the total (standardized) sample variance, have interesting interpretations. 
The first component is a roughly equally weighted sum, or "index," of the five 
stocks. This component might be called a general stock-market component, or 
simply a market component. 

The second component represents a contrast between the chemical stocks 
(Allied Chemical, du Pont, and Union Carbide) and the oil stocks (Exxon and 
Texaco) . It might be called an industry component. Thus, we see that most of 
the variation in these stock returns is due to market activity and uncorrelated 
industry activity. This interpretation of stock price behavior has also been sug
gested by King [12] . 

The remaining components are not easy to interpret and, collectively, rep
resent variation that is probably specific to each stock. In any event, they do not 
explain much of the total sample variance. 

This example provides a case where it seems sensible to retain a compo-
nent (j/2)  associated with an eigenvalue less than unity. II 
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Example 8 .6 (Components from a correlation matrix with a special structure) 

Geneticists are often concerned with the inheritance of characteristics that 
can be measured several times during an animal's lifetime. Body weight (in 
grams) for n = 150 female mice were obtained immediately after the birth of 
their first 4 litters.4 The sample mean vector and sample correlation matrix 
were, respectively, 

x' = [39 .88, 45.08, 48. 1 1 ,  49.95 ] 
and 

1 .000 .7501 .6329 .6363 

R =  
.7501 1 .000 .6925 .7386 
.6329 .6925 1 .000 .6625 
.6363 .7386 .6625 1 .000 

The eigenvalues of this matrix are 
" " " " 

A1 = 3 .085, A2 = .382, A3 = .342, and A4 = .217 

We note that the first eigenvalue is nearly equal to 1 + (p - 1 ) r = 
1 + ( 4 - 1 )  ( .6854 ) = 3.056, where r is the arithmetic average of the off
diagonal e}ements of R. The remainin� eigen':alues are small and about equal, 
although A4 is somewhat smaller than A2 and A3 • Thus, there is some evidence 
that the corresponding population correlation matrix p may be of the "equal
correlation" form of (8-15) .  This notion is explored further in Example 8 .9 .  

The first principal component 
.Y1 = e�z = .49zl + .52z2 + .49z3 + .5oz4 

" 

accounts for 100( A1/p)% = 100 ( 3 .058/4 )% = 76% of the total variance. Al-
though the average postbirth weights increase over time, the variation in 
weights is fairly well explained by the first principal component with (nearly) 
equal coefficients. • 

Comment. An unusually small value for the last eigenvalue from either the 
sample covariance or correlation matrix can indicate an unnoticed linear dependen
cy in the data set. If this occurs, one (or more) of the variables is redundant and 
should be deleted. Consider a situation where x1 , x2 , and x3 are subtest scores and the 
total score x4 is the sum x1 + x2 + x3 • Then, although the linear combination 
e ' x = [ 1 ,  1 ,  1, - 1 ]  x = x1 + x2 + x3 - x4 is always zero, rounding error in the com
putation of eigenvalues may lead to a small nonzero value. If the linear expression 
relating x4 to ( x1 , x2 , x3 ) was initially overlooked, the smallest eigenvalue-eigenvector 
pair should provide a clue to its existence. 

Thus, although "large" eigenvalues and the corresponding eigenvectors are im
portant in a principal component analysis, eigenvalues very close to zero should not 
be routinely ignored. The eigenvectors associated with these latter eigenvalues may 
point out linear dependencies in the data set that can cause interpretive and compu
tational problems in a subsequent analysis. • 

4Data courtesy of J. J. Rutledge. 
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8.4 GRAPH ING TH E PRI NCIPAL COMPONENTS 

Plots of the principal components can reveal suspect observations, as well as provide 
checks on the assumption of normality. Since the principal components are linear 
combinations of the original variables, it is not unreasonable to expect them to be 
nearly normal. It is often necessary to verify that the first few principal components 
are approximately normally distributed when they are to be used as the input data 
for additional analyses. 

The last principal components can help pinpoint suspect observations. Each 
observation can be expressed as a linear combination 

xj = (xjel ) el + (xje2 ) e2 + . . . + (xjep ) ep 

= .Yj l e1 + .Yj2e2 + · · · + .Yjpep 

of the complete set of eigenvectors e1 , e2 , . . . , eP of S . Thus, the magnitudes of the last 
principal components determine how well the first few fit the observations. That is, 
Yj le l + Yj2e2 + . . .  + Yj, q- leq- 1 differs from Xj by Yjqeq + . . .  + Yjpep , the square of 
whose length is YJq + · · · + YJp · Suspect observations will often be such that at least 
one of the coordinates Yjq ' . . . , yj P contributing to this squared length will be large. 
(See Supplement 8A for more general approximation results. ) 

The following statements summarize these ideas. 

1. To help check the normal assumption, construct scatter diagrams for pairs of the 
first few principal components. Also, make Q-Q plots from the sample values 
generated by each principal component. 

2. Construct scatter diagrams and Q-Q plots for the last few principal compo
nents. These help identify suspect observations. 

Example 8.7 (Plotti ng the principal components for the tu rtle data) 

We illustrate the plotting of principal components for the data on male turtles 
discussed in Example 8.4. The three sample principal components are 

y1 = .683 (x1 - 4.725 ) + .510 (x2 - 4.478) + .523 (x3 - 3.703 ) 

y2 = - .159 (x1 - 4.725 ) - .594(x2 - 4.478) + .788 (x3 - 3.703 ) 

y3 = - .713 (x1 - 4.725 ) + .622 (x2 - 4.478) + .324(x3 - 3.703 ) 

where x1 = ln ( length) ,  x2 = ln (width ) ,  and x3 = ln ( height ) ,  respectively. 
Figure 8.5 shows the Q-Q plot for y2 and Figure 8.6 shows the scatter plot 

of ( j/1 , y2 ) .  The observation for the first turtle is circled and lies in the lower right 
corner of the scatter plot and in the upper right corner of the Q-Q plot; it may 
be suspect. This point should have been checked for recording errors, or the tur
tle should have been examined for structural anomalies. Apart from the first 
turtle, the scatter plot appears to be reasonably elliptical. The plots for the 
other sets of principal components do not indicate any substantial departures 
from normality. • 
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Figure 8.5 A 0-0 p lot for the 
secon d  pr inc ipa l  component y2 from 
the data on ma le  tu rt les . 

Figure 8.6 Scatter p lot of the 
pr inc ipa l  components y1 and y2 of the 
data on ma le turt les .  

The diagnostics involving principal components apply equally well to the check
ing of assumptions for a multivariate multiple regression model. In fact, having fit any 
model by any method of estimation, it is prudent to consider the 

or 

. . (vector of predicted) Residual vector = ( observation vector ) - ( t . t d ) 1 es Ima e va ues 

ej = yj - /3 ' zj 
(pX l ) (pX l ) (pX l ) 

j = 1 ,  2, . . .  , n (8-31) 

for the multivariate linear model. Principal components, derived from the covari-
ance matrix of the residuals, 

1 
�
n 

( " -;:: ) ( " -;:: ) ' e - - e · e - - e · n - p . 1 1 1 1 1 = 1  
(8-32) 

can be scrutinized in the same manner as those determined from a random sample. 
You should be aware that there are linear dependencies among the residuals from a 
linear regression analysis, so the last eigenvalues will be zero, within rounding error. 
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8.5 LARGE SAMPLE I N FERENCES 

We have seen that the eigenvalues and eigenvectors of the covariance (correlation) 
matrix are the essence of a principal component analysis. The eigenvectors deter
mine the directions of maximum variability, and the eigenvalues specify the variances. 
When the first few eigenvalues are much larger than the rest, most of the total vari
ance can be "explained" in fewer than p dimensions. 

In practice, decisions regarding the quality of the principal componen1 approx
imation must be made on the basis of the eigenvalue-eigenvector pairs ( Ai , ez ) ex
tracted from S or R. Because of sampling variation, these eigenvalues and 
eigenvectors will differ from their underlying population counterparts. The sampling 
distributions of Ai and ei are difficult to derive and beyond the scope of this book. If 
you are interested, you can find some of these derivations for multivariate normal 
populations in [1 ] ,  [2] , and [5] . We shall simply summarize the pertinent large sam
ple results. 

Large Sample Properties of Ai and ei 
" 

Currently available results concerning large sample confidence intervals for Ai and e1 
assume that the observations X1 , X2 , . . .  , Xn are a random sample from a normal 
population. It must also be assumed that the (unknown) eigenvalues of I are distinct 
and positive, so that A1 > A2 > · · · > Ap > 0. The one exception is the case where the 
number of equal eigenvalues is known. Usually the conclusions for distinct eigen
values are applied, unless there is a strong reason to believe that I has a special struc
ture that yields equal eigenvalues. Even when the normal assumption is violated, 
the confidence intervals obtained in this manner still provide some indication of the 
uncertainty in ;\i and ei . 

Anderson [2] and Girshick [5] have established the following large sample distri
bution theory for the eigenvalues A' = [Al , . . .  ' Ap ] and eigenvectors el , . . . ' ep of S: 

1. Let A be the diagonal matrix of eigenvalues Ar , . . .  , AP of I, then Vn (A - A )  
is approximately Np(O, 2A2) . 

2. Let 

then Vn ( ei - ez ) is approximately Np(O, Ei) · 
3. Each Ai is distributed independently of the elements of the associated ei . 

" 

Result 1 implies that, for n large, the Ai are independently distributed. More-
over, Ai has an approximate N ( Ai , 2A[ j n ) distribution. Using this normal distribution, 
we obtain P[ l Ai - Ai I < z (aj2)AiV2711J = 1 - a. A large sample 100( 1  - a)% 
confidence interval for Ai is thus provided by 

" " 

A · A · 
________ 

l 
_______ < A · < 

l 

( 1  + z (aj2)V27li) - l - ( 1  - z(aj2)V27li) (8-33) 



Sect ion 8 . 5  La rge Samp le  Inferences 453 

where z( a/2) is the upper 100( a/2 ) th percentile of a standard normal distribution. 
Bonferroni-type simultaneous 100( 1 - a)% intervals for m A/s are obtained by re
placing z (a/2) with z (a/2m) . (See Section 5.4. ) 

Result 2 implies that the e/s are normally distributed about the correspond
ing e/s for large samples. The elements of each ei are correlated, and the correla
tion depends to a large extent on the separation of the eigenvalues A.1 , A2 , . . . , A.P 
(which is unknown) and the sample size n . Approximate standard errors for the co
�fficients ei k are given by the square ro,.,ots of the diagonal elements of ( 1/n ) :Ei where 
Ei is derived from Ei by substituting A/s for the A./s and e/s for the e/s. 

Example 8.8 (Constructi ng a confidence interva l for A1) 

We shall obtain a 95% confidence interval for A.1 , the variance of the first pop
ulation principal component , using the stock price data listed in Table 8.4 in 
the Exercises. 

Assume that the stock rates of return represent independent drawings from 
an N5( /L,  I )  population, where I is positive definite with distinct eigenvalues 
A1 > A.2 > · · · > A5 > 0. Since n == 100 is large, we can use (8:__33) with i == 1 to 
construct a 95% confidence interval for A1 . From Exercise 8.10, A.1 == .0036 and in 
addition, z( .025 ) == 1 .96. Therefore, with 95% confidence, 

.0036 .0036 
" /2 < A.1 < " /2 or .0028 < A.1 < .0050 ( 1 + 1 .96 v � )  ( 1 - 1 .96 v � )  • 

Whenever an eigenvalue is large, such as 100 or even 1000, the intervals gener
ated by (8-33) can be quite wide, for reasonable confidence levels, even though n is 
fairly large. In general, the confidence interval gets wider at the same rate that Ai 
gets larger. Consequently, some care must be exerc�ed in dropping or retaining prin
cipal components based on an examination of the A/s. 

Testi ng for the Equal  Corre lation Structu re 

The special correlation structure Cov (Xi , Xk) == v'a-i ia-k k  p, or Corr (Xi , Xk) == p, 
all i # k, is one important structure in which the eigenvalues of I are not distinct 
and the previous results do not apply. 

To test for this structure, let 

1 p p 

Ho : p == 
p 1 p 

Po == 
(pXp) 

p p 1 
and 

H1 : P =I= Po 
A test of H0 versus H1 may be based on a likelihood ratio statistic, but Lawley [14] 
has demonstrated that an equivalent test procedure can be constructed from the off
diagonal elements of R. 
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Lawley's procedure requires the quantities 

1 p 2 rk = - 1 2: r; k k = 1 ,  2, 0 0 0 ' p; r = ( - 1 )  2:2: r; k p i= l p p i <k i=lk 
A (p - 1 )2 [ 1  - ( 1  - r)2 ] 
1 = 

p - (p - 2) ( 1  - r)2 (8-34) 

It is evident that rk is the average of the off-diagonal elements in the kth column (or 
row) of R and r is the overall average of the off-diagonal elements. 

The large sample approximate a-level test is to reject H0 in favor of H1 if 

T = (n - � )
2 [ 2:2: ( r; k - r)2 - )I ± ( fk - r)2] > XJp+ l ) (p-2)/2 (a ) (8-35) 

( 1 - r ) i<k k= l 
where XJp+ l ) (p-2);2 ( a) is the upper ( 100a ) th percentile of a chi-square distribution 
with (p + 1 )  (p - 2)/2 d.f. 

Example 8.9 (Testi ng for equ icorrelation structu re) 

From Example 8 .6 , the sample correlation matrix constructed from the post
birth weights of female mice is 

R = 

1 .0 .7501 .6329 .6363 
.7501 1 .0  .6925 
.6329 .6925 1 .0 

.7386 

.6625 
.6363 .7386 .6625 1 .0 

We shall use this correlation matrix to illustrate the large sample test in (8-35) .  
Here p = 4 ,  and we set 

Ho : P = Po = 

H1 :  P =I= Po 
Using (8-34) and (8-35) ,  we obtain 

1 
p 

p 
p 

p p p 
1 p p 
p 1 p 
p p 1 

1 r1 = 3 ( .7501 + .6329 + .6363 ) = .6731 ,  r2 = .7271 ,  

r3 = .6626, r4 = .6791 
2 r = 

4 (3 )  
( 07501 + 0 6329 + 06363 + o 6925 + 07386 + 06625 ) = 0 6855 2:2: ( ri k - r)2 = ( .7501 - .6855 )2 i <k 

+ ( . 6329 - .6855 )2 + . . .  + ( . 6625 - .6855 )2 

= .01277 



and 

4 
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� ( rk - r)2 = ( . 6731 - .6855 )2 + · · · + ( . 6791 - .6855 )2 = .00245 
k= l  y 

= 
( 4 - 1f[ 1 - ( 1 - .6855f] = 2. 1 329 4 - (4 - 2) ( 1 - .6855 )2 

( 150 - 1 ) 
T = ( 1 _

_ 6SSSf [ .01277 - (2.1329 ) ( .00245 ) ] = 11 .4 
Since (p + 1 ) (p - 2)/2 = 5 (2 )/2 = 5, the 5% critical value for the test in 
(8-35) is x� ( .05 ) = 11 .07. The value of our test statistic is approximately equal 
to the large sample 5% critical point, so the evidence against H0 (equal corre-
lations) is strong, but not overwhelming. 

� � � 

As we saw in Ex�mple 8 .6 , the smallest eigenvalues A2 , A3 , and A4 are 
slightly different, with A4 being somewhat smaller than the other two. Conse
quently, with the large sample size in this problem, small differences from the 
equal correlation structure show up as statistically significant. • 

8.6 MONITORI NG QUALITY WITH PRI NCIPAL COMPONENTS 

In Section 5.6, we introduced multivariate control charts, including the quality ellipse 
and the T2 chart. Today, with electronic and other automated methods of data collec
tion, it is not uncommon for data to be collected on 10 or 20 process variables. Major 
chemical and drug companies report measuring over 100 process variables, including 
temperature, pressure, concentration, and weight, at various positions along the pro
duction process. Even with 10 variables to monitor, there are 45 pairs for which to cre
ate quality ellipses. Clearly, another approach is required to both visually display 
important quantities and still have the sensitivity to detect special causes of variation. 

Checki ng a G iven Set of Measurements fo r Stab i l ity 

Let X1 , X2 , . . .  , Xn be a random sample from a multivariate normal distribution with 
mean IL and covariance matrix I. We consider the first two sample principal com
ponents, Yj l = e1 (xj - x) and Yj2 = e2(xj - x) . Additional principal components 
could be considered, but two are easier to inspect visually and, of any two components, 
the first two explain the largest cumulative proportion of the total sample variance. 

If a process is stable over time, so that the measured characteristics are influ
enced only by variations in common causes, then the values of the first two principal 
components should be stable. Conversely, if the principal components remain stable 
over time, the common effects that influence the process are likely to remain constant. 
To monitor quality using principal components, we consider a two-part procedure. 
The first part of the procedure is to construct an ellipse format chart for the pairs of 
values ( yj 1 , yj2 ) for j = 1, 2, . . . , n. 

By (8-20) , the Asample variance of the first principal component y1 is given by the 
largest eigenvalue A.1 , and the sample variance of the second principal component y2 � 

is the second-largest eigenvalue A.2 • The two sample components are uncorrelated, 
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so the quality ellipse for n large (see Section 5.6) reduces to the collection of pairs of 
possible values (.}/1 , y2 ) such that 

"'2 "'2 Y1 Y2 < 2 ( ) ( ---;;- + ---;;- - X2 a 8-36) Al A2 

Example 8. 1 0  (An e l l i pse format chart based o n  the fi rst two 
principal components) 

Refer to the police department overtime data given in Table 5.8 . Table 8 .1 con
tains the five normalized eigenvectors and eigenvalues of the sample covari
ance matrix S. 

The first two sample components explain 82% of the total variance. 
The sample values for all five components are displayed in Table 8.2. 

TABLE 8. 1 E I G ENVECTORS AND E IG ENVALUES OF SAMPLE COVARIANCE 
MATRIX FOR POLICE DEPARTM ENT DATA 

Variable "' "' "' "' "' e l e2 e3 e4 es 
Appearances overtime (x1 ) .046 - .048 .629 - .643 .432 

Extraordinary event ( x2 ) .039 .985 - .077 - . 151 - .007 
Holdover hours (x3 )  - .658 . 107 .582 .250 - .392 

COA hours ( x4 ) .734 .069 .503 .397 - .213 
Meeting hours (x5 ) - .155 . 107 .081 .586 .784 

;\ .  l 2,770,226 1 ,429,206 628,129 221 ,138 99 ,824 

TABLE 8.2 VALUES OF TH E PR I NC IPAL COMPONENTS 
FOR TH E POL ICE DEPARTMENT DATA 

Period 
"' "' "' "' "' Yj l Yj 2 Yj3 Yj4 Yj s 

1 2044.9 588.2 425 .8 - 189.1 -209.8 
2 -2143.7 -686.2 883.6 -565 .9  -441 .5 
3 -177 .8 -464.6 707.5 736.3 38.2 
4 -2186.2 450.5 -184.0 443 .7 -325 .3 
5 -878.6 -545 .7 1 15.7 296.4 437 .5 
6 563.2 -1045.4 281 .2 620.5 142.7 
7 403 .1  66.8 340.6 -135.5 521 .2 
8 - 1988.9 -801 .8 -1437.3 - 148.8 61 .6 
9 132.8 563.7 125 .3 68.2 61 1 .5 

10 -2787.3 -213.4 7 .8 169.4 -202.3 
1 1  283 .4 3936.9 -0.9 276.2 -159.6 
12 761 .6 256.0 -2153.6 -418.8 28.2 
13 -498.3 244.7 966.5 -1 142.3 182.6 
14 2366.2 -1 193.7 -165.5 270.6 -344.9 
15 1917.8 -782.0 -82.9 - 196.8 -89 .9 
16 2187.7 -373.8 170. 1 -84.1 -250.2 
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Figure 8.7 The 95% control e l l i pse 
based on the fi rst two pr inc ipa l  
com ponents of overt ime hou rs. 

Let us construct a 95% ellipse format chart using the first two sample prin
cipal components and plot the 16 pairs of component values in Table 8.2. 

Although n == 16 is not large, we use x�( .05 ) = 5 .99, and the ellipse 
becomes � 2  � 2 

�1 + �2 < 5 .99 
Al A2 

This ellipse is shown in Figure 8.7, along with the data. 
One point is out of control, because the second principal component for 

this point has a large value. Scanning Table 8 .2, we see that this is the value 
3936.9 for period 11 . According to the entries of e2 in Table 8 . 1 ,  the second 
principal component is essentially extraordinary event overtime hours. The 
principal component approach has led us to the same conclusion we came to in 
Example 5 .9 .  • 

In the event that special causes are likely to produce shocks to the system, the 
second part of our two-part procedure-that is, a second chart-is required. This 
chart is created from the information in the principal components not involved in 
the ellipse format chart. 

Consider the deviation vector X - /L,  and assume that X is distributed as 
Np(#L , I) .  Even without the normal assumption, Xj - IL can be expressed as the 
sum of its proj ections on the eigenvectors of I 

X - 1L = (X - IL ) ' e1 e1 + (X - 1L ) ' e2e2 
+ (X - �L ) ' e3e3 + . . .  + (X - �L ) ' ePeP 
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or 

X - 1L = Y1e1 + Y2e2 + }3e3 + · · · + YPeP (8-37) 

where Y: = (X - IL ) ' ei is the population ith principal component centered to have 
mean 0. The approximation to X - IL by the first two principal components has the 
form Yi e 1 + Y2e2 . This leaves an unexplained component of 

X - IL - Yi e1 - Y2e2 

Let E = [ e1 , e2 , . . .  , ep ] be the orthogonal matrix whose columns are the eigenvectors 
of I. The orthogonal transformation of the unexplained part, 

yl yl 0 0 
Y2 0 Y2 0 

= [J2J E' (X - 1L - Y1e1 - Y2e2) = Y3 0 0 Y3 

yp 0 0 yp 

so the last p - 2 principal components are obtained as an orthogonal transformation 
of the approximation errors. Rather than base the T2 chart on the approximation 
errors, we can, equivalently, base it on these last principal components. Recall that 

Var (Y:) = Ai for i = 1 ,  2, . . . , p 

and Cov (Y: ,  Yk) = 0 for i # k. Consequently, the statistic Y(2)Iv�z) ,Y(z)Y(2) , based on 
the last p - 2 population principal components, becomes 

(8-38) 

This is just the sum of the squares of p - 2 independent standard normal variables, 
Ak112Yk , and so has a chi-square distribution with p - 2 degrees of freedom. 

In terms of the sample data, the principal components and eigenvalues must be 
estimated. Because the coefficients of the linear combinations ei are also estimates, 
the principal components do not have a normal distribution even when the popula
tion is normal. However, it is customary to create a T2-chart based on the statistic 

which involves the estimated eigenvalues and vectors. Further, it is usual to appeal 
to the large sample approximation described by (8-38) and set the upper control limit 
of the T2-chart as UCL = c2 = x�-2(a ) .  

This T2-statistic is based on high-dimensional data. For example, when p = 20 
variables are measured, it uses the information in the 18-dimensional space perpen
dicular to the first two eigenvectors e1 and e2 . Still, this T2 based on the unexplained 
variation in the original observations is reported as highly effective in picking up spe
cial causes of variation. 
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Example 8 . 1 1  (A T2-cha rt for the unexplai ned (orthogonal) 
overti me hours) 

Consider the quality control analysis of the police department overtime hours 
in Example 8 . 10. The first part of the quality monitoring procedure, the quali
ty ellipse based on the first two principal components, was shown in Figure 8 .7 . 
To illustrate the second step of the two-step monitoring procedure, we create 
the chart for the other principal components. 

Since p == 5, this chart is based on 5 - 2 == 3 dimensions, and the upper 
control limit is x�( .05 ) == 7.81 . Using the eigenvalues and the values of the prin
cipal components, given in Example 8. 10, we plot the time sequence of values 

A 2 A 2 A2 
2 _ Y1 3 Yj 4 Yj s 

TJ - -A- + -A- + -A-A3 A.4 As 
where the first value is T2 == .891 and so on. The T2-chart is shown in Figure 8.8. 

0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 5 10 15 
Period 

Figure 8.8 A T2-chart based on the l ast th ree pr inc ipa l components of overt ime hours. 

Since points 12 and 13 exceed or are near the upper control limit, some
thing has happened during these periods. We note that they are just beyond 
the period in which the extraordinary event overtime hours peaked. 

From Table 8.2, y3 j is large in period 12, and from Table 8. 1 ,  the large co
efficients in e3 belong to legal appearances, holdover, and COA hours. Was 
there some adjusting of these other categories following the period extraordi
nary hours peaked? • 

Contro l l i ng Future Va l ues 

Previously, we considered checking whether a given series of multivariate observa
tions was stable by considering separately the first two principal components and 
then the last p - 2. Because the chi-square distribution was used to approximate 
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the UCL of the T2-chart and the critical distance for the ellipse format chart , no fur
ther modifications are necessary for monitoring future values. 

Example 8. 1 2  (Contro l e l l i pse for futu re pr inc ipal  components) 

In Example 8 .10, we determined that case 1 1  was out of control. We drop this 
point and recalculate the eigenvalues and eigenvectors based on the covariance 
of the remaining 15 observations. The results are shown in Table 8.3 . 

TABLE 8.3 E I G ENVECTO RS AND E IGE NVALU ES 
FROM TH E 1 5  STABLE  OBSERVATIONS 

" " el e2 

Appearances overtime (x1 ) .049 .629 
Extraordinary event ( x2 ) .007 - .078 

Holdover hours (x3 )  - .662 .582 
COA hours ( x4 ) .731 .503 

Meeting hours (x5 ) - . 159 .081 

;\. l 2,964,749 .9 672,995 . 1  

" " " e3 e4 es 

.304 .479 .530 

.939 - .260 - .212 
- .089 - .158 - .437 
- . 123 - .336 - .291 
- .058 - .752 .632 

396,596.5 194,401 .0 92,760.3 

The principal components have changed. The component consisting pri
marily of extraordinary event overtime is now the third principal component and 
is not included in the chart of the first two. Because our initial sample size is 
only 16, dropping a single case can make a substantial difference. Usually, at 
least 50 or more observations are needed, from stable operation of the process, 
in order to set future limits. 

Figure 8 .9 on page 461 gives the 99% prediction (8-36) ellipse for future 
pairs of values for the new first two principal components of overtime. The 15 
stable pairs of principal components are also shown. M 

In some applications of multivariate control in the chemical and pharmaceuti
cal industries, more than 100 variables are monitored simultaneously. These include 
numerous process variables as well as quality variables. Typically, the space orthog
onal to the first few principal components has a dimension greater than 100 and some 
of the eigenvalues are very small . An alternative approach (see [13]) to constructing 
a control chart, that avoids the difficulty caused by dividing a small squared princi
pal component by a very small eigenvalue, has been successfully applied. To imple
ment this approach, we proceed as follows. 

For each stable observation, take the sum of squares of its unexplained component 

dbj == (xj - x - .Yj 1e 1 - .Yj2e2 ) ' (xj - x - .Yj 1e 1 - .Yj2e2 ) 
" " 

Note that, by inserting EE ' == I, we also have 

which is just the sum of squares of the neglected principal components. 
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C"'l 
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0 0 0 ("i") 

0 0 0 ......... 
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0 0 0 ......... 
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0 0 0 ("i") 
I 
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• 
• 
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- 5000 -2000 

• • +. • • 
•• 

• 
• 

• 

0 2000 4000 

Figure 8.9 A 99% e l l i pse format chart for the fi rst two pr inc ipa l  com ponents of futu re 
overt ime.  

Using either form, the db j are plotted versus j to create a control chart. The lower 
limit of the chart is 0 and the upper limit is set by approximating the distribution of db j as 
the distribution of a constant c times a chi-square random variable with v degrees of 
freedom. 

For the chi-square approximation, the constant c and degrees of freedom v are 
chosen to match the sample mean and variance of the db j , j = 1 ,  2, . . .  , n. In partic
ular, we set 

and determine 

- 1 n 
d2 - " d2 -u - - £.J  uj - c v  

n j= l 

The upper control limit is then ex� ( a ) , where a = .05 or .01 . 
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In this supplement, we shall present interpretations for approximations to the data 
based on the first r sample principal components. The interpretations of both the 
p-dimensional scatter plot and the n-dimensional representation rely on the algebraic 
result that follows. We consider approximations of the form A = [ a1 , a2 , . . .  , an ] ' 
to the mean corrected data matrix (n xp) 

[ xl - X, x2 - X, . . . ' Xn - x] ' 

The error of approximation is quantified as the sum of the np squared errors 

n n p 
:L (xj - x - aj ) ' (xj - x - aj ) = :L :L ( xj i - xi - aj i ) 2 j= l  j= l  i= l  (8A-1 ) 

Result 8A.l Let A be any matrix with rank(A) < r < min (p, n ) . Let (n Xp) 
:Er = [ e1 ,  e2 , . . .  , er J ,  where ei is the ith eigenvector of s . The error of approximation 
sum of squares in (8A-1) is minimized by the choice 

" 

so the jth column of its transpose A' is 

where 



Supp lement SA The Geometry of the Sample Pr inc ipa l Component Approx imation 463 

are the values of the first r sample principal components for the jth unit . Moreover, 
n 

L (xj - X - aj) ' (xj - X - aj ) = ( n - 1 )  ( Ar+ l + . . . + Ap) j= l  
" " 

where Ar+ l > · · · > AP are the smallest eigenvalues of S . 

Proof. Consider first any A whose transpose A' has columns aj that are a lin
ear combination of a fixed set of r perpendicular vectors o1 , o2 , . . .  , on so that 
U = [Or ,  u2 , . . .  , ur] satisfies U'U = I. For fixed U, xj - x is best approximated by 
its projection on the space spanned by u1 , o2 , . . .  , or (see Result 2A.3) , or 

(xj - x) 'olol + (xj - x) 'o2o2 + . . . + (xj - x) 'uror 
oJ. (xj - x) 

= [ 01 ' 02 ' . . .  ' Or J 
o2 (xj - x) = UU' (xj - x) 

This follows because, for an arbitrary vector bj , 

X · - x - Ub · = X · - x - UU' (x · - x) + UU' (x · - x) - Ub · 1 1 1 1 1 1 
= (I - UU' )  (xj - x) + U(U' (xj - x) - bj) 

so the error sum of squares is 

(xj - x - Ubj) ' (xj - x - Ubj) = (xj - x) ' (I - UU' ) (xj - x) + 0 

(8A-2) 

+ (U' (xj - x) - bj) ' (U' (xj - x) - bj ) 

where the cross product vanishes because ( I - UU' ) U = U - UU'U = 
U - U = 0. The last term is positive unless bj is chosen so that bj = U' (xj - x) and 
Ubj = UU' (xj - x) is the projection of xj - x on the plane. 

Further, with the choice aj = Ubj = UU' (xj - x) , (8A-1) becomes 
n 

L (xj - X - UU' (xj - x) ) ' (xj - X - UU' (xj - x) ) 
j= l  

n 

= L (xj - x) ' (I - UU' )  (xj - x) 
j= l  

n n 

= L (xj - x) ' (xj - x) - L (xj - x) 'UU' (xj - x) 
j= l j= l  

(8A-3) 

We are now in a position to minimize the error over choices of U by maximizing the 
last term in (8A-3). By the properties of trace (see Result 2A. 12), 

n n 

L (xj - x) 'UU' (xj - x) = L tr [ (xj - x) 'UU' (xj - x) ] 
j = l j= l  

n 

= L tr [UU' (xj - x) (xj - x) ' ] 
j= l  

= ( n - 1 )  tr [UU' S J  = ( n - 1 )  tr [U' SU] (8A-4) 
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That is, the best choice for U maximizes the sum of the diagonal elements of U' SU. 
From (8-19), selecting u1 to maximize u1 Su1 , the first diagonal element of U' SU, gives 
u1 = e1 . For u2 perpendicular to er ,  u2Su2 is maximized by e2 . [See (2-52) .] Continuing, 
we find that u = [el , e2 , . . .  ' er J = Er and A' = ErE�[xl - X, x2 - X, . . .  ' Xn - x] ,  as 
asserted. 

With this choice the ith diagonal element of ii' sii is ejSei = ei (Aiei ) = Ai so 

tr [iJ' SiJ] = A1 + A2 + · · · + A, . Also, � (xj - X) ' (xj - X) = tr [ � (xj - X) (xj - X) ' ] 
= ( n - 1 ) tr ( S )  = (n - 1 ) ( A1 + A2 + . . .  + Ap) · Let U = iJ in (8A-3) , and the error 

bound follows. • 

The p-D imensional Geometrical I nterpretation  

The geometrical interpretations involve the determination of  best approximating 
planes to the p-dimensional scatter plot. The plane through the origin, determined 
by ur , u2 , . . . , u, consists of all points x with 

for some b 

This plane, translated to pass through a, becomes a + Ub for some b. 

We want to select the r-dimensional plane a + Ub that minimizes the sum of 
n 

squared distances � dJ between the observations xj and the plane. If xj is approxi-
j= l  n 

mated by a + Ubj with � bj = 0,5 then 
j= l 

n 
� (xj - a - Ubj) ' (xj - a - Ubj) j= l 

n 
= � (xj - x - Ubj + x - a ) ' (xj - x - Ubj + x - a ) j= l  

n 
= � (xj - x - Ubj) ' (xj - x - Ubj) + n (x - a ) ' ( x  - a ) 

j= l  
n 

> � (xj - X - ErE�(xj - x) ) ' (xj - X - ErE�(xj - x) ) 
j= l  

by Result 8A. 1 ,  since [Ubr , . . .  , Ubn] = A' has rank (A)  < r. The lower bound is 
reached by taking a = x, so the plane passes through the sample mean. This plane 
is determined by er ,  e2 , . . .  , er . The coefficients of ek are ek(xj - x) = Yj k , the kth 
sample principal component evaluated at the jth observation. 

The approximating plane interpretation of sample principal components is il
lustrated in Figure 8 .10 .  

n 

5 If 2: bj = nb "# 0, use a +  Vbj = (a +  Ub) + U(b1 - b) =  a* + Ub7. 
; = 1 
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3 

Figure 8.10 The r = 2-d i mens iona l  
p lane that approximates the scatter 

n 

p lot by m i n i m iz ing  2: d} . 
j= 1 

An alternative interpretation can be given. The investigator places a plane 
through x and moves it about to obtain the largest spread among the shadows of the 
observations. From (8A-2) , the projection of the deviation xj - x on the plane Ub 
is vj = UU' (xj - x) . Now, v = 0 and the sum of the squared lengths of the projec
tion deviations 

n n 
2: vjvj = 2: (xj - x) 'UU' (xj - x) = ( n - 1 ) tr [U' SUJ 
j= l j= l  

" 

is maximized by U = E. Also, since v = 0, 
n n 

( n - 1 ) Sv = 2: ( vj - v) ( vj - v) ' = 2: vj vj 
j= l  j= l  

and this plane also maximizes the total variance 

tr ( Sv ) = ( n � 1 ) tr [� vivf] = ( n � 1 ) tr [� vjvi] 
The n-Dimensional  Geometrical I nterpretation  

Let us now consider, by columns, the approximation of the mean-centered data ma
trix by A. For r = 1 ,  the ith column [ xl i - xi , x2 i - xi , . . .  ' Xn i - xz] ' is approxi
mated by a multiple cib ' of a fixed vector b' = [ br , b2 , • • .  , bn J .  The square of the 
length of the error of approximation is 

n 
L? = " (X · · - X· - c -b - ) 2 l � J l l l 1 j= l  

Considering A t o  be of rank one, we conclude from Result 8A. 1 that 
(n Xp) 

el eJ. (xl - x) " 

Y1 1  
e1e! (x2 - x) 

" " Y2 1 ,... , A =  el 

el e1 (xn - x) 
" 

Yl n 
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EXERCI SES 

d -

3 

1 
(a) Principal component of S 

3 

1 
(b) Principal component of R 

Figure 8.1 1 The fi rst samp le  pr inc ipa l  component, y1 , m i n im izes the sum of the sq ua res of the 
d ista nces, Lf , from the deviation vectors, d; = [ x1 i - Xj, x2 i - xi, . . .  , Xn i - xi], to a l i ne .  

p 
minimizes the sum of squared lengths :L Lr . That is, the best direction is determined 

i= l 
by the vector of values of the first principal component. This is illustrated in 
Figure 8 . 1 l (a) . Note that the longer deviation vectors (the larger si i 's) have the p 
most influence on the minimization of :L Lr . 

i= l 
If the variables are first standardized, the resulting vector [ ( xl i - xi )/\fi;z, 

( x2 i - xi )j\fi;z, . . . , ( xn i - xi )/\fi;z ] has length n - l for all variables, and each vec
tor exerts equal influence on the choice of direction. [See Figure 8 . 1 1 (b ) . ]  

In either case, the vector b i s moved around in n-space to minimize the sum of p 
the squares of the distances :L Lr . In the former case Lr is the squared distance 

i= l 
between [ Xl i - Xi ,  X2 i - Xi ,  . . . , Xn i - xi ] ' and its projection On the line determined 
by b. The second principal component minimizes the same quantity among all vec
tors perpendicular to the first choice. 

8.1. Determine the population principal components Yi and Y2 for the covari
ance matrix 

I = [� �] 
Also, calculate the proportion of the total population variance explained by 
the first principal component . 

8.2. Convert the covariance matrix in Exercise 8 .1 to a correlation matrix p. 
(a) Determine the principal components Yi and Y2 from p and compute the 

proportion of total population variance explained by Yi .  
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(b) Compare the components calculated in Part a with those obtained in Ex
ercise 8 . 1 .  Are they the same? Should they be? 

(c) Compute the correlations pyl > z1 , py1 , z2 , and PY2, z1 • 
8.3. Let [2 0 O J 

I =  o 4 o 
0 0 4 

Determine the principal components Yi , ¥;, and Y3 . What can you say about the 
eigenvectors (and principal components) associated with eigenvalues that are 
not distinct? 

8.4. Find the principal components and the proportion of the total population vari
ance explained by each when the covariance matrix is [ a-2 a-2p 0 ] 

I = a-2 P a-2 a-2 P , - _1_ < P < _1_ 
0 2 2 v2 v2 

a- p (I 

8.5. (a) Find the eigenvalues of the correlation matrix 

p = [: � : ] 
p p 1 

Are your results consistent with (8-16) and (8-17) ? 
(b) Verify the eigenvalue-eigenvector pairs for the p X p matrix p given in (8-15). 

8.6. Data on x1 = sales and x2 = profits for the 10 largest U.S. industrial corpora
tions were listed in Exercise 1 .4 of Chapter 1 .  

From Example 4.12 

_ 

= 
[62,309] S = 

[ 10,005 .20 255.76] 
X 105 X 2,927 ' 255.76 14.30 

(a) Determine the sample principal components and their variances for these data. 
(You may need the quadratic formula to solve for the eigenvalues of S.) 

(b) Find the proportion of the total sample variance explained by )\ . 
(c) Sketch the constant density ellipse (x  - x) ' S-1 (x - x) = 1 .4, and indicate 

the principal components j/1 and y2 on your graph. 
(d) Compute the correlation coefficients rybxk ' k = 1 ,  2. What interpretation, 

if any, can you give to the first principal component? 
8. 7. Convert the covariance matrix S in Exercise 8.6 to a sample correlation matrix R. 

(a) Find the sample principal components j/1 , j/2 and their variances. 
(b) Compute the proportion of the total sample variance explained by j/1 . 
(c) Compute the correlation coefficients rYI > Zk '  k = 1 ,  2. Interpret j/1 . 
(d) Compare the components obtained in Part a with those obtained in Exer

cise 8.6(a) . Given the original data displayed in Exercise 1 .4, do you feel that 
it is better to determine principal components from the sample covariance 
matrix or sample correlation matrix? Explain. 



468 Chapter 8 Pr inc ipa l  Components 

8.8. Use the results in Example 8.5 . 
(a) Compute the correlations ryn zk for i = 1 ,  2 and k = 1 ,  2, . . .  , 5 .  Do these 

correlations reinforce the interpretations given to the first two compo
nents? Explain. 

(b) Test the hypothesis 
1 p p p p 
p 1 p p p 

Ho : P = Po = p p 1 p p 
p p p 1 p 
p p p p 1 

versus 
H1 : P =I= Po 

at the 5% level of significance. List any assumptions required in carrying 
out this test. 

8.9. (A test that all variables are independent.) 
(a) Consider that the normal theory likelihood ratio test of H0 : I is the diagonal 

matrix 

(]"1 1  0 0 
0 0 

0 0 

' (Ti i  > 0 

Show that the test is as follows: Reject H0 if 
I S l n/2 A = p = I R l n/2 < C 

II s�J-/2 l l  i = 1 
For a large sample size, -2 ln A is approximately X�(p- 1 )12 . Bartlett [3] sug
gests that the test statistic -2[1  - (2p + 1 1 )/6n J ln A be used in place of 
-2 ln A. This results in an improved chi-square approximation. The large 
sample a critical point is X�(p- 1 );2 ( a ) . Note that testing I = Io is the same 
as testing p = I. 

(b) Show that the likelihood ratio test of H0: I = 0"21 rejects H0 if 

I S l n/2 A = ----
( tr( S )  / p ) np/2 ( 1 p 

A )p 
- 2: Ai p i= 1 

n/2 [ geometric mean Ai Jnp/2 = A < c 
arithmetic mean Ai 

For a large sample size, Bartlett [3] suggests that 

-2[1 - (2p2 + p + 2 )j6pn ] ln A 
is approximately x(p+2) (p- 1 );2 . Thus, the large sample a critical point is 
XJp+2) (p- 1 );2 ( a ) . This test is called a sphericity test, because the constant den
sity contours are spheres when I = 0"21. 
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(a) max L( IL ,  I) is given by (5- 10) ,  and max L(IL ,  I0) is the product of the 
p,,l 

univariate likelihoods, max (2'1T)-n12a-izn12 exp [- ± ( xi ; - JLY/2u; ;J . 
JLl al l j = l  n n 

Hence, jli = ( 1/n ) � xj i and (]-i i  = ( 1/n ) � (xj i - xi )
2 • The divisor n 

j= l j= l 
cancels in A, so S may be used. 

(b) Verify (J-2 = [ ± ( xi 1  - X1/ + · · · + ± ( xiP - Xp ) 2]/np under H0 . 
j = l  j = l  

Again, the divisors n cancel in the statistic, so S may be used. Use Result 
5.2 to calculate the chi-square degrees of freedom. 

The following exercises require the use of a computer. 

8.10. The weekly rates of return for five stocks listed on the New York Stock Ex-
change are given in Table 8.4. (See the stock-price data on the CD-ROM.) 

TABLE 8.4 STOCK-PR ICE  DATA (WE E KLY RATE OF RETU RN) 

Allied Union 
Week Chemical Du Pont Carbide Exxon Texaco 

1 .000000 .000000 .000000 .039473 - .000000 
2 .027027 - .044855 - .003030 - .014466 .043478 
3 . 122807 .060773 .088146 .086238 .078124 
4 .057031 .029948 .066808 .013513 .019512 
5 .063670 - .003793 - .039788 - .018644 - .024154 
6 .003521 .050761 .082873 .074265 .049504 
7 - .045614 - .033007 .002551 - .009646 - .028301 
8 .058823 .041719 .081425 - .014610 .014563 
9 .000000 - .019417 .002353 .001647 - .028708 

10 .006944 - .025990 .007042 - .041 118 - .024630 

91 - .044068 .020704 - .006224 - .018518 .004694 
92 .039007 .038540 .024988 - .028301 .032710 
93 - .039457 - .029297 - .065844 - .015837 - .045758 
94 .039568 .024145 - .006608 .028423 - .009661 
95 - .031142 - .007941 .011080 .007537 .014634 
96 .000000 - .020080 - .006579 .029925 - .004807 
97 .021429 .049180 .006622 - .002421 .028985 
98 .045454 .046375 .074561 .014563 .018779 
99 .050167 .036380 .004082 - .011961 .009216 

100 .019108 - .033303 .008362 .033898 .004566 

(a) Construct the sample covariance matrix S, and find the sample principal 
components in (8-20). (Note that the sample mean vector x is displayed in 
Example 8.5 .) 
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TABLE 8. 5 

Tract 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11  
12 
13  
14 

(b) Determine the proportion of  the total sample variance explained by the 
first three principal components. Interpret these components. 

(c) Construct Bonferroni simultaneous 90% confidence intervals for the vari
ances A1 , A2 , and A3 of the first three population components Yi ,  Y2 , and Y3 . 

(d) Given the results in Parts a-c, do you feel that the stock rates-of-return data 
can be summarized in fewer than five dimensions? Explain. 

8.11. Consider the census-tract data listed in Table 8.5 . Suppose the observations on 
X5 = median value home were recorded in thousands, rather than ten thou
sands, of dollars; that is, multiply all the numbers listed in the sixth column of 
the table by 10. 
(a) Construct the sample covariance matrix S for the census-tract data when 

X5 = median value home is recorded in thousands of dollars. (Note that 
this covariance matrix can be obtained from the covariance matrix given in 
Example 8.3 by multiplying the off-diagonal elements in the fifth column and 
row by 10 and the diagonal element s5 5 by 100. Why?) 

(b) Obtain the eigenvalue-eigenvector pairs and the first two sample principal 
components for the covariance matrix in Part a. 

(c) Compute the proportion of total variance explained by the first two princi
pal components obtained in Part b. Calculate the correlation coefficients, 
ryi, xk ' and interpret these components if possible. Compare your results 
with the results in Example 8.3 . What can you say about the effects of this 
change in scale on the principal components? 

8.12. Consider the air-pollution data listed in Table 1 .5 . Your job is to summarize 
these data in fewer than p = 7 dimensions if possible. Conduct a principal 

CENSUS-TRACT DATA 

Median Total Health services Median value 
Total population school employment employment home 

(thousands) years (thousands) (hundreds) ($10,000s) 

5 .935 14.2 2.265 2.27 2.91 
1 .523 13 .1 .597 .75 2.62 
2.599 12.7 1 .237 1 . 1 1  1 .72 
4.009 15.2 1 .649 .81 3 .02 
4.687 14.7 2.312 2.50 2.22 
8.044 15 .6 3 .641 4.51 2.36 
2.766 13 .3 1 .244 1 .03 1 .97 
6.538 17.0 2.618 2.39 1 . 85 
6.451 12.9 3 . 147 5 .52 2.01 
3 .314 12.2 1 .606 2 .18 1 .82 
3.777 13 .0 2 .119 2.83 1 . 80 
1 .530 13 .8 .798 .84 4.25 
2.768 13 .6 1 .336 1 .75 2 .64 
6 .585 14.9 2.763 1 .91 3 .17 

Note: Observations from adjacent census tracts are likely to  be  correlated. That is, these 14 observa
tions may not constitute a random sample. 
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component analysis of the data using both the covariance matrix S and the cor
relation matrix R. What have you learned? Does it make any difference which 
matrix is chosen for analysis? Can the data be summarized in three or fewer 
dimensions? Can you interpret the principal components? 

8.13. In the radiotherapy data listed in Table 1 .7 (see also the radiotherapy data on 
the CD-ROM) , the n = 98 observations on p = 6 variables represent patients ' 
reactions to radiotherapy. 
(a) Obtain the covariance and correlation matrices S and R for these data. 
(b) Pick one of the matrices S or R (justify your choice) ,  and determine the 

eigenvalues and eigenvectors. Prepare a table showing, in decreasing 
order of size, the percent that each eigenvalue contributes to the total 
sample variance. 

(c) Given the results in Part b, decide on the number of important sample prin
cipal components. Is it possible to summarize the radiotherapy data with a 
single reaction-index component? Explain. 

(d) Prepare a table of the correlation coefficients between each principal com
ponent you decide to retain and the original variables. If possible, interpret 
the components. 

8.14. Perform a principal component analysis using the sample covariance matrix 
of the sweat data given in Example 5 .2 . Construct a Q-Q plot for each of the 
important principal components. Are there any suspect observations? 
Explain. 

8.15. The four sample standard deviations for the post birth weights discussed in Ex
ample 8.6 are 

� = 32.9909, \IS; =  33.5918, vs;; = 36.5534, and � = 37.3517 

Use these and the correlations given in Example 8.6 to construct the sample co
variance matrix S. Perform a principal component analysis using S. 

8.16. Over a period of five years in the 1990s, yearly samples of fishermen on 28 lakes 
in Wisconsin were asked to report the time they spent fishing and how many of 
each type of game fish they caught . Their responses were then converted to a 
catch rate per hour for 

x1 = Bluegill x2 = Black crappie x3 = Smallmouth bass 
x4 = Largemouth bass x5 = Walleye x6 = Northern pike 

The estimated correlation matrix (courtesy of Jodi Barnet) 

1 .4919 .2636 .4653 - .2277 .0652 
.4919  1 .3127 .3506 - .1917 .2045 
.2635 .3127 1 .4108 .0647 .2493 

R =  
.4653 .3506 .4108 1 - .2249 .2293 

- .2277 - .1917 .0647 - .2249 1 - .2144 
.0652 .2045 .2493 .2293 - .2144 1 

is based on a sample of about 120. (There were a few missing values.) 
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Fish caught by the same fisherman live alongside of each other, so the 
data should provide some evidence on how the fish group. The first four fish 
belong to the centrarchids, the most plentiful family. The walleye is the most 
popular fish to eat. 
(a) Comment on the pattern of correlation within the centrarchid family x1 

through x4 • Does the walleye appear to group with the other fish? 
(b) Perform a principal component analysis using only x1 through x4 • Inter

pret your results. 
(c) Perform a principal component analysis using all six variables. Interpret 

your results. 
8.17. Using the data on bone mineral content in Table 1 .8, perform a principal com

ponent analysis of S. 
8.18. The data on national track records for women are listed in Table 1 .9 . 

(a) Obtain the sample correlation matrix R for these data, and determine its 
eigenvalues and eigenvectors. 

(b) Determine the first two principal components for the standardized vari
ables. Prepare a table showing the correlations of the standardized vari
ables with the components, and the cumulative percentage of the total 
(standardized) sample variance explained by the two components. 

(c) Interpret the two principal components obtained in Part b. (Note that 
the first component is essentially a normalized unit vector and might 
measure the athletic excellence of a given nation. The second component 
might measure the relative strength of a nation at the various running 
distances. ) 

(d) Rank the nations based on their score on the first principal component. 
Does this ranking correspond with your inituitive notion of athletic excel
lence for the various countries? 

8.19. Refer to Exercise 8 .18 .  Convert the national track records for women in Table 
1 .9  to speeds measured in meters per second. Notice that the records for 800 m, 
1500 m, 3000 m, and the marathon are given in minutes. The marathon is 26.2 
miles, or 42,195 meters, long. Perform a principal components analysis using the 
covariance matrix S of the speed data. Compare the results with the results in 
Exercise 8 .18 .  Do your interpretations of the components differ? If the na
tions are ranked on the basis of their score on the first principal component, does 
the subsequent ranking differ from that in Exercise 8.18? Which analysis do you 
prefer? Why? 

8.20. The data on national track records for men are listed in Table 8.6 . (See also the 
data on national track records for men on the CD-ROM.) Repeat the princi
pal component analysis outlined in Exercise 8 .18 for the men. Are the results 
consistent with those obtained from the women's data? 

8.21. Refer to Exercise 8.20. Convert the national track records for men in Table 
8.6 to speeds measured in meters per second. Notice that the records for 800 m� 
1500 m, 5000 m, 10,000 m and the marathon are given in minutes. The marathon 
is 26.2 miles, or 42,195 meters, long. Perform a principal component analysis 
using the covariance matrix S of the speed data. Compare the results with the 
results in Exercise 8.20. Which analysis do you prefer? Why? 
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TABLE 8.6 NATI ONAL TRACK RECORDS FOR M E N  

lOO m 200 m 400 m 800 m 1500 m 5000 m 10,000 m Marathon 
Country (s) (s) (s) (min) (min) (min) (min) (min) 

Argentina 10.39 20.81 46 .84 1 .81 3 .70 14.04 29 .36 137.72 
Australia 10.31 20.06 44.84 1 .74 3 .57 13 .28 27 .66 128.30 
Austria 10.44 20.81 46.82 1 .79 3 .60 13 .26 27 .72 135.90 
Belgium 10.34 20.68 45.04 1 .73 3 .60 13 .22 27 .45 129.95 
Bermuda 10.28 20.58 45 .91 1 . 80 3 .75 14.68 30.55 146.62 
Brazil 10.22 20.43 45.21 1 .73 3 .66 13 .62 28.62 133 .13 
Burma 10.64 21 .52 48.30 1 . 80 3 .85 14.45 30.28 139 .95 
Canada 10.17 20.22 45.68 1 .76 3 .63 13 .55 28.09 130.15 
Chile 10.34 20.80 46.20 1 .79 3.71 13 .61 29.30 134.03 
China 10.51 21 .04 47 .30 1 . 81 3.73 13 .90 29.13 133.53 
Colombia 10.43 21 .05 46. 10 1 . 82 3 .74 13 .49 27.88 131 .35 
Cook Islands 12 .18 23 .20 52.94 2.02 4.24 16 .70 35.38 164.70 
Costa Rica 10.94 21.90 48.66 1 . 87 3 .84 14.03 28.81 136.58 
Czechoslovakia 10.35 20.65 45 .64 1 .76 3 .58 13 .42 28 .19 134.32 
Denmark 10.56 20.52 45.89 1 .78 3 .61 13 .50 28. 1 1  130.78 
Dominican Republic 10.14 20.65 46.80 1 .82 3 .82 14.91 31 .45 154.12 
Finland 10.43 20.69 45.49 1 .74 3 .61 13 .27 27.52 130.87 
France 10. 1 1  20.38 45.28 1 .73 3 .57 13 .34 27.97 132.30 
German 10 .12 20.33 44. 87 1 .73 3 .56 13 .17 27.42 129.92 

Democratic Republic 
Federal Republic of 10 .16 20.37 44.50 1 .73 3.53 13 .21 27.61 132.23 

Germany 
Great Britain and 10. 1 1  20.21 44.93 1 .70 3 .51 13 .01 27 .51 129 .13 

Northern Ireland 
Greece 10.22 20.71 46.56 1 .78 3 .64 14.59 28.45 134.60 
Guatemala 10.98 21 .82 48.40 1 .89 3 .80 14. 16 30. 1 1  139.33 
Hungary 10.26 20.62 46.02 1 .77 3 .62 13 .49 28.44 132.58 
India 10 .60 21 .42 45.73 1 .76 3.73 13 .77 28.81 131 .98 
Indonesia 10.59 21.49 47.80 1 . 84 3 .92 14.73 30.79 148.83 
Ireland 10.61 20.96 46.30 1 .79 3.56 13 .32 27.81 132.35 
Israel 10.71 21 .00 47 .80 1 .77 3 .72 13 .66 28.93 137.55 
Italy 10.01 19 .72 45.26 1 .73 3 .60 13 .23 27 .52 131 .08 
Japan 10.34 20.81 45 .86 1 .79 3 .64 13 .41 27.72 128.63 
Kenya 10.46 20.66 44.92 1 .73 3 .55 13 .10 27.38 129.75 
Korea 10.34 20.89 46.90 1 .79 3.77 13 .96 29.23 136.25 
Democratic People 's 10.91 21 .94 47 .30 1 . 85 3.77 14 .13 29.67 130.87 

Republic of Korea 
Luxembourg 10.35 20 .77 47 .40 1 .82 3 .67 13 .64 29.08 141 .27 
Malaysia 10.40 20.92 46.30 1 . 82 3 .80 14.64 31 .01 154. 10 
Mauritius 11 . 19  22.45 47 .70 1 .88 3 .83 15 .06 31 .77 152.23 
Mexico 10.42 21 .30 46. 10 1 . 80 3 .65 13 .46 27 .95 129.20 
Netherlands 10.52 20.95 45 .10 1 .74 3 .62 13 .36 27.61 129.02 

(continues on next page) 
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TABLE 8.6 (continued) 

lOO m 200 m 400 m 800 m 1500 m 5000 m 10,000 m Marathon 
Country (s) (s) (s) (min) (min) (min) (min) (min) 

New Zealand 10.51 20.88 46.10 1 .74 3 .54 13 .21 27.70 128 .98 
Norway 10.55 21 .16 46.71 1 .76 3 .62 13 .34 27 .69 131 .48 
Papua New Guinea 10.96 21 .78 47 .90 1 . 90 4.01 14.72 31 .36 148.22 
Philippines 10.78 21 .64 46.24 1 .81 3 .83 14.74 30.64 145 .27 
Poland 10 .16 20.24 45 .36 1 .76 3 .60 13 .29 27 .89 131 .58 
Portugal 10.53 21 .17 46.70 1 .79 3 .62 13 .13 27.38 128.65 
Rumania 10.41 20.98 45 .87 1 .76 3 .64 13 .25 27 .67 132.50 
Singapore 10.38 21 .28 47.40 1 .88 3 .89 15 .11 31 .32 157.77 
Spain 10.42 20.77 45 .98 1 .76 3 .55 13 .31 27 .73 131 .57 
Sweden 10.25 20.61 45 .63 1 .77 3 .61 13 .29 27.94 130.63 
Switzerland 10.37 20.46 45.78 1 .78 3 .55 13 .22 27 .91 131 .20 
Taipei 10.59 21 .29 46.80 1 .79 3 .77 14.07 30.07 139.27 
Thailand 10.39 21 .09 47 .91 1 . 83 3 .84 15 .23 32.65 149.90 
Turkey 10.71 21 .43 47.60 1 .79 3 .67 13 .56 28.58 131 .50 
USA 9.93 19 .75 43.86 1 .73 3.53 13 .20 27 .43 128.22 
USSR 10.07 20.00 44.60 1 .75 3 .59 13 .20 27 .53 130.55 
Western Samoa 10.82 21 .86 49.00 2.02 4.24 16.28 34.71 161 .83 

Source: IAAF/ATFS Track and Field Statistics Handbook for the 1984 Los Angeles Olympics. 

8.22. Consider the data on bulls in Table 1 . 10. Utilizing the seven variables YrHgt, 
FtFrBody, PrctFFB, Frame, BkFat, SaleHt, and SaleWt, perform a principal 
component analysis using the covariance matrix S and the correlation matrix R. 
Your analysis should include the following: 
(a) Determine the appropriate number of components to effectively summarize 

the sample variability. Construct a scree plot to aid your determination. 
(b) Interpret the sample principal components. 
(c) Do you think it is possible to develop a "body size" or "body configuration" 

index from the data on the seven variables above? Explain. 
(d) Using the values for the first two principal components, plot the data in a 

two-dimensional space with 5\ along the vertical axis and y2 along the hor
izontal axis. Can you distinguish groups representing the three breeds of cat
tle? Are there any outliers? 

(e) Construct a Q-Q plot using the first principal component. Interpret the plot. 
8.23. A naturalist for the Alaska Fish and Game Department studies grizzly bears 

with the goal of maintaining a healthy population. Measurements on n = 61 
bears provided the following summary statistics: 

Variable 

Sample 
mean x 

Weight 
(kg) 

Body 
length 
(em) 

Neck 
(em) 

Girth Head 
(em) length 

(em) 

Head 
width 
(em) 

95.52 164.38 55.69 93.39 17.98 31 . 13 
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Covariance matrix 

3266.46 1343 .97 731 .54 1175.50 162.68 238.37 
1343 .97 721 .91 324.25 537.35 80.17 117 .73 

S = 
731 .54 324.25 179 .28 281 .17 39 .15 56.80 

1 175.50 537.35 281 .17 474.98 63.73 94.85 
162.68 80. 17 39 .15 63 .73 9 .95 13 .88 
238.37 117 .73 56.80 94.85 13 .88 21 .26 

(a) Perform a principal component analysis using the covariance matrix. Can 
the data be effectively summarized in fewer than six dimensions? 

(b) Perform a principal component analysis using the correlation matrix. 
(c) Comment on the similarities and differences between the two analyses. 

8.24. Refer to Example 8 .10 and the data in Table 5.8 , page 240. Add the variable 
x6 = regular overtime hours whose values are (read across) 

6187 7336 
7679 8259 

6988 6964 8425 6778 5922 7307 
10954 9353 6291 4969 4825 6019 

and redo Example 8. 10. 
8.25. Refer to the police overtime hours data in Example 8.10. Construct an alter

nate control chart, based on the sum of squares d� j ,  to monitor the unexplained 
variation in the original observations summarized by the additional principal 
components. 
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CHAPTE R 

9 
Factor Analysis and Inference 

for Structured Covariance Matrices 

9. 1 I NTRODUCTION 

Factor analysis has provoked rather turbulent controversy throughout its history. Its 
modern beginnings lie in the early 20th-century attempts of Karl Pearson, Charles 
Spearman, and others to define and measure intelligence. Because of this early as
sociation with constructs such as intelligence, factor analysis was nurtured and de
veloped primarily by scientists interested in psychometrics. Arguments over the 
psychological interpretations of several early studies and the lack of powerful com
puting facilities impeded its initial development as a statistical method. The advent 
of high-speed computers has generated a renewed interest in the theoretical and 
computational aspects of factor analysis. Most of the original techniques have been 
abandoned and early controversies resolved in the wake of recent developments. It 
is still true, however, that each application of the technique must be examined on its 
own merits to determine its success. 

The essential purpose of factor analysis is to describe, if possible, the covari
ance relationships among many variables in terms of a few underlying, but unob
servable, random quantities called factors. Basically, the factor model is motivated 
by the following argument: Suppose variables can be grouped by their correlations. 
That is, suppose all variables within a particular group are highly correlated among 
themselves, but have relatively small correlations with variables in a different group. 
Then it is conceivable that each group of variables represents a single underlying 
construct , or factor, that is responsible for the observed correlations. For example, 
correlations from the group of test scores in classics, French, English, mathematics, 
and music collected by Spearman suggested an underlying "intelligence" factor. A 
second group of variables, representing physical-fitness scores, if available, might 
correspond to another factor. It is this type of structure that factor analysis seeks 
to confirm. 

477 
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Factor analysis can be considered an extension of principal component analy
sis. Both can be viewed as attempts to approximate the covariance matrix I. How
ever, the approximation based on the factor analysis model is more elaborate. The 
primary question in factor analysis is whether the data are consistent with a pre
scribed structure. 

9.2 TH E ORTHOGONAL FACTOR MODEL  

The observable random vector X, with p components, has mean IL and covariance ma
trix I. The factor model postulates that X is linearly dependent upon a few unob
servable random variables F1 , F2 , . . .  , Fm , called common factors, and p additional 
sources of variation s1 , s2 , . . .  , sP , called errors or, sometimes, specificfactors. 1 In par
ticular, the factor analysis model is 

X1 - IL1 = f1 1F1 + f1 2F2 + · · · + f1m Fm + e1 
X2 - IL2 = f2 1F1 + f22F2 + · · · + f2mFm + e2 

or, in matrix notation, 

X - JL =  L F + e 
(pX l ) (pXm) (mX l ) (pX l ) 

(9-1 ) 

(9-2) 

The coefficient eij is called the loading of the ith variable on the jth factor, so the ma
trix L is the matrix of factor loadings. Note that the ith specific factor si is associat-
ed only with the ith response Xi .  The p deviations X1 - ILl , X2 - �L2 , . . .  , XP - ILp 
are expressed in terms of p + m random variables F1 , F2 , • • •  , F m , s1 , s2 , . . .  , s P which 
are unobservable. This distinguishes the factor model of (9-2) from the multivariate 
regression model in (7 -26) , in which the independent variables [whose position is oc
cupied by F in (9-2)] can be observed. 

With so many unobservable quantities, a direct verification of the factor model 
from observations on X1 , X2 , . . .  , XP is hopeless. However, with some additional as
sumptions about the random vectors F and e, the model in (9-2) implies certain co
variance relationships, which can be checked. 

We assume that 

E(F) = 0 , 
(mX l ) 

E(e ) = 0 , 
(pX l ) 

Cov (F) = E[FF' J = I 
(mxm) 

Cov ( e ) = E[ee ' ] = 'It = 
(px p) 

l/11 0 0 
0 l/12 0 

(9-3) 

0 0 l/Jp 

1 As Maxwell [22] points out, in many investigations the E1 tend to be combinations of measure
ment error and factors that are uniquely associated with the individual variables. 
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and that F and e are independent, so 

Cov (e, F) = E(eF' ) = 0 (pXm) 

These assumptions and the relation in (9-2) constitute the orthogonal factor mode/.2 

The orthogonal factor model implies a covariance structure for X. From the 
model in (9-4) , 

so that 

(X - �-L ) (X - IL ) ' = (LF + e ) (LF + e) ' 

= (LF + e ) ( (LF) ' + e ' ) 

= LF(LF) ' + e (LF) ' + LFe ' + ee ' 

I = Cov (X) = E(X - IL) (X - IL) ' 
= LE(FF' ) L '  + E(eF' ) L '  + LE(Fe ' )  + E (ee ' )  

= LL' + 'II 

according to (9-3) .  Also, by independence, Cov ( e, F) = E( e, F' ) = 0. 
Also, by the model in (9-4) , (X - p, ) F' = (LF + e ) F ' = LF F' + eF' ,  so 

Cov (X, F) = E(X - �-L ) F' = LE(FF' ) + E(eF' ) = L. 

2 Allowing the factors F to be correlated so that Cov (F) is not diagonal gives the oblique factor 
model. The oblique model presents some additional estimation difficulties and will not be discussed in this 
book. (See [20] .) 
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The model X - IL = LF + E is linear in the common factors. If the p responses 
X are, in fact, related to underlying factors, but the relationship is nonlinear, such as 

in xl - ILl = el lplp3 + Bl , Xz - J.Lz = e2 1F2F3 + Bz , and so forth, then the covari
ance structure LL' + 'It given by (9-5) may not be adequate. The very important as
sumption of linearity is inherent in the formulation of the traditional factor model . 

That portion of the variance of the ith variable contributed by the m common 
factors is called the ith communality . That portion of Var (Xi) = uii due to the spe
cific factor is often called the uniqueness , or specific variance. Denoting the ith com
munality by hr ,  we see from (9-5) that 

or 

and 

(]" 0 0 l l  

communality + specific variance 

(T o o  = h? + 1 /r o  l l  l 'P l ' i = 1 ,  2, . . .  ' p 

(9-6) 

The ith communality is the sum of squares of the loadings of the ith variable on the 
m common factors. 

Example 9 . 1  (Verifying the relation I = LL' + W for two factors) 

Consider the covariance matrix 

19  30 2 12 

I = 30 57 5 23 

2 5 38 47 
12 23 47 68 
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The equality 

19  30 2 12 4 1 2 0 0 0 
30 57 5 23 7 2 [� 7 -1  1 ] 0 4 0 0 
2 5 38 47 -1  6 2 6 8 

+ 
0 0 1 0 

12 23 47 68 1 8 0 0 0 3 

or 

I = LL ' + 'It 
may be verified by matrix algebra. Therefore, I has the structure produced by 
an m = 2 orthogonal factor model. Since 

el l f1 2 4 1 

L =  f2 1 f22  7 2 

e3 1 e3 2 -1  6 ' 

e4 1  e42 1 8 

l/11 0 0 0 2 0 0 0 

'It =  0 l/12 0 0 0 4 0 0 
0 0 l/13 0 0 0 1 0 
0 0 0 l/14 0 0 0 3 

the communality of X1 is, from (9-6) , 

hi = ei l + ei2 = 42 + 12 = 17 

and the variance of X1 can be decomposed as 

lTl l  = (ei l + ei 2) + l/11 = hi + l/11 

or 

19 42 + 12 + 2 17 + 2 
� � � 

variance communality + specific 
variance 

A similar breakdown occurs for the other variables. • 

The factor model assumes that the p + p(p - 1 )/2 = p(p + 1 )/2 variances 
and covariances for X can be reproduced from the pm factor loadings eij and the p 
specific variances l/Ji · When m = p, any covariance matrix I can be reproduced ex
actly as LL' [see (9-11 ) ] ,  so 'It can be the zero matrix. However, it is when m is small 
relative to p that factor analysis is most useful. In this case, the factor model pro
vides a "simple" explanation of the covariation in X with fewer parameters than the 
p(p + 1 )  /2 parameters in I. For example, if X contains p = 12 variables, and the fac
tor model in (9-4) with m = 2 is appropriate, then the p(p + 1 )/2 = 12 (13 )/2 = 78 
elements of I are described in terms of the mp + p = 12(2)  + 12 = 36 parameters 
eij and l/Ji of the factor model. 
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Unfortunately for the factor analyst, most covariance matrices cannot be fac
tored as LL' + '\}I , where the number of factors m is much less than p. The follow
ing example demonstrates one of the problems that can arise when attempting to 
determine the parameters ei j and l/Ji from the variances and covariances of the ob
servable variables. 

Example 9.2 (Nonexistence of a proper sol ution) 

Let p = 3 and m = 1, and suppose the random variables X1 , X2 , and X3 have 
the positive definite covariance matrix 

[ 1 . 9  .7 ] 
I = . 9  1 .4 

.7 .4 1 

Using the factor model in (9-4) , we obtain 

X1 - JL1 = e1 1F1 + e1 

X2 - JL2 = e2 1F2 + e2 
X3 - JL3 = e3 1F1 + e3 

The covariance structure in (9-5) implies that 

or 

1 = ei 1 + l/J1 

The pair of equations 

implies that 

I = LL ' + w 

.9o = el le2 1 

1 = e� l + l/J2 

.7o = el l e3 1 

.40 = e2 1 e3 1 

( .40 ) 
e2 1 = 

.70 el l 

Substituting this result for e2 1 in the equation 

. 9o = el le2 1 

.70 = el le3 1 

.40 = e2 1 e3 1 

1 = e� l + l/J3 

yields er 1 = 1 .575, or e1 1  = ± 1 .255 . Since Var (F1 ) = 1 (by assumption) and 
Var (X1 ) = 1 ,  e1 1  = Cov (X1 , F1 ) = Corr (X1 , F1 ) .  Now, a correlation coeffi
cient cannot be greater than unity (in absolute value) ,  so, from this point of 
view, I el l ' = 1 .255 is too large. Also, the equation 

1 = ei 1 + ljJ 1 ' or ljJ 1 = 1 - ei 1 
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l/11 = 1 - 1 .575 = - .575 

which is unsatisfactory, since it gives a negative value for Var ( s1 ) = l/f 1 . 
Thus, for this example with m = 1 ,  it is possible to get a unique numeri

cal solution to the equations I = LL' + '1'. However, the solution is not con
sistent with the statistical interpretation of the coefficients, so it is not a proper 
solution. • 

When m > 1 ,  there is always some inherent ambiguity associated with the fac
tor model. To see this, let T be any m X m orthogonal matrix, so that TT' = T'T = I. 
Then the expression in (9-2) can be written 

where 

Since 

and 

X - JL = LF + E = LTT'F + E = L*F* + E 

L* = LT and F* = T'F 

E(F* )  = T' E (F )  = 0 

Cov (F* )  = T' Cov (F)T = T 'T = I (mXm) 

(9-7) 

it is impossible, on the basis of observations on X, to distinguish the loadings L from 
the loadings L* . That is, the factors F and F* = T 'F  have the same statistical prop
erties, and even though the loadings L* are, in general, different from the loadings L, 
they both generate the same covariance matrix I. That is, 

I = LL' + 'I' = LTT 'L '  + 'I' = (L* )  (L* ) ' + 'I' (9-8) 

This ambiguity provides the rationale for "factor rotation," since orthogonal matri
ces correspond to rotations (and reflections) of the coordinate system for X. 

The analysis of the factor model proceeds by imposing conditions that allow 
one to uniquely estimate L and '1'. The loading matrix is then rotated (multiplied by 
an orthogonal matrix) , where the rotation is determined by some "ease-of
interpretation" criterion. Once the loadings and specific variances are obtained, fac
tors are identified, and estimated values for the factors themselves (called factor 
scores) are frequently constructed. 
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9.3 M ETHODS OF ESTI MATION 

Given observations x1 , x2 , . . .  , xn on p generally correlated variables, factor analysis 
seeks to answer the question, Does the factor model of (9-4) , with a small number of 
factors, adequately represent the data? In essence, we tackle this statistical model
building problem by trying to verify the covariance relationship in (9-5). 

The sample covariance matrix S is an estimator of the unknown population co
variance matrix I. If the off-diagonal elements of S are small or those of the sample 
correlation matrix R essentially zero, the variables are not related, and a factor analy
sis will not prove useful. In these circumstances, the specific factors play the domi
nant role, whereas the major aim of factor analysis is to determine a few important 
common factors. 

If I appears to deviate significantly from a diagonal matrix, then a factor model 
can be entertained, and the initial problem is one of estimating the factor loadings fl 1 
and specific variances l/Ji . We shall consider two of the most popular methods of pa
rameter estimation, the principal component (and the related principal factor) method 
and the maximum likelihood method. The solution from either method can be rotated 
in order to simplify the interpretation of factors, as described in Section 9.4. It is al
ways prudent to try more than one method of solution; if the factor model is appro
priate for the problem at hand, the solutions should be consistent with one another. 

Current estimation and rotation methods require iterative calculations that must 
be done on a computer. Several computer programs are now available for this purpose. 

The Principal Component (and Pri ncipal Factor) Method 

The spectral decomposition of (2-20) provides us with one factoring of the covariance ma
trix I. Let I have eigenvalue-eigenvector pairs ( Ai , ei ) with A1 > A2 > · · · > AP > 0. 
Then 

(9-10) 

-vx; e� 

This fits the prescribed covariance structure for the factor analysis model having as 
many factors as variables ( m = p) and specific variances t/Ji = 0 for all i. The load
ing matrix has jth column given by � ej . That is, we can write 

I = L L' + 0 = LL ' (pXp) (pXp) (pXp) (pXp) (9-1 1)  

Apart from the scale factor � ' the factor loadings on the jth factor are the coeffi
cients for the jth principal component of the population. 

Although the factor analysis representation of I in (9-11 )  is exact, it is not par
ticularly useful: It employs as many common factors as there are variables and does 
not allow for any variation in the specific factors e in (9-4) . We prefer models that 
explain the covariance structure in terms of just a few common factors. One approach, 
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when the last p - m eigenvalues are small, is to neglect the contribution of 
"-m+ l em+ l e�+ l + · · · + APePe� to I in (9-10) . Neglecting this contribution, we obtain 
the approximation 

L L' (pXm) (mXp) 
(9-12) 

The approximate representation in (9-12) assumes that the specific factors e in (9-4) 
are of minor importance and can also be ignored in the factoring of I. If specific 
factors are included in the model, their variances may be taken to be the diagonal el
ements of I - LL ' ,  where LL' is as defined in (9-12) . 

Allowing for specific factors, we find that the approximation becomes 

I - LL' + 'It 
VA;- e� 

- - - - - - - - - - - - - -

= [ VA;- e1 VI;: e2 VA: em] 
VI;: e2 

- - - - - - - - - - - - - -

- - - - - - - - - - - - - -

VX: e� 
m 

where l/Ji = (Ti i  - � erj for i = 1 ,  2, . . .  ' p . 
j= l  

l/11 0 0 
0 t/12 0 + 
0 0 l/Jp 

(9-13) 

To apply this approach to a data set x1 , x2 , . . .  , xn , it is customary first to center 
the observations by subtracting the sample mean x .  The centered observations 

Xj l xl Xj l - xl 
xj2 x2 xj2 - x2 j = 1 ,  2, . . . , n (9-14) xj - x = 

Xjp Xp Xj p - Xp 
have the same sample covariance matrix S as the original observations. 

In cases where the units of the variables are not commensurate, it is usually de
sirable to work with the standardized variables 

z .  = 1 

(xj l - xl ) 

� 
(xj 2 - x2 ) 

Vs; 

( xjp - xp) 

vs;; 

j = 1 ,  2, . . .  , n 

whose sample covariance matrix is the sample correlation matrix R of the observa
tions x1 , x2 , . . .  , xn . Standardization avoids the problems of having one variable with 
large variance unduly influencing the determination of factor loadings. 
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The representation in (9-13) ,  when applied to the sample covariance matrix S 
or the sample correlation matrix R, is known as the principal component solution. 
The name follows from the fact that the factor loadings are the scaled coefficients of 
the first few sample principal components. (See Chapter 8.) 

For the principal component solution, the estimated loadings for a given factor 
do not change as the number of factors is increased. For example, if m = 1 ,  

L = [ � el ] ,  and it m = 2 ,  L = [ � el i � e2 ] .  where ( Al , el ) and (A2 ,  C2) 
are the first two eigenvalue-eigenvector pairs for S (or R). 

By th�£efinigon of {/Ji , the diagonal elements of S are equal to the diagonal el
ements of LL�""'+ 'I'.""'However, the off-diagonal elements of S are not usually re
produced by LL' + 'If. How, then, do we select the number of factors m? 

If the number of common factors is not determined by a priori considerations, 
such as by theory or the work of other researchers, the choice of m can be based on 
the estimated eigenvalues in much the same manner as with principal components. 
Consider the residual matrix 

s - (i:i> + 'if )  (9-18) 

resulting from the approximation of S by the principal component solution. The di
agonal elements are zero, and if the other elements are also small, we may subjectively 
take the m factor model to be appropriate. Analytically, we have (see Exercise 9 .5) 

Sum of squared entries of ( S - (LL '  + 'if ) ) < A�+ l + . . .  + A� (9-19) 
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Consequently, a small value for the sum of the squares of the neglected eigenvalues 
implies a small value for the sum of the squared errors of approximation. 

Ideally, the contributions of the first few factors to the sample variances of the 
variables should be large. The contribution to the sample variance si i  from the 
first common factor is e[l . The contribution to the total sample variance, 
s1 1 + s2 2  + · · · + s P P = tr ( S ) ,  from the first common factor is then 

er l + e� l + 0 0 0 + e� l = (VA: e l ) ' (  VA: el ) = Al 
since the eigenvector e1 has unit length. In general, 

" 
A · 1 (Proportion �f total) s1 1  + s22 + . . . + sPP for a factor analysis of S 

sample variance = 

due to jth factor 
" (9-20) 
Aj for a factor analysis of R 
p 

Criterion (9-20) is frequently used as a heuristic device for determining the appropriate 
number of common factors. The number of common factors retained in the model is 
increased until a "suitable proportion" of the total sample variance has been explained. 

Another convention, frequently encountered in packaged computer programs, 
is to set m equal to the number of eigenvalues of R greater than one if the sample cor
relation matrix is factored, or equal to the number of positive eigenvalues of S if the 
sample covariance matrix is factored. These rules of thumb should not be applied in
discriminately. For example, m = p if the rule for S is obeyed, since all the eigenvalues 
are expected to be positive for large sample sizes. The best approach is to retain few 
rather than many factors, assuming that they provide a satisfactory interpretation of 
the data and yield a satisfactory fit to S or R. 

Example 9.3 (Factor analysis of consumer-preference data) 

In a consumer-preference study, a random sample of customers were asked to 
rate several attributes of a new product. The responses, on a 7 -point semantic 
differential scale, were tabulated and the attribute correlation matrix con
structed. The correlation matrix is presented next: 

Attribute ( Variable) 1 2 3 4 5 
Taste 1 1 .00 .02 ® .42 .01 
Good buy for money 2 .02 1 .00 . 13 .71 @ 
Flavor 3 .96 . 13 1 .00 .50 . 11  
Suitable for snack 4 .42 .71 .50 1 .00 @ 
Provides lots of energy 5 .01 .85 . 1 1  .79 1 .00 

It is clear from the circled entries in the correlation matrix that variables 1 and 
3 and variables 2 and 5 form groups. Variable 4 is "closer" to the (2, 5 )  group 
than the ( 1 ,  3 )  group. Given these results and the small number of variables, 
we might expect that the apparent linear relationships between the variables can 
be explained in terms of, at most, two or three common factors. 
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TABLE 9 . 1  

Variable 

1 .  Taste 
2. Good buy 

for money 
3. Flavor 
4. Suitable 

for snack 
5. Provides 

lots of energy 

Eigenvalues 

Cumulative 
proportion 
of total 
(standardized) 
sample variance 

" " 

The first two eigenvalues, A1 = 2.85 and A2 = 1 .81 ,  of R are the only eigen-
values greater than unity. Moreover, m = 2 common factors will account for a 

cumulative proportion 
" " 

_A1_+_
A_2 

= 
2.85 + 1 .81 

= .93 
p 5 

of the total (standardized) sample variance. The estimated factor loadings, com
munalities, and specific variances, obtained using (9-15), (9-16), and (9-17) , are 
given in Table 9 .1 .  

Estimated factor 
loadings 

� vf e . .  = "- · e · · l 1 l l 1 

Fl F2 

.56 

.78 

. 65 

.94 

.80 

2.85 

.571 

Now, 

�� � LL' + 'It = 

.56 

.78 

.65 

.94 

.80 

.82 

- .53 
.75 

- .10 

- .54 

1 .81 

.932 

.82 
- .53 

.75 
- .10 
- .54 

[ .56 
.82 

.02 0 0 0 
0 .12 0 0 

+ 0 0 .02 0 
0 0 0 . 1 1  
0 0 0 0 

Communalities 
�2 h · l 

.98 

.88 

.98 

.89 

.93 

.78 .65 .94 .80 J -.53 .75 - . 10 - .54 

0 1 .00 .01 .97 
0 1 .00 . 1 1  
0 = 1 .00 
0 
.07 

Specific 
variances 

� - �2 l/1· - 1 - h ·  l l 

.02 

.12 

.02 

. 11  

.07 

.44 .00 

.79 .91 

.53 . 11  
1 .00 .81 

1 .00 
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nearly reproduces the correlation matrix R. Thus, on a purely descriptive basis, 
we would judge a two-factor model with the factor loadings displayed in Table 
9 .1 as providing a good fit to the data. The communalities ( .98, .88, .98, .89, .93 )  
indicate that the two factors account for a large percentage of the sample vari
ance of each variable. 

We shall not interpret the factors at this point . As we noted in Section 9 .2, 
the factors (and loadings) are unique up to an orthogonal rotation. A rotation 
of the factors often reveals a simple structure and aids interpretation. We shall 
consider this example again (see Example 9 .9 and Panel 9 .1 )  after factor rota
tion has been discussed. • 

Example 9 .4 (Factor analys is of stock-price data) 

TABLE 9 .2 

Variable 

1 .  Allied Chemical 
2. Du Pont 
3 .  Union Carbide 
4. Exxon 
5. Texaco 

Cumulative 
proportion of total 
(standardized) 
sample variance 
explained 

Stock-price data consisting of n == 100 weekly rates of return on p == 5 stocks 
were introduced in Example 8 .5 .  In that example, the first two sample prin
cipal components were obtained from R. Taking m == 1 and m == 2, we can 
easily obtain principal component solutions to the orthogonal factor model. 
Specifically, the estimated factor loadings are the sample principal component 
coefficients (eigenvectors of R) , scaled by the square root of the corre
sponding eigenvalues. The estimated factor loadings, communalities, specif
ic variances, and proportion of total (standardized) sample variance explained 
by each factor for the m == 1 and m == 2 factor solutions are available in 
Table 9 .2 .  The communalities are given by (9 -17) .  So, for example, with 
m == 2, hi == er l + 'li2 == ( .783 )2 + ( - .217) 2 == .66 . 

One-factor solution 

Estimated factor 
loadings 

Fl 
.783 
.773 
.794 
.713 
.712 

.571 

Specific 
variances 

r--..1 - r--..12 l/1· - 1 - h · l l 

.39 

.40 

.37 

.49 

.49 

Two-factor solution 

Estimated factor 
loadings 

Fl F2 
.783 - .217 
.773 - .458 
.794 - .234 
.713 .472 
.712 .524 

.571 .733 

Specific 
variances 

r--..1 r--..12 l/J ·  == 1 - h ·  l l 

.34 

.19 

.31 

.27 

.22 
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The residual matrix corresponding to the solution for m = 2 factors is 

,....._, ,....._, ,....._, 

R - LL ' - 'I' = 

0 
- .127 
- .164 
- .069 

.017 

- . 127 
0 

- . 122 
.055 
.012 

- . 164 - .069 .017 
- .122 .055 .012 

0 - .019 - .017 
- .019 0 - .232 
- .017 - .232 0 

The proportion of the total variance explained by the two-factor solution is ap
preciably larger than that for the one-factor solution. However, for m == 2, 
,....._, ,....._, LL' produces numbers that are, in general, larger than the sample correlations. 
This is particularly true for r45 • 

It seems fairly clear that the first factor, F1 , represents general econom
ic conditions and might be called a market factor. All of the stocks load high
ly on this factor, and the loadings are about equal. The second factor contrasts 
the chemical stocks with the oil stocks. (The chemicals have relatively large 
negative loadings, and the oils have large positive loadings, on the factor. ) Thus, 
F2 seems to differentiate stocks in different industries and might be called an 
industry factor. To summarize, rates of return appear to be determined by 
general market conditions and activities that are unique to the different 
industries, as well as a residual or firm specific factor. This is essentially the 
conclusion reached by an examination of the sample principal components in 
Example 8 .5 .  M 

A Mod ified Approach-the Principal Facto r Sol ution 

A modification of the principal component approach is  sometimes considered. We 
describe the reasoning in terms of a factor analysis of R, although the procedure is 
also appropriate for S. If the factor model p = LL ' + 'I' is correctly specified, the 
m common factors should account for the off-diagonal elements of p, as well as 
the communality portions of the diagonal elements 

P . . = 1 = h? + 1 /r .  l l  l 'P l 

If the specific factor contribution l/Ji is removed from the diagonal or, equivalently, the 
1 replaced by hf , the resulting matrix is p - 'I' = LL ' .  

Suppose, now, that initial estimates l/Ji of the specific variances are available. 
Then replacing the ith diagonal element of R by hj2 = 1 - l/Ji , we obtain a "reduced" 
sample correlation matrix 

hi2 r1 2 ri p 
R = 

r1 2 hi2 r2p 
r 

ri p r2p h*2 p 
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Now, apart from sampling variation, all of the elements of the reduced sample cor
relation matrix R r should be accounted for by the m common factors. In particular, 
R r is factored as 

R _.:_ L *L *' r r r 

where L; = { f0} are the estimated loadings. 
The principal factor method of factor analysis employs the estimates 

L; = [VA! et i Yfi ei i · · · i � e!] 
m 

, ,,� = 1 - " e�-2 V' l .£..,; l 1 j= 1 

(9-21) 

(9-22) 

where (Ai , ei ) , i = 1 ,  2, . . .  , m are the (largest) eigenvalue-eigenvector pairs deter
mined from Rr . In turn, the communalities would then be (re)estimated by 

(9-23) 

The principal factor solution can be obtained iteratively, with the communality esti
mates of (9-23) becoming the initial estimates for the next stage. 

In the spirit of the principal component solution, consideration of the estimat
ed eigenvalues Ai , Ai , . . .  , A� helps determine the number of common factors to re
tain. An added complication is that now some of the eigenvalues may be negative, 
due to the use of initial communality estimates. Ideally, we should take the number 
of common factors equal to the rank of the reduced population matrix. Unfortu
nately, this rank is not always well determined from R, and some judgment is 
necessary. 

Although there are many choices for initial estimates of specific variances, the 
most popular choice, when one is working with a correlation matrix, is l/1[ = 1/ ri i , where 
ri i  is the ith diagonal element of R-1 . The initial communality estimates then become 

1 
h{2 = 1 - 1/Ji = 1 - -. 0 

rl l  
(9-24) 

which is equal to the square of the multiple correlation coefficient between Xi and 
the other p - 1 variables. The relation to the multiple correlation coefficient means 
that h{2 can be calculated even when R is not of full rank. For factoring S, the initial 
specific variance estimates use si i , the diagonal elements of s-1 . Further discussion 
of these and other initial estimates is contained in [12] .  

Although the principal component method for R can be regarded as a princi
pal factor method with initial communality estimates of unity, or specific variances 
equal to zero, the two are philosophically and geometrically different. (See [12] .) In 
practice, however, the two frequently produce comparable factor loadings if the num
ber of variables is large and the number of common factors is small. 

We do not pursue the principal factor solution, since, to our minds, the solution 
methods that have the most to recommend them are the principal component method 
and the maximum likelihood method, which we discuss next . 
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The Maxi mum Like l i hood Method 

If the common factors F and the specific factors e can be assumed to be normally 
distributed, then maximum likelihood estimates of the factor loadings and specific 
variances may be obtained. When Fj and ej are jointly normal, the observations 
X j - IL == LFj + e j are then normal, and from ( 4-16) , the likelihood is 

L( /L, I,) = ( 27r f 
n
J I I, � - � e- (�) tr [ :t-tt (xi -X) (xi -X) ' +n (X-I' ) ( X-I') ') l 

- (n - 1 )p (n - 1 ) (1 ) [ _1 ( n _ _ ')] 
== (21T) 2 I I 1 --2- e - 2 tr l j�l (x} - x ) (x; - x ) 

P 1 (n) (- ) ' � - 1  (- ) 
X (21T) - 2 1 I � - 2 e- 2 x -p, � x -p, 

(9-25) 

which depends on L and '\}I through I == LL ' + W. This model is still not well de
fined, because of the multiplicity of choices for L made possible by orthogonal trans
formations. It is desirable to make L well defined by imposing the computationally 
convenient uniqueness condition 

a diagonal matrix 
" " 

(9-26) 

The maximum likelihood estimates L and '\}I must be obtained by numerical 
maximization of (9-25) .  Fortunately, efficient computer programs now exist that en
able one to get these estimates rather easily. 

We summarize some facts about maximum likelihood estimators and, for now, 
rely on a computer to perform the numerical details. 

Result 9.1. Let X1 , X2 , . . .  , Xn be a random sample from Np( IL ,  I) , where I == LL' + '\}I is the covariance matrix for the m common factor model of (9-4) . The 
maximum likelihood estimators L, .q,, and jL == x maximize (9-25) subject to L' .q,-1 i 
being diagonal. 

so 

The maximum likelihood estimates of the communalities are 

for i == 1, 2, . . .  , p 

(Proportion of total sample) = fL + e�j + . . . + e�j 
variance due to jth factor s1 1  + s22 + · · · + s P P 

(9-27) 

(9-28) 

Proof. By the invariance property of maximum likelihood estimates (see 
Section 4.3) , functions of L and 'I' are estimated by the same functions of i and .q,. 
In par!_icular, the CS?mmunalities hf == ef1 + . . .  + ef m have maximum likelihood estimates 
hf == ef1 + · · ·  + efm · • 

If, as in (8-10) , the variables are standardized so that Z == v-112(X - IL ) ,  then 
the covariance matrix p of Z has the representation 

(9-29) 
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Thus, p has a factorization analogous to (9-5) with loading matrix Lz = v-112L and 
specific variance matrix '\}I z = v-1/2'\}IV-112 • By the in variance property of maximum 
likelihood estimators, the maximum likelihood estimator of p is 

P = (v-1f2i ) (v-1/2i) ' + v-1/2q,y-1/2 
" 

= LZL� + '\}I z (9-30) 
where v-1;2 and L are the maximum likelihood estimators of v-112 and L, respec
tively. (See Supplement 9A.) 

As a consequence of the factorization of (9-30), whenever the maximum like
lihood analysis pertains to the correlation matrix, we call 

h
"2 _ IJ2 IJ2 IJ2 0 - '(, · 1 + '(, · 2 + . . . + '(, · l l l L m  i = 1 ,  2 ,  . . .  ' p (9-31) 

the maximum likelihood estimates of the communalities, and we evaluate the im
portance of the factors on the basis of (Proportion of total ( standardized) ) 

= 
fL + e�j + . . . + e�j 

sample variance due to jth factor p (9-32) 

" " 
To avoid more tedious notations, the preceding fi/s denote the elements of Lz . 

Comment. Ordinarily, the observations are standardized, and a sample correlation 
matrix is factor analyzed. The sample correlation matrix R is inserted for [ ( n ,...- 1 )  j n 1 S 
in the likelihood function of (9-25), and the maximum likelihood estimates Lz and '\}I z 
are obtained using a computer. Although the likelihood in (9-25) is appropriate for S, not 
R, surprisingly, this practice is equivalent to obtaining the maximum likelihood estimates 
L and q, based on the sample covariance matrix S, setting Lz = v-112L and q, z = 

y-1/2q,y-112 . Here v-112 is the diagonal matrix with the reciprocal of the sample stan
dard deviations (computed with the divisor Vn) on the main diagonal. " 

Goin� in the other direction, given the estimated loadings Lz and specific 
variances '\}I z obtained from R, we find that the resulting maximum likelihood 
estimates for a factor analysis of the covariance matrix [ (n - 1 )/n J S are 
L = y1/2i and q, = y1/2q, y1/2 or z z ' 

where a-i i  is the sample variance computed with divisor n.  The distinction between 
divisors can be ignored with principal component solutions. • 

The equivalency between factoring S and R has apparently been confused in 
many published discussions of factor analysis. (See Supplement 9A.) 

Example 9 .5  (Factor ana lysis of  stock-price data us ing  the maximum 
l i ke l ihood method) 

The stock-price data of Examples 8.5 and 9.4 were reanalyzed assuming an m = 2 
factor model and using the maximum likelihood method. The estimated factor 
loadings, communalities, specific variances, and proportion of total (standardized) 
sample variance explained by each factor are in Table 9.3 . The corresponding 
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TABLE 9 .3 

Variable 

1 .  Allied Chemical 
2. Du Pont 
3 .  Union Carbide 
4. Exxon 
5 .  Texaco 

Cumulative 
proportion of total 
( standarc.lized) 
sample variance 
explained 

Maximum likelihood 

Estimated factor 
loadings 

Fl F2 

.684 . 189 

.694 .517 

.681 .248 

.621 - .073 

.792 - .442 

.485 .598 

Specific 
variances 

�· = 1 - it? l l 

.50 

.25 

.47 

.61 

. 18  

Principal components 

Estimated factor 
loadings 

Fl F2 

.783 - .217 

.773 - .458 

.794 - .234 

.713 .412 

.712 .524 

.571 .733 

Specific 
variances 
�· = 1 - h2 l l 

.34 

. 19 

.31 

.27 

.22 

-

-

-

-

figures for the m = 2 factor solution obtained by the principal component method 
(see Example 9.4) are also provided. The communalities corresponding to the 
maximum likelihood factoring of R are of the form [see (9-31)] hf = efl + fT2 · 

So, for example, 

hy = ( . 684 )2 + ( . 189 ) 2 = .50 

The residual matrix is 

0 .005 - .004 - .024 - .004 
.005 0 - .003 - .004 .000 

" 

R - LL' - W = - .004 - .003 0 .031 - .004 
- .024 - .004 .031 0 - .000 
- .004 .000 - .004 - .000 0 

" 

The elements of R - LL' - '\}I are much smaller than those of the residual ma-
trix corresponding to the principal component factoring of R presented in Ex
ample 9 .4 . On this basis, we prefer the maximum likelihood approach and 
typically feature it in subsequent examples. 

The cumulative proportion of the total sample variance explained by the 
factors is larger for principal component factoring than for maximum likeli
hood factoring. It is not surprising that this criterion typically favors principal 
component factoring. Loadings obtained by a principal component factor analy
sis are related to the principal components, which have, by design, a variance op
timizing property. [See the discussion preceding (8-19) . ]  

Focusing attention on the maximum likelihood solution, we see that all 
variables have large positive loadings on F1 . We call this factor the market fac
tor, as we did in the principal component solution. The interpretation of the 
second factor, however, is not as clear as it appeared to be in the principal 
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component solution. The signs of the factor loadings are consistent with a con
trast, or industry factor, but the magnitudes are small in some cases, and one 
might identify this factor as a comparison between Du Pont and Texaco. 

The patterns of the initial factor loadings for the maximum likelihood so
lution are constrained by the uniqueness condition that l /.q,-1L be a diagonal 
matrix. Therefore, useful factor patterns are often not revealed until the factors 
are rotated (see Section 9 .4) . • 

Example 9 .6 {Factor ana lysis of Olympic decath lon data) 

R ==  

Linden [21 ] conducted a factor analytic study of Olympic decathlon scores since 
World War II. Altogether, 160 complete starts were made by 139 athletes.3 The 
scores for each of the 10 decathlon events were standardized, and a sample cor
relation matrix was factor analyzed by the methods of principal components 
and maximum likelihood. Linden reports that the distributions of standard 
scores were normal or approximately normal for each of the ten decathlon 
events. The sample correlation matrix, based on n == 160 starts, is 

100-m Long Shot High 400-m 110-m Dis- Pole Jave- 1500-m 
run JUmp put JUmp run hurdles cus vault lin run 
1 .0 .59 .35 .34 .63 .40 .28 .20 . 1 1  - .07 

1 .0 .42 .51 .49 .52 .31 .36 .21 .09 
1 .0 .38 . 19  .36 .73 .24 .44 - .08 

1 . 0  .29 .46 .27 .39 . 17 . 18 
1 .0 .34 . 17 .23 . 13 .39 

1 .0  .32 .33 . 18 .00 
1 .0 .24 .34 - .02 

1 .0 .24 .17 
1 . 0  - .00 

1 .0 
From a principal component factor analysis perspective, the first four 

eigenvalues, 3 .78, 1 . 52, 1 . 1 1 ,  . 9 1 ,  of R suggest a factor solution with m == 3 or 
m == 4. A subsequent interpretation of the factor loadings reinforces the 
choice m == 4. 

The principal component and maximum likelihood solution methods were 
applied to Linden's correlation matrix and yielded the estimated factor loadings, 
communalities, and specific variance contributions in Table 9.4.4 

3Because of the potential correlation between successive scores by athletes who competed in more 
than one Olympic game, an analysis was also done using 139 scores representing different athletes. The score 
for an athlete who participated more than once was selected at random. The results were virtually iden
tical to those based on all 160 scores. 

4The output of this table was produced by the BMDP statistical software package. The output 
from the SAS program is identical for the principal component solution and very similar for the maximum 
likelihood solution. For this example the solution to the likelihood equations produces a Heywood case. 
That is, the estimated loadings are such that some specific variances are negative. Consequently, the soft
ware package may not run unless the Heywood case option is selected. With that option, the program 
obtains a feasible solution by slightly adjusting the loadings so that all specific variance estimates are non
negative. A Heywood case is suggested in this example by the .00 values for the specific variances for the 
shot put and the 1500-m run. 
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TABLE 9.4 

Variable 

1 .  100-m run 
2. Long jump 
3 .  Shot put 
4. High jump 
5 .  400-m run 
6. 100 m 

hurdles 
7. Discus 
8. Pole vault 
9. Javelin 

10. 1500-m run 

Cumulative 
proportion of 
total variance 
explained 

- -- -

Fl 
.691 
.789 
.702 
.674 
.620 

.687 

.621 

.538 

.434 

.147 

.38 
- - -

Principal component 

Estimated factor 
loadings 

F2 F3 F4 

.217 - .520 - .206 

. 184 - . 1 93 .092 
- .535 .047 - .175 

.134 .139 .396 

.551 - .084 - .419 

.042 - .161 .345 
- .521 . 109 - .234 

.087 .41 1 .440 
- .439 .372 - .235 

.596 .658 - .279 

.53 .64 .73 
- - - - - - -- - ----

Specific 
variances 

�· == 1 - h? l l 

. 16  

.30 

. 19  

.35 
.13 

.38 

.28 

.34 

.43 

. 1 1  

- ---

Fl 
- .090 

.065 
- .139 

.156 

.376 

- .021 
- .063 

.155 
- .026 

.998 

.12 

Maximum likelihood 

Estimated factor 
loadings 

F2 F3 

.341 .830 

.433 .595 

.990 .000 

.406 .336 

.245 .671 

.361 .425 

.728 .030 

.264 .229 

.441 - .010 

.059 .000 

.37 .55 

F4 

- .169 
.275 
.000 
.445 

- . 137 

.388 

.019 

.394 

.098 

.000 

.61 

Specific 
variances 

� · == 1 - it? l l 

. 16  

.38 

.00 

.50 

.33 

.54 

.46 

.70 

.80 

.00 
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In this case, the two solution methods produced very different results. 
For the principal component factorization, all events except the 1500-meter 
run have large positive loadings on the first factor. This factor might be la
beled general athletic ability .  The remaining factors cannot be easily inter
preted to our minds. Factor 2 appears to contrast running ability with 
throwing ability, or "arm strength." Factor 3 appears to contrast running en
durance (1500-meter run) with running speed (100-meter run), although there 
is a relatively high pole-vault loading on this factor. Factor 4 is a mystery at 
this point. 

For the maximum likelihood method, the 1500-meter run is the only 
variable with a large loading on the first factor. This factor might be called 
a running endurance factor. The second factor appears to be primarily a 
strength factor (discus and shot put load highly on this factor) , and the third 
factor might be running speed, since the 100-meter and 400-meter runs load 
highly on this factor. Again, the fourth factor is not easily identified, al
though it may have something to do with jumping ability or leg strength . We 
shall return to an interpretation of the factors in Example 9 . 1 1  after a 
discussion of factor rotation. 

The four-factor principal component solution accounts for much of the 
total (standardized) sample variance, although the estimated specific variances 
are large in some cases (for example, the javelin and hurdles). This suggests 
that some events might require unique or specific attributes not required for the 
other events. The four-factor maximum likelihood solution accounts for less of 
the total sample variance, but, '1s the f9llowing residual matrices indicate, the 
maximum likelihood estimates L anj '\}I d� a better job of reproducing R than 
the principal component estimates L and W: 
Principal component: 

r--..J r--..1 

R - LL' - W = 

0 
- .075 0 
- .030 - .010 0 
- .001 - .056 .042 0 
- .047 - .077 - .020 - .024 0 
- .096 - .092 - .032 - . 122 .022 0 
- .027 - .041 - .031 - .001 - .017 .014 0 

. 114 - .042 - .034 - .215 .067 - .129 .009 0 

.051 .042 - .158 - .022 .036 .041 - .254 - .005 0 
- .016 .017 .056 .020 - .091 .076 .062 - .109 - . 112 0 
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Maximum likelihood: 
" 

R - LL ' - W = 

0 
.000 0 
.000 .000 0 
.012 .002 .000 0 
.000 - .002 .000 - .033 0 

- .012 .006 - .000 .001 .028 0 
.004 - .025 - .000 - .034 - .002 .036 0 
.000 - .009 - .000 .006 .008 - .012 .043 0 

- .018 - .000 - .000 - .045 .052 - .013 .016 .091 
.000 .000 .000 .000 .000 .000 .000 .000 

A Large Sample Test for the Number of Common Facto rs 

0 
.000 0 

• 

The assumption of a normal population leads directly to a test of the adequacy of 

the model. Suppose the m common factor model holds. In this case I = LL' + 'I' ,  
and testing the adequacy of  the m common factor model is equivalent to testing 

I = L L' + w (pXp) (pxm) (mxp) (pxp) (9-33) 

versus H1 : I any other positive definite matrix. When I does not have any special 
form, the maximum of the likelihood function [see (4-18) and Result 4 .11 with i = 

( (n - 1 )/n) S = Sn] is proportional to 

(9-34) 

Under H0 , I is restricted to have the form of (9-33) . In this case, the maximum of the 
likelihood function [see (9-25) with jL = x and i = LL ' + q,, where L and q, are 
the maximum likelihood estimates of L and '\}I, respectively] is proportional to 

I i 1 -n/2 exp ( - � tr [ I-1 (� (xi - X) ( xi - x) ') ] ) 
= I LL ' + q, ,-n/2 exp (- � n tr [ (LL + q,)  -l Sn J ) (9-35) 

Using Result 5.2, (9-34) , and (9-35) , we find that the likelihood ratio statistic for 
testing H0 is 

_ _ _ 
[maximized likelihood under H0] 

2 ln A - 2 ln . . d rk rh d maximize I e I oo 
(9-36) 
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with degrees of freedom, 

v - v0 = � p(p + 1 ) - [p(m + 1 ) - �m(m - 1 ) ] 

= � [ (p - m ) 2 - p - m] 
(9-37) 

Supplement 9A indicates that tr (I-1Sn ) - p = 0 provided that i = LI/ + .q, is the 
maximum likelihood estimate of I = LL ' + '\}I .  Thus, we have ( I i i )  -2 ln A = n ln TS,\ (9-38) 

Bartlett [4] has shown that the chi-square approximation to the sampling dis
tribution of -2 ln A can be improved by replacing n in (9-38) with the multiplicative 
factor ( n  - 1 - (2p + 4m + 5 )/6 ) .  

Using Bartlett 's correction,5 we reject H0 at the a level of significance if 

" " " I LL ' + '\}I I 2 ( n  - 1 - (2p + 4m + 5 )/6) ln I sn I > X[ (p-m)2-p-m]j2 (a) (9-39) 

provided that n and n - p are large. Since the number of degrees of freedom, 
� [ (p - m )2 - p - m J, must be positive, it follows that 

m < � (2p + 1 - V8p + 1 )  (9-40) 

in order to apply the test (9-39) .  

Comment. In implementing the test in (9-39) , we are testing for the adequacy 
of the m common factor model by comparing the generalized variances I LL ' + .q, I 
and I Sn I · If n is large and m is small relative to p, the hypothesis H0 will usually be 
rejected, leading to a retention of more common factors. However, i = LL' + .q, 
may be close enough to sn so that adding more factors does not provide additional 
insights, even though those factors are "significant ." Some judgment must be exercised 
in the choice of m. 

Example 9.7 (Testi ng for two common factors) 

The two-factor maximum likelihood analysis of the stock-price data was pre
sented in Example 9 .5 .  The residual matrix there suggests that a two-factor so
lution may be adequate. Test the hypothesis H0 : I = LL ' + '\}I, with m = 2, at 
level a = .05. 

5Many factor analysts obtain an approximate maximum likelihood estimate by replacing Sn with the 
unbiased estimate S = [n/ (n  - 1 ) ]  Sn and then minimizing ln l I I + tr [I-1 S ] .  The dual substitution of S 
and the approximate maximum likelihood estimator into the test statistic of (9-39) does not affect its large 
sample properties. 
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The test statistic in (9-39) is based on the ratio of generalized variances 

I i I  I LL ' + q, I = 
I sn I I sn I 

Let v-1;2 be the diagonal matrix such that v-112Sn v-1;2 = R. By the properties 
of determinants (see Result 2A.11 ) ,  

and 

Consequently, 

I v-112 1 1  sn I I  v-112 1 = I v-112sn v-112 1 

I i I I v-112 1 I ii./ + q, I I v-112 1 
= 

I sn I I v-1/2 1 I sn I I v-1/2 1 

I v-112Li'v-1;2 + v-1;2q,y-112 l 
I y-1/2sn y-1/2 1 

" " " 

I LZL� + 'II z I = ----
I R I  

(9-41 ) 

by (9-30). From Example 9.5 , we determine 

" " " 

I LzL� + 'l'z I 
I R I 

1 .000 
.572 
.513 
.411 
.458 

1 .000 
.577 
.509 
.387 
.462 

1 .000 
.602 
.393 
.322 

1 .000 
.599 
.389 
.322 

1 .000 
.405 
.430 

1 .000 
.436 
.426 

1 .000 
.523 

1 .000 
.523 

1 .000 

1 .000 

. 194414 = 

. 193163 
= 1 "0065 

Using Bartlett 's correction, we evaluate the test statistic in (9-39) : 
" " " 

I LL ' + 'II I 
[ n - 1 - (2p + 4m + 5 )/6 J ln 

I Sn I [ ( 1 0  + 8 + 5 ) ] = 100 - 1 -
6 

ln ( 1 .0065 ) = .62 
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Since � [ (p - m) 2 - p - m] == � [ ( 5 - 2)2 - 5 - 2] ==  1 , the 5% critical value 
xi ( .05 ) == 3 .84 is not exceeded, and we fail to rej ect H0 • We conclude that the 
data do not contradict a two-factor model. In fact, the observed significance 
level, or P-value, P[xi > .62] - .43 implies that H0 would not be rej ected at 
any reasonable level. • 

A A Large sample variances and covariances for the maximum likelihood estimates 
ei j ' l/Ji have been derived when these estimates have been determined from the sam
ple covariance matrix S . (See [20] .) The expressions are, in general, quite complicated. 

9.4 FACTOR ROTATION 

As we indicated in Section 9.2, all factor loadings obtained from the initial loadings 
by an orthogonal transformation have the same ability to reproduce the covariance 
(or correlation) matrix. [See (9-8) . ]  From matrix algebra, we know that an orthog
onal transformation corresponds to a rigid rotation (or reflection) of the coordinate 
axes. For this reason, an orthogonal transformation of the factor loadings, as well as 
the implied orthogonal transformation of the factors, is called factor rotation. 

If L is the p X m matrix of estimated factor loadings obtained by any method 
(principal component, maximum likelihood, and so forth) then 

A A 
L* == LT, where TT' == T'T == I (9-42) 

is a p X m matrix of "rotated" loadings. Moreover, the estimated covariance (or cor
relation) matrix remains unchanged, since 

A A A A A 
LL' + W == LTT' L + W == L*L* ' + W (9-43) 

Equation (9-43) indicates that the residual matrix, Sn - LL ' - .q, == 
sn - L*L* ' - .q,, remainAs unchanged. Moreover, the specific variances �i '  and 
hence the communaliti�s hr ;._ are unaltered. Thus, from a mathematical viewpoint, it 
is immaterial whether L or L* is obtained. 

Since the original loadings may not be readily interpretable, it is usual practice 
to rotate them until a "simpler structure" is achieved. The rationale is very much 
akin to sharpening the focus of a microscope in order to see the detail more clearly. 

Ideally, we should like to see a pattern of loadings such that each variable loads 
highly on a single factor and has small to moderate loadings on the remaining fac
tors. However, it is not always possible to get this simple structure, although the ro
tated loadings for the decathlon data discussed in Example 9 . 1 1  provide a nearly 
ideal pattern. 

We shall concentrate on graphical and analytical methods for determining an 
orthogonal rotation to a simple structure. When m = 2, or the common factors are 
considered two at a time, the transformation to a simple structure can frequently be 
determined graphically. The uncorrelated common factors are regarded as unit vec
tqrs �long perpendicular coordinate axes. A plot of the pairs of factor loadings 
( ei l , fi 2 ) yields p points, each point corresponding to a variable. The coordinate axes 
can then be visually rotated through an angle-call it </J-and the new rotated load
ings f0 are determined from the relationships 
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i* 
" 

= L T (pX2 ) (pX2 ) (2X2 )  

T = 
[ cos </; sin <P J clockwise 

-sin <P cos <P rotation 
where 

T = 
[ cos </; -sin <P J counterclockwise 

sin <P cos <P rotation 

(9-44) 

The relationship in (9-44) is rarely implemented in a two-dimensional graph
ical analysis. In this situation, clusters of variables are often apparent by eye, and 
these clusters enable one to identify the common factors without having to inspect 
the magnitudes of the rotated loadings. On the other hand, for m > 2, orientations 
are not easily visualized, and the magnitudes of the rotated loadings must be in
spected to find a meaningful interpretation of the original data. The choice of an 
orthogonal matrix T that satisfies an analytical measure of simple structure will be 
considered shortly. 

Example 9.8 (A fi rst look at factor rotation) 

Lawley and Maxwell [20] present the sample correlation matrix of examina
tion scores in p = 6 subj ect areas for n = 220 male students. The correla-
tion matrix is 

Gaelic English History Arithmetic Algebra Geometry 

1 .0  .439 .410 .288 .329 .248 
1 .0 .351 .354 .320 .329 

R =  1 .0 . 164 . 190 .181 
1 .0 .595 .470 

1 .0 .464 
1 .0 

and a maximum likelihood solution for m = 2 common factors yields the esti
mates in Table 9 .5 .  

TABLE 9.5 

Variable 

1. Gaelic 
2. English 
3. History 
4. Arithmetic 
5. Algebra 
6. Geometry 

Estimated 
factor loadings 

Fl F2 

.553 

.568 

.392 

.740 

.724 

.595 

.429 

.288 

.450 
- .273 
- .21 1 
- .132 

Communalities 
it? l 

.490 

.406 

.356 

.623 

.569 

.372 
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All the variables have positive loadings on the first factor. Lawley and 
Maxwell suggest that this factor reflects the overall response of the students to 
instruction and might be labeled a general intelligence factor. Half the loadings 
are positive and half are negative on the second factor. A factor with this pat
tern of loadings is called a bipolar factor. (The assignment of negative and pos
itive poles is arbitrary, because the signs of the loadings on a factor can be 
reversed without affecting the analysis. ) This factor is not easily identified, but 
is such that individuals who get above-average scores on the verbal tests get 
above-average scores on the factor. Individuals with above-average scores on 
the mathematical tests get below-average scores on the factor. Perhaps this 
factor can be classified as a "math-nonmath" factor. 

" " 

The factor loading pairs ( fi 1 , fi 2 ) are plotted as points in Figure 9 .1 .  The 
points are labeled with the numbers of the corresponding variables. Also shown 
is a clockwise orthogonal rotation of the coordinate axes through an angle of 
</>,... · �0°. This angle was chosen so that one of the new axes passes through 
( e4 1 '  e42 ) ·  When this is done, all the points fall in the first quadrant (the factor 
loadings are all positive) ,  and the two distinct clusters of variables are more 
clearly revealed. 

The mathematical test variables load highly on Fi_ and have negligible 
loadings on Fi . The first factor might be called a mathematical-ability factor. 
Similarly, the three verbal test variables have high loadings on Fi and moder
ate to small loadings on Fi . The second factor might be labeled a verbal-ability 
factor. The general-intelligence factor identified initially is submerged in the 
factors Fi and Fi . 

The rotated factor loadings obtained from (9-44) with </> · 20° and the 
corresponding communality estimates are shown in Table 9 .6 . The magnitudes 
of the rotated factor loadings reinforce the interpretation of the factors sug
gested by Figure 9 . 1 .  

The communality estimates are unchanged by the orthogonal rotation, 
" " " " " " 

since LL ' = LTT'L '  = L*L* ' ,  and the communalities are the diagonal ele-
ments of these matrices. 

We point out that Figure 9 .1 suggests an oblique rotation of the coordi
nates. One new axis would pass through the cluster { 1 ,  2, 3 }  and the other 
through the { 4, 5, 6 }  group. Oblique rotations are so named because they cor
respond to a nonrigid rotation of coordinate axes leading to new axes that are 

F2 F* 2 
I 

.5 I 
I 

I • 3 • 1 
I • 2 I 

I 
0 ��c:---......,-......,-----:-¢--.---.�5 ___ ___.1 ..__0 ---... F 1 

....... ....... • 6 ....... ....... • 5 ....... 
4 ..... ....... ....... ....... ....... ....... Ff - .5 Figure 9.1 Factor rotation for test 

scores. 
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TABLE 9 .6 

Variable 

1 .  Gaelic 
2. English 
3. History 
4. Arithmetic 
5. Algebra 
6. Geometry 

Estimated rotated 
factor loadings 

Fi Fi 

.369 .594 

.433 .467 

.211 .558 
r:i89' .001 
.752 .054 
.604 .083 

Communalities 
iz�2 = /z? l l 

.490 

.406 
.356 
.623 
.568 
.372 

not perpendicular. It is apparent, however, that the interpretation of the oblique 
factors for this example would be much the same as that given previously for 

an orthogonal rotation. • 

Kaiser [19] has suggested an analytical measure of simple structure known as 
the varimax (or normal varimax) criterion . Define f� = f{jjhi to be the rotated co
efficients scaled by the square root of the communalities. Then the (normal) varimax 
procedure selects the orthogonal transformation T that makes 

as large as possible. 
A 

(9-45) 

Scaling the rotated coefficients e� has the effect of giving variables with small 
communalities relatively more weight in the determination of simple structure. After 
the transformation T is determined, the loadings f� are multiplied by hi so that the 
original communalities are preserved. 

Although (9-45) looks rather forbidding, it has a simple interpretation. In words, 

V ex � (variance of squar�s of ( scaled) loadings for) 
j = l  ]th factor (9-46) 

Effectively, maximizing V corresponds to "spreading out" the squares of the load
ings on each factor as much as possible. Therefore, we hope to find groups of large 

A 

and negligible coefficients in any column of the rotated loadings matrix L* . 
Computing algorithms exist for maximizing V, and most popular factor analy

sis computer programs (for example, the statistical software packages SAS, SPSS, 
BMDP, and MINITAB) provide varimax rotations. As might be expected, varimax 
rotations of factor loadings obtained by different solution methods (principal com
ponents, maximum likelihood, and so forth) will not, in general, coincide. Also, the 
pattern of rotated loadings may change considerably if additional common factors are 
included in the rotation. If a dominant single factor exists, it will generally be ob
scured by any orthogonal rotation. On the other hand, it can always be held fixed and 
the remaining factors rotated. 
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Estimated 
factor 

loadings 
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Rotated 
estimated factor 

loadings Communalities 
Variable Fl F2 Fi Fi };? l 

1 .  Taste .56 .82 .02 @) .98 
2. Good buy for money .78 - .52 @ -.01 .88 
3 .  Flavor .65 .75 . 13  @ .98 
4. Suitable for snack .94 - .10 � .43 .89 
5. Provides lots of energy . 80 - .54 7 - .02 .93 

Cumulative proportion 
of total (standardized) 
sample variance explained .571 .932 .507 .932 

Example 9.9 {Rotated loadi ngs for the consumer-preference data) 

Let us return to the marketing data discussed in Example 9.3 . The original fac
tor loadings (obtained by the principal component method), the communali
ties, and the (varimax) rotated factor loadings are shown in Table 9.7. (See the 
SAS statistical software output in Panel 9 .1 . )  

I t  i s  clear that variables 2 ,  4, and 5 define factor 1 (high loadings on fac
tor 1 ,  small or negligible loadings on factor 2), while variables 1 and 3 define 
factor 2 (high loadings on factor 2, small or negligible loadings on factor 1 ) .  
Variable 4 is  most closely aligned with factor 1 ,  although it has aspects of the trait 
represented by factor 2. We might call factor 1 a nutritional factor and factor 2 
a taste factor. 

The factor loadings for the variables are pictured with respect to the orig-
inal and (varimax) rotated factor axes in Figure 9.2. • 

F2 

I 
I 

.5 I 
I 

I 
I 

I 
0 

...... 
...... 

-.5  

F* 2 

I 
I• 1 

I • 3 

...... 

• 1 .0 
4 

...... 

Fl 

'- Figure 9.2 Factor rotation for Ff hypothetica l marketi ng data . 
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PANEL 9.1 SAS ANALYSIS  FOR EXAMPLE 9 .9  US ING PROC FACTOR. 

t it le 'Factor Ana lys is'; 
data consumer(type = corr); 
_type_='CORR'; 
i n put _name_$ taste money flavor snack energy; 
ca rds; 
taste 1 .00 
money .02 1 .00 
f lavor .96 . 1 3  1 .00 PROGRAM COMMANDS 
snack .42 . 7 1  .50 1 .00 
energy .01 .85 . 1 1 .79 1 . 00 

proc factor res data=consumer 
method=pr i n nfact=2rotate=va rimax preplot p lot; 
var taste money fl avor snack energy; 

Pr ior Commu na l ity Esti mates: ONE  

E igenva l ue 
Difference 

TASTE 

E igenva l ues of the Correlat ion Matrix: Tota l = 5 Average = 1 

1 2 3 4 
2 .853090 1 .806332 0 .204490 0 . 1 02409 
1 .046758 1 .60 1 842 0 . 1 0208 1 0 .068732 

0 .0409 0.0205 
0 .9728 0.9933 

2 factors wi l l  be reta i ned by the NFACTOR criterion .  

TASTE 
MONEY 
FLAVOR 
SNACK 
E N E RGY 

MONEY FLAVOR 

Tota l  = 4 .659423 

SNACK E N E RGY 

OUTPUT 

5 
0 .033677 

0.0067 
1 .0000 

(continues on next page) 



PANEL 9.1 (continued) 

TASTE 
MONEY 
FLAVOR 
SNACK 
E N E RGY 
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Va riance exp la i ned by each factor 

FACTOR 1  
2 . 537396 

FACTOR2 
2 . 1 22027 

Rotation of factor loadings is recommended particularly for loadings obtained by 
maximum likelih�od,�ince the initial values are constrained to satisfy the uniqueness 
condition that L' w-1 L be a diagonal matrix. This condition is convenient for compu
tational purposes, but may not lead to factors that can easily be interpreted. 

Example 9. 1 0  (Rotated load ings for the stock-price data) 

Table 9.8 shows the initial and rotated maximum likelihood estimates of the fac
tor loadings for the stock-price data of Examples 8.5 and 9.5. An m = 2 factor 
model is assumed. The estimated specific variances and cumulative proportions 
of the total (standardized) sample variance explained by each factor are also given. 

TABLE 9.8 

Maximum likelihood 
estimates of factor 

loadings 
Variable Fl F2 

Allied Chemical .684 . 189 
Du Pont .694 .517 
Union Carbide .681 .248 
Exxon .621 - .073 
Texaco .792 - .442 

Cumulative 
proportion 
of total 
sample variance 
explained .485 .598 

Rotated estimated 
factor loadings 
Fi Fi 

.601 .377 

.850 . 164 

.643 .335 

.365 rnD .208 3 

.335 .598 

Specific 
variances 

� - = 1 - h? l l 

.50 

.25 

.47 

.61 

.18 
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An interpretation of the factors suggested by the unrotated loadings \Vas 
presented in Example 9.5 . We identified market and industry factors. 

The rotated loadings indicate that the chemical stocks (Allied Chemical, 
Du Pont, and Union Carbide) load highly on the first factor, while the oil stocks 
(Exxon and Texaco) load highly on the second factor. (Although the rotated 
loadings obtained from the principal component solution are not displayed, the 
same phenomenon is observed for them.) The two rotated factors, together, 
differentiate the industries. It is difficult for us to label these factors intelli
gently. Factor 1 represents those unique economic forces that cause chemical 
stocks to move together. Factor 2 appears to represent economic conditions 
affecting oil stocks. 

As we have noted, a general factor (that is, one on which all the variables 
load highly) tends to be "destroyed after rotation." For this reason, in cases 
where a general factor is evident, an orthogonal rotation is sometimes per
formed with the general factor loadings fixed.6 M 

Example  9 . 1 1 (Rotated load ings fo r the Olympic decath lon data) 

The estimated factor loadings and specific variances for the Olympic decathlon 
data were presented in Example 9 .6 .  These quantities were derived for an 
m = 4 factor model, using both principal component and maximum likelihood 
solution methods. The interpretation of all the underlying factors was not im
mediately evident . A varimax rotation [see (9-45)] was performed to see 
whether the rotated factor loadings would provide additional insights. The vari
max rotated loadings for the m = 4 factor solutions are displayed in Table 9 .9, 
along with the specific variances. Apart from the estimated loadings, rotation 
will affect only the distribution of the proportions of the total sample variance 
explained by each factor. The cumulative proportion of the total sample vari
ance explained for all factors does not change. 

The rotated factor loadings for both methods of solution point to the same 
underlying attributes, although factors 1 and 2 are not in the same order. We 
see that shot put, discus, and javelin load highly on a factor, and, following Lin
den [21 ] ,  this factor might be called explosive arm strength. Similarly, high jump, 
1 10-meter hurdles, pole vault , and-to some extent-long jump load highly on 
another factor. Linden labeled this factor explosive leg strength. The 100-meter 
run, 400-meter run, and-again to some extent-the long jump load highly on 
a third factor. This factor could be called running speed. Finally, the 1500-meter 
run loads highly and the 400-meter run loads moderately on the fourth factor. 
Linden called this factor running endurance. As he notes, "The basic functions 
indicated in this study are mainly consistent with the traditional classification 
of track and field athletics." 

Plots of rotated maximum likelihood loadings for factors pairs ( 1, 2) and 
( 1 ,  3 )  are displayed in Figure 9 .3  on page 510 .  The points are generally 
grouped along the factor axes. Plots of rotated principal component loadings 
are very similar. • 

6 Some general-purpose factor analysis programs allow one to fix loadings associated with certain 
factors and to rotate the remaining factors. 



Table 9.9 

Variable 

100-m 
run 
Long 
jump 

Shot 
put 
High 
jump 

-
400-m 
run 

-
110-m 
hurdles 

Discus 

Pole 
vault 

Javelin 

1500-m 
run 

Cumulative 
proportion 
of total 
sample 
variance 
explained 

Principal component 

Estimated 
rotated 

factor loadings, eij 
Fi Fi Fj Ft 

1 . 884 1 .136 .156 - .113 

1 .631 1 . 194 [ :�1�1 - .006 

.245 1 .825 1 .223 - .148 

.239 .150 1 .750 1 .076 

1 .797 1 .075 . 102 .468 

.404 .153 1 . 635 1 - .170 

. 186 1 .814 1 .147 - .079 

- .036 . 176 1 .762 1 .217 

- .048 1 .735 1 . 110 .141 

.045 - .041 . 1 12 1 .934 1 

.21 .42 .61 .73 

Obl ique Rotations 

Specific 
variances 

r--..1 - r--..12 l/J ·  - 1 - h ·  l l 

. 16 

.30 

.19 

.35 

.13 

.38 

.28 

.34 

.43 

. 11  
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Maximum likelihood 

Estimated 
rotated 

factor loadings, eij 
Fi Fi Fj Ft 

. 167 1 . 857 1 .246 - . 138 

.240 [ :1771 1 .580 1 .011 

1 .966 1 . 154 .200 - .058 

.242 .173 1 .632 1 . 113 

.055 1 .709 1 .236 .330 

.205 .261 1 .589 1 - .071 

1 .697 1 .133 . 180 - .009 

. 137 .078 1.513 1 . 116 

[:11�} .019 . 175 .002 

- .055 .056 . 113 1. 990 1 

. 18  .34 .50 .61 

Specific 
variances 

� - = 1 - /z? l l 

. 16  

.38 

.00 

.50 

.33 

.54 

.46 

.70 

.80 

.00 

Orthogonal rotations are appropriate for a factor model in which the common fac
tors are assumed to be independent. Many investigators in social sciences consider 
oblique (nonorthogonal) rotations, as well as orthogonal rotations. The former are 
often suggested after one views the estimated factor loadings and do not follow from 
our postulated model. Nevertheless, an oblique rotation is frequently a useful aid in 
factor analysis. 
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5 

- 5  

Factor 2 • 1 Factor 3 
• 5 4 • 

6 • •  2 
• 2 5 8 • 

9 7 3 
.7 3 . 8 • • • 

9 0 
Factor 1 Factor 1 

- 5  

- 8 -6 - 4  - 2  0 2 4 6 8 - 8  -6 -4 - 2  0 2 4 6 

Figure 9.3 Rotated maxi mum l i ke l i hood load i ngs for factor pa i rs ( 1 ,  2 ) and  ( 1 ,  3 )
decath lon  data. (The n u m bers i n  the fi g u res correspond to va r iab les.) 

8 

If we regard the m common factors as coordinate axes, the point with the m co-
" " " 

ordinates ( ei l ' ei 2 ' . . .  ' eim ) represents the position of the ith variable in the factor 
space. Assuming that the variables are grouped into nonoverlapping clusters, an or
thogonal rotation to a simple structure corresponds to a rigid rotation of the coordi
nate axes such that the axes, after rotation, pass as closely to the clusters as possible. 
An oblique rotation to a simple structure corresponds to a nonrigid rotation of the 
coordinate system such that the rotated axes (no longer perpendicular) pass (near
ly) through the clusters. An oblique rotation seeks to express each variable in terms 
of a minimum number of factors-preferably, a single factor. Oblique rotations are 
discussed in several sources (see, for example, [12] or [20] ) and will not be pursued 
in this book. 

9.5 FACTOR SCORES 

In factor analysis, interest is usually centered on the parameters in the factor model . 
However, the estimated values of the common factors, called factor scores, may also 
be required. These quantities are often used for diagnostic purposes, as well as inputs 
to a subsequent analysis. 

Factor scores are not estimates of unknown parameters in the usual sense. 
Rather, they are estimates of values for the unobserved random factor vectors F, � 

j == 1 ,  2, . . .  , n . That is, factor scores 
" 

fj == estimate of the values fj attained by Fj (jth case ) 
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The estimation situation is complicated by the fact that the unobserved quantities fj 
and ej outnumber the observed xj . To overcome this difficulty, some rather heuris
tic, but reasoned, approaches to the problem of estimating factor values have been ad
vanced. We describe two of these approaches. 

Both of the factor score approaches have two elements in common: 
A A 

1. They treat the estimated factor loadings eij and specific variances l/Ji as if they 
were the true values. 

2. They involve linear transformations of the original data, perhaps centered 
or standardized. Typically, the estimated rotated loadings, rather than the 
original estimated loadings, are used to compute factor scores. The compu
tational formulas, as given in this section, do not change when rotated load
ings are substituted for unrotated loadings, so we will not differentiate 
between them. 

The Weighted Least Squares Method 

Suppose first that the mean vector JL ,  the factor loadings L, and the specific variance 
'\}I are known for the factor model 

X - IL L F + e (pX l ) (pX l ) (pXm) (mX l ) (pX l ) 

Further, regard the specific factors e ' = [ s1 , s2 , . . .  , sp ] as errors. Since Var ( si ) = l/Ji , 
i = 1 ,  2, . . .  , p, need not be equal, Bartlett [3] has suggested that weighted least 
squares be used to estimate the common factor values. 

The sum of the squares of the errors, weighted by the reciprocal of their 
variances, is 

(9-47) 

A 

Bartlett proposed choosing the estimates f of f to minimize (9-47) .  The solution (see 
Exercise 7.3) is 

(9-48) 

Motivated by (9-48), we take the estimates L, 4-, and jL = x as the true values and 
obtain the factor scores for the jth case as 

A A 

(9-49) 

When L and '\}I are determined by the maximum likelihood method, these estimates 
must satisfy the uniqueness condition, L' 4'-1 L = �

' a diagonal matrix. We then have 
the following: 
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The factor scores generated by (9-50) have sample mean vector 0 and zero sample co
variances. (See Exercise 9 .16 . )  

A A 

If rotated loadings L* == LT are used in place of the original loadings in (9-50) , 
the subsequent factor scores, fj , are related to fj by fj == T' fj , j == 1 ,  2, . . .  , n .  

Comment. If the factor loadings are estimated by the principal component 
method, it is customary to generate factor scores using an unweighted (ordinary) 
least squares procedure. Implicitly, this amounts to assuming that the l/Ji are equal or 
nearly equal . The factor scores are then 

A A A -1 A 

fj == (L 'L )  L '  (xj - x) 

or 
A A A -1 A 

fj == ( L�Lz) L�z j 

for standardized data. S ince L = [ � e1 � e2 
(9 -15) ] ,  we have 

A 

f .  == 1 

For these factor scores, 

and 

1 n A A 

-- � f . f'. == I - l .L.J  1 J n j= 1 

( sample mean) 

( sample covariance )  

(9-51 )  
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Comparing (9-51) with (8-21 ) ,  we see that the fi are nothing more than the first m 

(scaled) principal components, evaluated at x1 . 

The Regress ion Method 

Starting again with the original factor model X - IL == LF + e, we initially treat the 
loadings matrix L and specific variance matrix 'I' as known. When the common fac
tors F and the specific factors (or errors) e are jointly normally distributed with means 
and covariances given by (9-3) ,  the linear combination X - IL == LF + e has an 
Np(O, LL ' + W)  distribution. (See Result 4.3 . ) Moreover, the joint distribution of 
(X - IL ) and F is Nm+p(O, I* ) ,  where 

I* 
(m+p) X (m+p) 

-=--:--��ti}- -�- -�--f - -���L 
(mXp) j (mXm) 

(9-52) 

and 0 is an ( m + p) X 1 vector of zeros. Using Result 4.6 ,  we find that the condi
tional distribution of F I x is multivariate normal with 

and 

mean == E(F I x) == L' I-1 (x - IL ) == L' (LL ' + '\}I )  -1 (x - IL) (9-53) 

covariance == Cov (F I x) == I - L'I-1L == I - L' (LL' + w ) -1 L (9-54) 

The quantities L ' (LL' + '\}I )  -1 in (9-53) are the coefficients in a (multivariate) re
gression of the factors on the variables. Estimates of these coefficients produce factor 
scores that are analogous to the estimates of the conditional mean values in multi
variate regression analysis. (See Chapter 7 . ) Consequently, giv,...en any ,...vector of ob
servations xi , and taking the maximum likelihood estimates L and 'I' as the true 
values, we see that the jth factor score vector is given by 

" 
j == 1 ,  2, . . .  , n (9-55) 

The calculation of fi in (9-55) can be simplified by using the matrix identity (see Ex-
ercise 9 .6) 

L' (LL ' + q, )-1 == (I + L' q,-1 L)-1 L' q,-1 
(mxp) (pXp) (mXm) (mxp) (pXp) 

(9-56) 

This identity allows us to compare the factor scores in (9-55) , generated by the re
gression argument, with those generated by the weighted least squares procedure 
[see (9-50) ] .  Temporarily, we denote the former by If and the latter by fJ-5 . Then, 
using (9-56), we obtain 

(9-57) 

For maximum likelihood estimates (L ' q,-1L)-1 == �-1 and if the elements of this 
diagonal matrix are close to zero, the regression and generalized least squares methods 
will give nearly the same factor scores. 
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In an attempt to reduce the effects of a (possibly) incorrect determination of the 
number of factors, practitioners tend to calculate the f�ctor,...sfores in (9-55) by using 
S (the original sample covariance matrix) instead of I == LL' + 'I'. We then have 
the following: 

A A 

Again, if rotated loadings L* == LT are used in place of the original loadings in (9-58), 
the subsequent factor scores fj are related to fj by 

f� == T'f .  J 1 '  j == 1 ,  2, . . . , n 

A numerical measure of agreement between the factor scores generated from 
two different calculation methods is provided by the sample correlation coefficient be
tween scores on the same factor. Of the methods presented, none is recommended 
as uniformly superior. 

Example 9. 1 2  {Computing factor scores) 

We shall illustrate the computation of factor scores by the least squares and re
gression methods using the stock-price data discussed in Example 9 .10 .  A max
imum likelihood solution from R gave the estimated rotated loadings and 
specific variances 

.601 .377 .50 0 0 0 0 

.850 . 164 0 .25 0 0 0 
i* == 

" 

.643 .335 and 'I' == 0 0 .47 0 0 z z 

.365 .507 0 0 0 .61 0 

.208 .883 0 0 0 0 .18 

The vector of standardized observations, 

z ' == [ .50, - 1 .40, - .20, - .70, 1 .40 ] 

yields the following scores on factors 1 and 2: 



Weighted least squares (9-50) : 

Regression (9-58) : 

[ ' 1 87 .657 f = L*'R-1z = 
.222 

z .037 - . 185 .013 

Sect ion 9.5 Factor Scores 51 5 

.50 

.050 - .210 J -1 .40 [ -1 .2 J - .20 

.107 .864 1 .4 
- .70 
1 .40 

In this case, the two methods produce somewhat different results. All of the 
regression factor scores, obtained using (9-58) , are plotted in Figure 9.4. • 

Comment. Factor scores with a rather pleasing intuitive property can be 
constructed very simply. Group the variables with high (say, greater than .40 in 
absolute value) loadings on a factor. The scores for factor 1 are then formed by 

3 I 

2 -

-
• 

0 

• 
• 

- 1  - • 

-2 -

I 
- 3  -2  

. I 

• 

• 

• 

•• -
• 
• • 

)I' 

• 

• • •  
• 

• 

• • •  • 
• • •  • 

d' d' � - �. 
• • 4 
• 

• •  
• • • 

• • •  $ • $ 
• • • •  

• 
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• • 

I 
- 1  0 

I I 
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• • -
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• • 
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• 

• -

I I 
2 3 

Figure 9.4 Factor scores us ing (9-58) fo r factors 1 and  2 of the stock-pr ice data 
(max imum l i ke l i hood est imates of the factor load ings). 



5 16  Chapter 9 Factor Ana lys i s  and I nference for Structu red Cova r iance Matr ices 

summing the (standardized) observed values of the variables in the group, com
bined according to the sign of the loadings. The factor scores for factor 2 are the 

sums of the standardized observations corresponding to variables with high load
ings on factor 2 ,  and so forth . Data reduction is accomplished by replacing the 

standardized data by these simple factor scores. The simple factor scores are fre
quently highly correlated with the factor scores obtained by the more complex 
least squares and regression methods. 

Example 9. 1 3  (Creating s imple summary scores 
from factor analys is group ings) 

The principal component factor analysis of the stock price data in Example 9.4 
produced the estimated loadings 

.784 - .216 .746 .323 

.773 - .458 .889 . 128 
L = .795 - .234 and L* = LT = .766 .316 

.712 .473 .258 .815 

.712 .524 .226 .854 

For each factor, take the loadings with largest absolute value in L as equal in 
magnitude, and neglect the smaller loadings. Thus, we create the linear 
combinations 

" 
!1 = X1 + X2 + X3 + X4 + Xs 

as a summary. In practice, we would standardize these new variables. 
� � 

If, instead of L, we start with the varimax rotated loadings L*, the simple 
factor scores would be 

The identification of high loadings and negligible loadings is really quite sub
jective. Linear compounds that make subject-matter sense are preferable. M 

Although multivariate normality is often assumed for the variables in a factor 
analysis, it is very difficult to justify the assumption for a large number of variables. 
As we pointed out in Chapter 4, marginal transformations may help. Similarly, the 
factor scores may or may not be normally distributed. Bivariate scatter plots of fac
tor scores can produce all sorts of nonelliptical shapes. Plots of factor scores should 
be examined prior to using these scores in other analyses. They can reveal outlying 
values and the extent of the (possible) nonnormality. 
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9.6 PERSPECTIVES AND A STRATEGY FOR FACTOR ANALYSIS 

There are many decisions that must be made in any factor analytic study. Probably 
the most important decision is the choice of m, the number of common factors. Al
though a large sample test of the adequacy of a model is available for a given m, it is 
suitable only for data that are approximately normally distributed. Moreover, the 
test will most assuredly rej ect the model for small m if the number of variables and 
observations is large. Yet this is the situation when factor analysis provides a useful 
approximation. Most often, the final choice of m is based on some combination of 
(1) the proportion of the sample variance explained, (2) subject-matter knowledge, 
and (3) the "reasonableness" of the results. 

The choice of the solution method and type of rotation is a less crucial deci
sion. In fact, the most satisfactory factor analyses are those in which rotations are 
tried with more than one method and all the results substantially confirm the same 
factor structure. 

At the present time, factor analysis still maintains the flavor of an art, and no 
single strategy should yet be "chiseled into stone." We suggest and illustrate one rea
sonable option: 

1. Perform a principal component factor analysis. This method is particularly ap
propriate for a first pass through the data. (It is not required that R or S be 
nonsingular.) 
(a) Look for suspicious observations by plotting the factor scores. Also, calcu

late standardized scores for each observation and squared distances as de
scribed in Section 4.6. 

(b) Try a varimax rotation. 

2. Perform a maximum likelihood factor analysis, including a varimax rotation. 
3. Compare the solutions obtained from the two factor analyses. 

(a) Do the loadings group in the same manner? 
(b) Plot factor scores obtained for principal components against scores from 

the maximum likelihood analysis. 

4. Repeat the first three steps for other numbers of common factors m. Do extra fac
tors necessarily contribute to the understanding and interpretation of the data? 

5. For large data sets, split them in half and perform a factor analysis on each part. 
Compare the two results with each other and with that obtained from the com
plete data set to check the stability of the solution. (The data might be divid
ed at random or by placing the first half of the cases in one group and the second 
half of the cases in the other group.) 

Example 9. 14  {Factor ana lysis of chicken-bone data) 

We present the results of several factor analyses on bone and skull mea
surements of white leghorn fowl. The original data were taken from Dunn 
[10] . Factor analysis of Dunn's data was originally considered by Wright [26] , 
who started his analysis from a different correlation matrix than the one 
we use. 
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The full data set consists of n = 276 measurements on bone dimensions: { xl = skull length 
Head: 

x2 = skull breadth 

Leg: 
{ x3 = femur length 

x4 = tibia length 

Wing: 
{ X5 = humerus length 

x6 = ulna length 

The sample correlation matrix 

1 .000 .505 .569 .602 .621 
.505 1 .000 .422 .467 .482 

R =  
.569 .422 1 .000 .926 .877 
.602 .467 .926 1 .000 .874 
.621 .482 .877 .874 1 .000 
.603 .450 .878 .894 .937 

.603 

.450 

.878 

.894 

.937 
1 .000 

was factor analyzed by the principal component and maximum likelihood meth
ods for an m = 3 factor model. The results are given in Table 9. 10.7 

After rotation, the two methods of solution appear to give somewhat dif
ferent results. Focusing our attention on the principal component method and 
the cumulative proportion of the total sample variance explained, we see that 
a three-factor solution appears to be warranted. The third factor explains a 
"significant" amount of additional sample variation. The first factor appears 
to be a body-size factor dominated by wing and leg dimensions. The second 
and third factors, collectively, represent skull dimension and might be given the 
same names as the variables, skull breadth and skull length, respectively. 

The rotated maximum likelihood factor loadings are consistent with those 
generated by the principal component method for the first factor, but not for fac
tors 2 and 3. For the maximum likelihood method, the second factor appears 
to represent head size. The meaning of the third factor is unclear, and it is prob
ably not needed. 

Further support for retaining three or fewer factors is provided by the 
residual matrix obtained from the maximum likelihood estimates: 

.000 
- .000 .000 

/'>. - .003 .001 .000 
R - LzL� - 'l'z = 

.000 .000 .000 .000 
- .001 .000 .000 .000 .000 

.004 - .001 - .001 .000 - .000 .000 

7Notice the estimated specific variance of .00 for tibia length in the maximum likelihood solution. 
This suggests that maximizing the likelihood function may produce a Heywood case. Readers attempting 
to replicate our results should try the Hey( wood) option if SAS or similar software is used. 
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TABLE 9 . 1 0  FACTOR ANALYS IS O F  CH ICKEN-B O N E  DATA 

Principal Component 

Estimated factor loadings Rotated estimated loadings 
Fi Fi Fj 

""'-' 

Variable Fl F2 F3 t/Ji 
1. Skull length .741 .350 .573 .355 .244 ( .902) .00 
2. Skull breadth .604 .720 - .340 .235 (.949 ) .21 1 .00 
3. Femur length .929 - .233 - .075 � . 164 .218 .08 
4. Tibia length . 943 - . 175 - .067 .904 .212 .252 .08 
5. Humerus length .948 - . 143 - .045 .888 .228 .283 .08 
6. Ulna length .945 - .189 - .047 .908 . 192 .264 .07 

Cumulative 
proportion of 
total (standardized) 
sample variance 
explained .743 .873 .950 .576 .763 .950 

Maximum Likelihood 

Estimated factor loadings Rotated estimated loadings 
" 

Variable Fl F2 F3 Pi Fi Fj l/Ji 

1 .  Skull length .602 .214 .286 .467 l:J . 128 .51 
2. Skull breadth .467 .177 .652 .211 2 .050 .33 
3. Femur length .926 .145 - .057 .890 .289 .084 . 12 
4. Tibia length 1 .000 .000 - .000 .936 .345 - .073 .00 
5. Humerus length .874 .463 - .012 .831 .362 .396 .02 
6. Ulna length .894 .336 - .039 .857 .325 .272 .09 

Cumulative 
proportion of 
total (standardized) 
sample variance 
explained .667 .738 .823 .559 .779 .823 

All the entries in this matrix are very small. We shall pursue the m = 3 factor 
model in this example. An m = 2 factor model is considered in Exercise 9 .10. 

Factor scores for factors 1 and 2 produced from (9-58) with the rotated 
maximum likelihood estimates are plotted in Figure 9 .5 . Plots of this kind allow 
us to identify observations that, for one reason or another, are not consistent 
with the remaining observations. Potential outliers are circled in the figure. 

It is also of interest to plot pairs of factor scores obtained using the prin
cipal component and maximum likelihood estimates of factor loadings. For the 
chicken-bone data, plots of pairs of factor scores are given in Figure 9 .6 .  If the 
loadings on a particular factor agree, the pairs of scores should cluster tightly 
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Figure 9.5 Factor scores for the fi rst two factors of ch icken-bone data. 
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about the 45° line through the origin. Sets of loadings that do not agree will pro
duce factor scores that deviate from this pattern. If the latter occurs, it is usu
ally associated with the last factors and may suggest that the number of factors 
is too large. That is, the last factors are not meaningful. This seems to be the 
case with the third factor in the chicken-bone data, as indicated by Plot (c) in 
Figure 9 .6 . 

Plots of pairs of factor scores using estimated loadings from two solution 
methods are also good tools for detecting outliers. If the sets of loadings for a 
factor tend to agree, outliers will appear as points in the neighborhood of the 
45° line, but far from the origin and the cluster of the remaining points. It is clear 
from Plot (b) in Figure 9 .6 that one of the 276 observations is not consistent 
with the others. It has an unusually large F2-score. When this point, 
[39 . 1 ,  39 .3 , 75.7, 115 ,  73.4, 69 . 1 ] ,  was removed and the analysis repeated, the 
loadings were not altered appreciably. 

When the data set is large, it should be divided into two (roughly) equal 
sets, and a factor analysis should be performed on each half. The results of these 
analyses can be compared with each other and with the analysis for the full data 
set to test the stability of the solution. If the results are consistent with one an
other, confidence in the solution is increased. 
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Figure 9.6 Pa i rs of factor scores for the ch icken-bone data. (Load ings  a re est imated by 
pr i nc ipa l  com ponent a n d  maxi mum l i ke l i hood methods.) 

The chicken-bone data were divided into two sets of n1 = 137 and n2 = 139 
observations, respectively. The resulting sample correlation matrices were 

1 .000 
.696 1 . 000 

Rl = 
.588 .540 1 .000 
.639 .575 .901 1 . 000 
.694 . 606 .844 .835 1 .000 
.660 .584 .866 . 863 .931 1 .000 
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(b) Second factor 

Figure 9.6 (continued) 

1 .000 
.366 1 .000 
.572 .352 1 .000 
.587 .406 .950 1 .000 
.587 .420 .909 .911 
.598 .386 .894 .927 

1 .000 
.940 1 .000 

The rotated estimated loadings, specific variances, and proportion of the 
total (standardized) sample variance explained for a principal component so
lution of an m = 3 factor model are given in Table 9 . 11  on page 524. 
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(c) Third factor 

Figure 9.6 (continued) 

The results for the two halves of the chicken-bone measurements are very 
similar. Factors Fi and Fj interchange with respect to their labels, skull length 
and skull breadth, but they collectively seem to represent head size. The first 
factor, Fi , again appears to be a body-size factor dominated by leg and wing di
mensions. These are the same interpretations we gave to the results from a 
principal component factor analysis of the entire set of data. The solution is 
remarkably stable, and we can be fairly confident that the large loadings are 
"real." As we have pointed out however, three factors are probably too many. 
A one- or two-factor model is surely sufficient for the chicken-bone data, and 
you are encouraged to repeat the analyses here with fewer factors and alter
native solution methods. (See Exercise 9 .10 .) • 
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TABLE 9 . 1 1 
-

First set Second set 
(n1 == 137 observations) ( n2 == 139 observations) 
Rotated estimated factor Rotated estimated factor 

loadings loadings 

Fi Fi Fj 
r--..1 

Fi Fi Fj 
r--..1 

Variable l/Ji l/Ji 

1 .  Skull length .360 .361 (853 ) .01 .352 @I) . 1 67 .00 
2. Skull breadth .303 ( .899) .312 .00 .203 .145 ( .968) .00 
3 .  Femur length � .238 .175 .08 � .239 .130 .06 
4. Tibia length .877 .270 .242 .10 . 925 .248 . 187 .05 
5. Humerus length .830 .247 .395 . 1 1  .912 .252 .208 .06 
6. Ulna length .871 .231 .332 .08 .914 .272 . 168 .06 

Cumufative 
proportion of 
total (standardized) 
sample variance 
explained .546 .743 .940 .593 .780 .962 

Factor analysis has a tremendous intuitive appeal for the behavioral and social 
sciences. In these areas, it is natural to regard multivariate observations on animal 
and human processes as manifestations of underlying unobservable "traits." Factor 
analysis provides a way of explaining the observed variability in behavior in terms of 
these traits. 

Still, when all is said and done, factor analysis remains very subjective. Our ex
amples, in common with most published sources, consist of situations in which the 
factor analysis model provides reasonable explanations in terms of a few interpretable 
factors. In practice, the vast majority of attempted factor analyses do not yield such 
clear-cut results. Unfortunately, the criterion for judging the quality of any factor 
analysis has not been well quantified. Rather, that quality seems to depend on a 

WOW criterion 

If, while scrutinizing the factor analysis, the investigator can shout "Wow, I under
stand these factors," the application is deemed successful. 

9.7 STRUCTURAL EQUATION MODELS 

Structural equation models are sets of linear equations used to specify phenomena 
in terms of their presumed cause-and-effect variables. In their most general form, the 
models allow for variables that cannot be measured directly. Structural equation 
models are particularly helpful in the social and behavioral sciences and have been 
used to study the relationship between social status and achievement, the determi
nants of firm profitability, discrimination in employment, the efficacy of social action 
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programs, and other interesting mechanisms. (See [2] , [5 ] ,  [6] , [7] , [9] , [1 1 ] ,  [13] , [14] , 
[15] , [17] , and [23] for additional theory and applications. ) 

Computer software for specifying, fitting, and evaluating structural equation 
models has been developed by Joreskog and Sorbom and is now widely available as 
the LISREL (Linear Structural Relationships) system. (See [18] . )  

The LI SREL Model 

Using the notation of Joreskog and Sorbom [18] , the LISREL model is given by 
the equations 

1J Bl] + r� + � 
( m X l )  ( rn X m )  ( m X l )  ( m x n )  ( n X l ) ( m X l ) 

(9-59) 

y = AylJ + E 
( p X l ) ( p X m )  ( m X l ) ( p X l )  

X = Ax �  + B 
( q X l ) ( q X n )  ( n X l ) ( q X l ) 

(9-60) 

with 

E(� )  = 0; Cov (� )  = '}I 
E(e)  = 0; Cov (e )  = e E  (9-61) 
E(  B) = 0; Cov ( B )  = 8 a  

Here �' e ,  and B are mutually uncorrelated; Cov (� )  = <I>; � is uncorrelated with � ;  e is 
uncorrelated with 11; B is uncorrelated with �; B has zeros on the diagonal; and I - B 
is nonsingular. In addition to the assumptions (9-61), we take E(� )  = 0 and E( 1J) = 0. 

The quantities � and 1J in (9-59) are the cause-and-effect variables, respective
ly, and, ordinarily, are not directly observed. They are sometimes called latent vari
ables. The quantities Y and X in (9-60) are variables that are linearly related to 1J and 
� through the coefficient matrices Ay and Ax , and these variables can be measured. 
Their observed values constitute the data. Equations (9-60) are sometimes called 
the measurement equations. 

Construction of a Path Diagram 

A distinction is  made between variables that are not influenced by other variables in 
the system (exogenous variables) and variables that are affected by others (endoge
nous variables) . With each of the latter dependent variables is associated a residual. 
Certain conventions govern the drawing of a path diagram, which is constructed as 
follows (directed arrows represent a path) : 

1. A straight arrow is drawn to each dependent (endogenous) variable from each 
of its sources. 

2. A straight arrow is also drawn to each dependent variable from its residual. 
3. A curved, double-headed arrow is drawn between each pair of independent 

(exogenous) variables thought to have nonzero correlation. 

The curved arrow for correlation is indicative of the symmetrical nature of a cor
relation coefficient . The other connections are directional, as indicated by the single
headed arrow. 
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Example 9 . 1 5 (A path diagram and the structu ral equation) 

Consider the following path diagram for the cause-and-effect variables: 

This path diagram, with m = 2 and n = 3, corresponds to the structural equa
tion [see (9-59)] [TJl] = [0 {3] [TJ1] + [Y1 Y2 0 J [ �� J + [�1] 

TJz 0 0 TJz 0 1' 3 1' 4 
g 3 

� 2 

with Cov (gl , g2 ) = </J1 , Cov (g2 , g3 ) = </J2 , Cov (gl , g3 ) = </J3 , and 
Cov ( � 1 , � 2 ) = 0. We see, for example, that TJ1 depends upon g1 , g2 , and TJ2 . 

Path diagrams are useful aids for formulating structural models. Because 
they indicate the direction and nature of the causality, the diagrams force the 
investigator to think about the problem. M 

The model in (9-59) and (9-60) has a very rich structure and includes several im
portant submodels as special cases. For example, with a judicious choice of dimen
sions and variables, it is possible to define the multivariate linear regression model and 
the factor analysis model. 

Covariance Structu re 

Because 1J and � are not observed, the LISREL model cannot be verified directly. 
However, as in factor analysis, the model and assumptions imply a certain covariance 
structure, which can be checked. 

Define the data vector [Y' , X' ] ' . Then 

Cov (�) = 
(p+q )

�
(p+q )  

= 

I1 1  1 I1 2 
(pxp)  ! (px q)  

-- - - - - - - - - -:- - - - - - - - - -

I2 1  1 I22 
( q x p) 1 (q x q)  

[ Cov (Y) Cov (Y, X) ] 
= --- - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - -

Cov (X, Y) Cov (X) 

(9-62) 
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where, with B = 0 to simplify the discussion, 

Cov (Y) = E (YY ' ) = Ay Cov (17)  A� + ee  
== Ay(f<l>f'  + w ) A� + ee  

Cov (X) == E(XX' ) == Ax Cov (� ) A� + eo 

== Ax<I>A� + eo 

Cov (Y, X) = E (YX ' ) == E( Ay(f� + �) + e) ( Ax� + B ) '  
== Ayf<I> A� = [Cov (X, Y) ] ' 

(9-63) 

The covariances are (nonlinear) functions of the model parameters Ax , Ay , r, <I>, '}I,  
e E ' and e 0 .  (Recall that we set B == 0.) 

Given n multivariate observations [yj ,  xj ] ' , j == 1 ,  2, . . .  , n ,  the sample covari
ance matrix [see (3-1 1)] 

s (p+q) X (p+q ) 

S1 1  i S1 2 - ����:__ ; y_�-��-
s2 1 l S22 
(q xp) j (q xq ) 

can be constructed and partitioned in a manner conformable to I. The information 
in S is used to estimate the model parameters. Specifically, we set 

" 

I == S  (9-64) 

and solve the resulting equations. 

Estimation 

Unfortunately, the equations in (9-64) often cannot be solved explicitly. An it
erative search routine,... that begins with initial parameter estimates must be used 
to produce a matrix I that closely approximates S. The search routines use a 
criterion function that measures the discrepancy between i and S .  The LISREL 
program currently uses a " least squares" criterion and a "maximum likelihood" 
criterion to estimate the model parameters. (See [18] for details. ) 

The next example, with hypothetical data, illustrates a case where the parame
ter estimates can be obtained from (9-64) . 

Example 9. 1 6  (Esti mation for a structu ra l equation model-artific ia l  data) 

Take m == 1 ,  n == 1 ,  p == 2, q == 2, and B = 0 in (9-59) and (9-60) . Then 

TJ == yg + � 

[i] = [�J � + [:J 
[ �J = [ �2 J g + [ :J 
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Additionally, let Var (g) = <P; Var (�) = lji, 

Cov (e ) = [ � �J and Cov ( O ) = [ � �J 
Using (9-63) , we get 

Cov y - I - [ ( 'Y2 <P + l/1) + e 1 A 1 ( 'Y2 <P + l/1) J ( ) - 1 1  - A1 (·-lc/J + 1/1) Ai('Y2c/J + 1/1 )  + fh 

C (Y X) = I = [ A2 (y<fJ) (y<fJ) J = I' ov ' 1 2 A1 A2 ( y</J) A1 ( y</J) 2 1 

Cov (X) = I22 = 
[</JA� + 83 </JA2 J </JA2 <fJ + 84 

Data are collected on Y and X, and the sample covariance matrix 

[���+��;] = -�-

��:i - - - -:��:�J=�i:i- - - -=i:�-

0 

3.2 -6.4 i 1 .6  1 . 1  

i s constructed. Setting i = S, we obtain the equations 
(i) (12¢ + �) + 01 = 14.3 

(ii) A1 (r2� + �) = -27.6 

(iii) 5tr(r2� + �) + 82 = 55.4 

(iv) 5..21� = 6.4 

(v) y� = 3.2 

(vi) A1A2( 1�) = - 12 .8 

(vii) A1 ( 1�) = -6.4 

(viii) �5..� + 83 = 3 .7 

(ix) </JA2 = 1 .6  
,... ,... (x) <P + (}4 = 1 . 1  

,... ,... From (iv) and (v) , A2 = 2.0. Then, from (ix) , <P = .8 , and so forth. The reader 
may verify that 

y = 4 Ay = [ -� J A
x = [ � J 

"' cp = .8 
,... 

fjJ = 1  
,... [ ·5 OJ ee = 

0 .2 
and eo = [ ·5 OJ 0 .3 
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The columns of the Ay and Ax matrices contain 1 's in order to fix the scale 
of the unobserved YJ and g. In this example, the units of YJ have been chosen to 
be the same as those of Y1 . The units of g are taken to be those of X2 • (Any constant can be used to remove the scale ambiguity associated with the variables 
YJ and g. The number 1 is a convenient choice.) 

In this example, the structural variables, YJ and g, might be the perfor
mance of the firm and managerial talent respectively. The former cannot be 
measured directly, but indicators of the firm's performance, for example, 
Yi = profit and Y2 = common stock price, can be measured. Similarly, indica
tors of managerial talent, say, X1 = years of chief executive experience and 
X2 = memberships on boards of directors, can be measured. Assuming that a 
firm's performance is caused, to a large degree, by managerial talent, we are 
led to the foregoing model. • 

In general, to estimate the model parameters, we need more equations than 
there are unknowns. Consequently, if t is the total number of unknown parameters, 
p and q must be such that 

t < (p + q) (p + q + 1 )/2 (9-65) 

Condition (9-65) ,  however, does not guarantee that all parameters can be estimat
ed uniquely. 

The final fit of the model must be assessed carefully. Individual parameter 
estimates, along with the entries in the residual matrix S - i should be examined. Pa
rameter estimates should have appropriate signs and magnitudes. For example, it
erative parameter estimation routines operate over the entire parameter space and 
may not yield variance estimates that are positive. Entries in the residual matrix 
should be uniformly small. 
Model-Fitti ng Strategy 

In linear structural equation models, interest is often centered on the values of the 
parameters and the associated "effects." Predicted values for the variables are not 
easily obtained, unless the model reduces to a variant of the multivariate linear re
gression model. 

A useful model-fitting strategy consists of the following: 
1. If possible, generate parameter estimates using several criteria (for example, 
least squares, maximum likelihood) , and compare the estimates. 
(a) Are the signs and magnitudes consistent? 
(b) Are all variance estimates positive? 
(c) Are the residual matrices, S - i, similar? 

2. Do the analysis with both S and R, the sample correlation matrix. What effect 
does standardizing the observable variables have on the outcome? 

3. Split large data sets in half, and perform Steps 1 and 2 on each half. Compare 
the results with each other and with the result for the complete data set to check 
the stability of the solution. 
A model that gives consistent results for Steps 1-3 is probably a reasonable 

one. Inconsistent results point toward a model that is not completely supported by 
the data and needs to be modified or abandoned. 
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Although a simple al}alytic�l expression cannot be obtained for the maximum 
likelihood estimators L and '\}I, they can be shown to satisfy certain equations. Not 
surprisingly, the conditions are stated in terms of the maximum likelihood estimator n 
Sn == ( 1/n ) :L (Xj - X) (Xj - X) ' of an unstructured covariance matrix. Some j= 1 factor analysts employ the usual sample covariance S, but still use the title maximum 
likelihood to refer to resulting estimates. This modification, referenced in Footnote 
5 of this chapter, amounts to employing the likelihood obtained from the Wishart n 
distribution of :L (Xj - X) (Xj - X) ' and ignoring the minor contribution due to j= 1 the normal density for X.  The factor analysis of R is, of course, unaffected by the 
choice of Sn or S, since they both produce the same correlation matrix . 

Result 9A.l. Let x1 , x2 , . . .  , xn be a random sample from a normal population. " " The maximum likelihood estimates L and '\}I are obtained by maximizing (9-25 ) 
subject to the uniqueness condition in (9-26) .  They satisfy 

(9A-1 ) 
so the jth column of .q,-112L is t�e (nonnormalized) eigenvector of .q,-112Sn .q,-112 cor
responding to eigenvalue 1 + �i · Here 

n 
sn == n-1 L (xj - x) (xj - x) ' == n-1 (n - 1 ) s and j= 1 

Also, at convergence, 
" 

" " " 
A

>
A >

· · ·
>

A L.l1 - L.l2 - - L.lm 

l/Ji == ith diagonal element of Sn - LL ' (9A-2) 

and 
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We avoid the details of the proof. However, it is evident that � == x and a consider
ation of the log-likelihood leads to the maximization of - ( n/2) [ ln l I I + tr(I-1 sn )  J 
over L and W. Equivalently, since Sn and p are constant with respect to the maxi
mization, we minimize 

h ( it '  '\}I ' L) == ln I I 1 -ln I s n I + tr (I -1 s n ) - p 

subject to L' w-1 L == a ,  a diagonal matrix. 
(9A-3) 

Comment. Lawley and Maxwell [20] , along with many others who do factor 
analysis, use the unbiased estimate S of the covariance matrix instead of the maximum 
likelihood estimate Sn . Now, ( n - 1 )  S has, for normal data, a Wishart distribution. 
[See ( 4-21) and ( 4-23) . ]  If we ignore the contribution to the likelihood in (9-25) from 
the second term involving ( J.t - x) ,  then maximizing the reduced likelihood over L 
and '\}I is equivalent to maximizing the Wishart likelihood 

Likelihood ex I I � - ( n - 1 )/2 e-[ ( n - 1 )/2J tr [I- l s ] 
over L and W. Equivalently, we can minimize 

In I I I + tr (I -1 S ) 
or, as in (9A-3) ,  

ln i i i + tr (I-1S ) - ln i S I-p 

Under these conditions, Result (9A-1 ) holds with S in place of Sn . Also, for large n, 
S and Sn are almost identical, and the corresponding maximum likelihood estimates, 
L and 4', would be similar. For testing the factor model [see (9-39) ] ,  I LL ' + q, I 
should be compared with I Sn I if the actual likelihood of (9-25) is employed, and 
I ii ' + q,A I shou!d be compared with I S I if the foregoing Wishart likelihood is used to derive L and '\}I. 

Recommended Computationa l  Scheme 

For m > 1, the condition L' w-1 L == a effectively imposes m( m - 1 )/2 constraints 
on the elements of L and '\}I, and the likelihood equations are solved, subject to these 
contraints, in an iterative fashion. One procedure is the following: 

1. Compute initial estimates of the specific variances o/1 , lj12 , . • •  , ljJ P . Joreskog [16] 
suggests setting 

,Jr . == ( 1 _ _!_ .  m ) (�) 'P l  2 p sl l  
where si i  is the ith diagonal element of s-1 . "' "' "' "' 

(9A-4) 

2. Given '\}I, compute the first m distinct eigenvalues, A 1 > A2 > · · · > Am > 1 , and 
corresponding eigenvectors, e1 ' e2 , . . .  ' em ' of the "uniqueness-rescaled" co
variance matrix 

S* == q,-1;28 q,-112 n (9A-5) 

Let E == [ e1 ! e2 ! em ] be the p X m matrix of normalized eigenvectors 
and A == diag[ A1 , A2 , . . .  , Am ] be the m X m diagonal matrix of eigenvalues. 
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From (9A-l) , A = I + � and E = .q,-112L� -1/2 . Thus, we obtain the estimates 
i = .q,112E� 1/2 = .q,1/2:ft ( A - 1) 1/2 (9A-6) 

" 

3. Substitute L obtained in (9A-6) into the likelihood function (9A-3 ) , and 
minimize the result with respect to �1 , �2 , . . .  , � P . A numerical search routine 
must be used. The values �1 , �2 , . . . ;._ � P obtained from this minimization are employed at Step (2) to create a new L. Steps (2) and (3) are repeated until con
vergence-that is, until the differences between successive values of ei j and �l 
are negligible. 
Comment. It often happens that the objective function in (9A-3) has a rela

tive minimum corresponding to negative values for some �i · This solution is clearly 
inadmissible and is said to be improper, or a Heywood case. For most packaged com
puter programs, negative �i ' if they occur on a particular iteration, are changed to 
small positive numbers before proceeding with the next step. 
Maximum Like l ihood Estimators of p = Lz l� + "''z 

When I has the factor analysis structure I = LL' + "'' , p can be factored as 
p = v-112IV-112 = (V-112L) (V-112L) ' + v-112'\}I'V-112 = LZL� + "�'z · The loading 
matrix for the standardized variables is Lz = v-112L, and the corresponding specific 
variance matrix is "'' z = v-112'\}I'V-112 ' where v-1/2 is the diagonal matrix with ith di
agonal element a-�1/2 • If R is substituted for Sn in the objective function of (9A-3 ) , 
the investigator minimizes ( I LZL� + "''z I ) ' -1 ln 

I R I 
+ tr [ (LzLz + 'l'z) R] - p (9A-7) 

Introducing the diagonal matrix V112 , whose ith diagonal element is the square 
root of the ith diagonal element of Sn , we can write the objective function in (9A-7) as 

(9A-8) 
" " The last inequality follows because the maximum likelihood estimates L and "'' min-

imize the objective function (9A-3) . [Equality holds in (9A-8) for Lz = v-112L and 
.q, z = v-1;2-q,V-112 . ] Therefore, minimizing (9A-7) over Lz and "'' z is equivalent to ob
taining i and .q, from sn and estimating Lz = v-112L by iz = v-112L and "''z = 

y-112"1'V-112 by .q, z = v-1;2-q,y-112 . The rationale for the latter procedure comes 
from the in variance property of maximum likelihood estimators. [See ( 4-20) . ] 
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9.1. Show that the covariance matrix 
[ 1 .0 .63 .45 ] 

p = .63 1.0 .35 
.45 .35 1.0 

for the p = 3 standardized random variables zl ' z2 ' and z3 can be generated by the m = 1 factor model 
Z1 = .9F1 + s1 
Z2 = .7F1 + s2 
z3 = .SF1 + s3 

where Var (F1 ) = 1 , Cov (e, F1 ) = 0, and 
[ .19 0 0 ] 

'It = Cov (e ) = 0
0 

51 0 � .75 
That is, write p in the form p = LL' + '1'. 

9.2. Use the information in Exercise 9.1 . 
(a) Calculate communalities h[ , i = 1 , 2, 3, and interpret these quantities. 
(b) Calculate Corr (Zi , F1 ) for i = 1 , 2, 3. Which variable might carry the great
est weight in "naming" the common factor? Why? 

9.3. The eigenvalues and eigenvectors of the correlation matrix p in Exercise 9.1 are 
A1 = 1 .96, 
A2 = .68, 
A3 = .36, 

e1 = [ .625 , .593, .507 ] 
e2 = [ - .219, - .491 , .843 ] 
e3 = [ .749, - .638, - .177 ] 

(a) Assuming an m = 1 factor model, calculate the loading matrix L and ma
trix of specific variances 'It using the principal component solution method. 
Compare the results with those in Exercise 9.1 . 

(b) What proportion of the total population variance is explained by the first 
common factor? 

9.4. Given p and 'It in Exercise 9.1 and an m = 1 factor model, calculate the re
duced correlation matrix p = p - 'It and the principal factor solution for the 
loading matrix L. Is the result consistent with the information in Exercise 9.1? 
Should it be? 

9.5. Establish the inequality (9-19) . 
r--..J r--..1 r--..1 

Hint: Since S - LL ' - 'It has zeros on the diagonal, 
(sum of squared entries of S - LL' - .qf )  

< ( sum of squared entries of S - LL' )  
Now, S - LL' = Am+ lem+ 1 e�+1 + · · ·  + APePe� = P(2) A(2)P (2) ' where P(2) = 

[em+ l ; · · · l epJ and A(2) is the diagonal matrix with elements Am+ l , . . .  , Ap . 
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A 
U§_e ( sum of squared entries of A) = tr AA' and tr [P(2) A (2) A (2 )P (2) ]  === 

tr [ A(2) A(2 ) ] . 
9.6. Verify the following matrix identities. 

(a) (I + L' w-1 L) -1L' w-1 L = I - (I + L' w-1 L) -1 
Hint: Premultiply both sides by (I + L' w-1 L ) . 
(b) (LL ' + 'It)  -1 = w-1 - w-1 L(I + L' w-1 L) -1L ' w-1 
Hint: Postmultiply both sides by (LL' + 'It)  and use (a) . 
(c) L ' (LL ' + '1')-1 = (I + L ' 'I'-1L)-1L ' 'I'-1 
Hint: Postmultiply the result in (b) by L, use (a) , and take the transpose, not
ing that (LL' + 'It)  -1 , w-1 , and (I + L' w-1 L) -1 are symmetric matrices. 

9.7. (The factor model parameterization need not be unique.) Let the factor model with p = 2 and m = 1 prevail. Show that 
a-1 1 = ei 1 + l/1 1 , 
a-22 = e� 1 + l/12 

and, for given o-1 1 , o-22 , and o-1 2 , there is an infinity of choices for L and '1'. 
9.8. (Unique but improper solution: Heywood case.) 
Consider an m = 1 factor model for the population with covariance matrix 

[ 1 .4 .9 ] 
I = .4 1 .7 

.9 .7 1 

Show that there is a unique choice of L and 'It with I = LL ' + 'It, but that 
lj13 < 0 , so the choice is not admissible. 

9.9. In a study of liquor preference in France, Stoetzel [25] collected preference 
rankings of p = 9 liquor types from n = 1442 individuals. A factor analysis of 
the 9 X 9 sample correlation matrix of rank orderings gave the following esti
mated loadings : 

Estimated factor loadings 
Variable (X1 ) F1 F2 F3 
Liquors .64 .02 . 16 
Kirsch .50 - .06 - .10 
Mirabelle .46 - .24 - .19 
Rum .17 .74 .97 * 
Marc - .29 .66 - .39 
Whiskey - .29 - .08 .09 
Calvados - .49 .20 - .04 
Cognac - .52 - .03 .42 
Armagnac - .60 - .17 . 14 

* This figure is too high. I t  exceeds the maximum value of 
.64, as a result of an approximation method for obtaining the 
estimated factor loadings used by Stoetzel. 
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Given these results, Stoetzel concluded the following: The major principle of 
liquor preference in France is the distinction between sweet and strong liquors. 
The second motivating element is price, which can be understood by remem
bering that liquor is both an expensive commodity and an item of conspicuous 
consumption. Except in the case of the two most popular and least expensive 
items (rum and marc), this second factor plays a much smaller role in produc
ing preference judgments. The third factor concerns the sociological and pri
marily the regional, variability of the judgments. (See [25] , p. 11 . ) 
(a) Given what you know about the various liquors involved, does Stoetzel's in
terpretation seem reasonable? 

(b) Plot the loading pairs for the first two factors. Conduct a graphical orthog
onal rotation of the factor axes. Generate approximate rotated loadings. 
Interpret the rotated loadings for the first two factors. Does your inter
pretation agree with Stoetzel's interpretation of these factors from the un
rotated loadings? Explain. 

9.10. The correlation matrix for chicken-bone measurements (see Example 9.14) is 
1 .000 
.505 1.000 
.569 .422 1.000 
.602 .467 .926 1.000 
.621 .482 .877 .874 1 .000 
.603 .450 .878 .894 .937 1.000 

The following estimated factor loadings were extracted by the maximum like
lihood procedure: 

Varimax 
Estimated rotated estimated 
factor loadings factor loadings 

Variable Fl F2 Fi Fi 
1. Skull length .602 .200 .484 .41 1 
2. Skull breadth .467 .154 .375 .319 
3. Femur length .926 .143 .603 .717 
4. Tibia length 1 .000 .000 .519 .855 
5 .  Humerus length . 874 .476 .861 .499 
6. Ulna length .894 .327 .744 .594 

Using the unrotated estimated factor loadings, obtain the maximum likelihood 
estimates of the following. 
(a) The specific variances. 
(b) The communalities. 
(c) The proportion of variance explained by each factor. 

" " " 

(d) The residual matrix R - LzL� - '\}I z .  
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9.11. Refer to Exercise 9.10 . Compute the value of the varimax criterion using both 
unrotated and rotated estimated factor loadings. Comment on the results. 

9.12. The covariance matrix for the logarithms of turtle measurements (see Exam
ple 8.4) is 

[ 11 .072 ] 
s = 10-3 8.019 6.417 

8.160 6.005 6.773 
The following maximum likelihood estimates of the factor loadings for an 

m = 1 model were obtained: 

Variable 
1 .  ln(length) 

2. In( width) 

3. ln(height) 

Estimated factor 
loadings 

Fl 
. 1022 
.0752 
.0765 

Using the estimated factor loadings, obtain the maximum likelihood estimates 
of each of the following. 
(a) Specific variances. 
(b) Communalities. 
(c) Proportion of variance explained by the factor. 

" " " 

(d) The residual matrix Sn - LL' - W. 
Hint: Convert S to Sn . 

9.13. Refer to Exercise 9.12. Compute the test statistic in (9-39) . Indicate why a test 
of H0 : I =  LL' + '\}I (with m = 1) versus H1 : I unrestricted cannot be car
ried out for this example. [See (9-40) .] 

9.14. The maximum likelihood factor loading estimates are given in (9A-6) by 

Verify, for this choice, that 

" " 

i = �112E� 112 

where fl. = A - I is a diagonal matrix. 
9.15. Hirschey and Wichern [15] investigate the consistency, determinants, and uses 

of accounting and market-value measures of profitability. As part of their study, 
a factor analysis of accounting profit measures and market estimates of eco
nomic profits was conducted. The correlation matrix of accounting historical, 
accounting replacement, and market-value measures of profitability for a sam
ple of firms operating in 1977 is as follows: 
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Variable HRA HRE HRS RRA RRE RRS Q REV 
Historical return on assets, HRA 1 .000 
Historical return on equity, HRE .738 1 .000 
Historical return on sales, HRS .731 .520 1 .000 
Replacement return on assets, RRA .828 .688 .652 1 .000 
Replacement return on equity, RRE .681 .831 .513 .887 1 .000 
Replacement return on sales, RRS .712 .543 .826 .867 .692 1.000 
Market Q ratio, Q .625 .322 .579 .639 .419 .608 1.000 
Market relative excess value, REV .604 .303 .617 .563 .352 .610 .937 1 .000 

The following rotated principal component estimates of factor loadings for an 
m = 3 factor model were obtained: 

Estimated factor loadings 
Variable Fl F2 F3 

Historical return on assets .433 .612 .499 
Historical return on equity .125 .892 .234 
Historical return on sales .296 .238 .887 
Replacement return on assets .406 .708 .483 
Replacement return on equity .198 .895 .283 
Replacement return on sales .331 .414 .789 
Market Q ratio .928 .160 .294 
Market relative excess value .910 .079 .355 
Cumulative proportion 
of total variance explained .287 .628 .908 

(a) Using the estimated factor loadings, determine the specific variances and 
communalities. 

"' 

(b) Determine the residual matrix, R - LzL� - Wz . Given this information 
and the cumulative proportion of total variance explained in the preceding 
table, does an m = 3 factor model appear appropriate for these data? 

(c) Assuming that estimated loadings less than .4 are small, interpret the three 
factors. Does it appear, for example, that market-value measures provide 
evidence of profitability distinct from that provided by accounting mea
sures? Can you separate accounting historical measures of profitability 
from accounting replacement measures? 

9.16. Verify that factor scores constructed according to (9-50) have sample mean 
vector 0 and zero sample covariances. 

9.17. Consider the LISREL model in Example 9.16 . Interchange 1 and A.1 in the parameter vector Ay , and interchange A2 and 1 in the parameter vector Ax . Using the S matrix provided in the example, solve for the model parameters. Explain 
why the scales of the structural variables YJ and g must be fixed. 
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The following exercises require the use of a computer. 

9.18. Refer to Exercise 8.16 concerning the numbers of fish caught. 
(a) Using only the measurements x1 - x4 , obtain the principal component solution for factor models with m = 1 and m = 2. 
(b) Using only the measurements x1 - x4 , obtain the maximum likelihood so
lution for factor models with m = 1 and m = 2. 

(c) Rotate your solutions in Parts (a) and (b) . Compare the solutions and com
ment on them. Interpret each factor. 

(d) Perform a factor analysis using the measurements x1 - x6 • Determine a 

reasonable number of factors m, and compare the principal component and 
maximum likelihood solutions after rotation. Interpret the factors. 

9.19. A firm is attempting to evaluate the quality of its sales staff and is trying to find 
an examination or series of tests that may reveal the potential for good per
formance in sales. The firm has selected a random sample of 50 sales people and 
has evaluated each on 3 measures of performance: growth of sales, profitabili
ty of sales, and new-account sales. These measures have been converted to a 

scale, on which 100 indicates "average" performance. Each of the 50 individu
als took each of 4 tests, which purported to measure creativity, mechanical rea
soning, abstract reasoning, and mathematical ability, respectively. The n = 50 
observations on p = 7 variables are listed in Table 9. 12. 
(a) Assume an orthogonal factor model for the standardized variables 

Zi = (Xi - JLi)/V0::Z , i = 1, 2, . . .  , 7. Obtain either the principal compo
nent solution or the maximum likelihood solution for m = 2 and m = 3 
common factors. 

(b) Given your solution in (a) , obtain the rotated loadings for m = 2 and m = 3 . 
Compare the two sets of rotated loadings. Interpret the m = 2 and m = 3 
factor solutions. 

" 

(c) List the estimated communalities, specific variances, and LL' + '\}I for the 
m = 2 and m = 3 solutions. Compare the results. Which choice of m do 
you prefer at this point? Why? 

(d) Conduct a test of H0 : LL' + '\}I versus H1 : I # LL' + '\}I for both m = 2 
and m = 3 at the a = .01 level. With these results and those in Parts b and 
c, which choice of m appears to be the best? 

(e) Suppose a new salesperson, selected at random, obtains the test scores 
x' = [ x1 , x2 , • • •  , x7 J = [ 110, 98, 105, 15, 18, 12, 35 ] . Calculate the sales
person 's factor score using the weighted least squares method and the 
regression method. 

Note: The components of x must be standardized using the sample means and 
variances calculated from the original data. 

9.20. Using the air-pollution variables X1 , X2 , X5 , and X6 given in Table 1 .5 , gener
ate the sample covariance matrix. 
(a) Obtain the principal component solution to a factor model with m = 1 and 
m = 2. 

(b) Find the maximum likelihood estimates of L and '\}I for m = 1 and m = 2. 
(c) Compare the factorization obtained by the principal component and max
imum likelihood methods. 



TABLE 9. 1 2  SALESPEOPLE DATA 
- Index of: 
- Sales New-

Sales profit- account 
Salesperson growth (x1 ) ability ( x2 ) sales ( x3 ) 

1 93.0 96.0 97.8 
2 88.8 91 .8 96.8 
3 95.0 100.3 99.0 
4 101.3 103.8 106.8 
5 102.0 107.8 103.0 
6 95.8 97.5 99.3 
7 95.5 99.5 99.0 
8 110.8 122.0 115.3 
9 102.8 108.3 103.8 
10 106.8 120.5 102.0 
11 103.3 109.8 104.0 
12 99.5 111 .8 100.3 
13 103.5 112.5 107.0 
14 99.5 105.5 102.3 
15 100.0 107.0 102.8 
16 81.5 93.5 95.0 
17 101.3 105.3 102.8 
18 103.3 110.8 103.5 
19 95.3 104.3 103.0 
20 99.5 105.3 106.3 
21 88.5 95.3 95.8 
22 99.3 115 .0 104.3 
23 87.5 92.5 95.8 
24 105.3 114.0 105.3 
25 107.0 121.0 109.0 
26 93.3 102.0 97.8 
27 106.8 118.0 107.3 
28 106.8 120.0 104.8 
29 92.3 90.8 99.8 
30 106.3 121.0 104.5 
31 106.0 119.5 110.5 
32 88.3 92.8 96.8 
33 96.0 103.3 100.5 
34 94.3 94.5 99.0 
35 106.5 121.5 110.5 
36 106.5 115 .5 107.0 
37 92.0 99.5 103.5 
38 102.0 99.8 103.3 
39 108.3 122.3 108.5 

Creativity 
test ( x4 ) 

09 
07 
08 
13 
10 
10 
09 
18 
10 
14 
12 
10 
16 
08 
13 
07 
11 
11 
05 
17 
10 
05 
09 
12 
16 
10 
14 
10 
08 
09 
18 
13 
07 
10 
18 
08 
18 
13 
15 
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Score on: 
Mechanical Abstract Mathe-
reasoning reasoning rna tics 
test (x5 )  test ( x6) test ( x7 ) 

12 09 20 
10 10 15 
12 09 26 
14 12 29 
15 12 32 
14 11 21 
12 09 25 
20 15 51 
17 13 31 
18 11 39 
17 12 32 
18 08 31 
17 11 34 
10 11 34 
10 08 34 
09 05 16 
12 11 32 
14 11 35 
14 13 30 
17 11 27 
12 07 15 
11 11 42 
09 07 16 
15 12 37 
19 12 39 
15 07 23 
16 12 39 
16 11 49 
10 13 17 
17 11 44 
15 10 43 
11 08 10 
15 11 27 
12 11 19 
17 10 42 
13 14 47 
16 08 18 
12 14 28 
19 12 41 

(continues on next page) 
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TABLE 9. 1 2  (continued) 

Salesperson 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Index of: Score on: 
Sales New- Mechanical Abstract Mathe-Sales profit- account Creativity reasoning reasoning rna tics growth ( x1 ) ability ( x2 ) sales ( x3 ) test ( x4) test ( x5 ) test ( x6) test ( x7) 

106.8 119.0 106.8 14 20 12 37 102.5 109.3 103.8 09 17 13 32 92.5 102.5 99.3 13 15 06 23 102.8 113 .8 106.8 17 20 10 32 83 .3 87 .3 96.3 01 05 09 15 94.8 101.8 99.8 07 16 11 24 103.5 112.0 110.8 18 13 12 37 89.5 96.0 97.3 07 15 11 14 84.3 89.8 94.3 08 08 08 09 104.3 109.5 106.5 14 12 12 36 
106.0 118.5 105.0 12 16 11 39 

9.21. Perform a varimax rotation of both m = 2 solutions in Exercise 9.20. Inter
pret the results. Are the principal component and maximum likelihood solu
tions consistent with each other? 

9.22. Refer to Exercise 9.20. 
(a) Calculate the factor scores from the m = 2 maximum likelihood estimates by 
(i) weighted least squares in (9-50) and (ii) the regression approach of (9-58). 

(b) Find the factor scores from the principal component solution, using (9-5 1 ) . 
(c) Compare the three sets of factor scores. 

9.23. Repeat Exercise 9.20, starting from the sample correlation matrix. Interpret 
the factors for the m = 1 and m = 2 solutions. Does it make a difference if R, 
rather than S, is factored? Explain. 

9.24. Perform a factor analysis of the census-tract data in Table 8.5. Start with R and obtain both the maximum likelihood and principal component solutions. Com
ment on your choice of m. Your analysis should include factor rotation and 
the computation of factor scores. 

9.25. Perform a factor analysis of the "stiffness" measurements given in Table 4 .3 
and discussed in Example 4.14. Compute factor scores, and check for outliers 
in the data. Use the sample covariance matrix S .  

9.26. Consider the mice-weight data in Example 8.6 . Start with the sample covari
ance matrix. (See Exercise 8.15 for �.) 
(a) Obtain the principal component solution to the factor model with m = 1 
and m = 2. 

(b) Find the maximum likelihood estimates of the loadings and specific vari
ances for m = 1 and m = 2. 

(c) Perform a varimax rotation of the solutions in Parts a and b. 

-
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9.27. Repeat Exercise 9.26 by factoring R instead of the sample covariance matrix S. 
Also, for the mouse with standardized weights [ .8, - .2, - .6, 1 .5 ] , obtain the fac
tor scores using the maximum likelihood estimates of the loadings and Equa
tion (9-58) . 

9.28. Perform a factor analysis of the national track records for women given in Table 
1.9. Use the sample covariance matrix S and interpret the factors. Compute fac
tor scores, and check for outliers in the data. Repeat the analysis with the sam
ple correlation matrix R. Does it make a difference if R, rather than S, is 
factored? Explain. 

9.29. Refer to Exercise 9.28. Convert the national track records for women to speeds 
measured in meters per second. (See Exercise 8.19 . ) Perform a factor analy
sis of the speed data. Use the sample covariance matrix S and interpret the 
factors. Compute factor scores, and check for outliers in the data. Repeat 
the analysis with the sample correlation matrix R. Does it make a difference 
if R, rather than S, is factored? Explain. Compare your results with the results 
in Exercise 9.28. Which analysis do you prefer? Why? 

9.30. Perform a factor analysis of the national track records for men given in Table 
8.6. Repeat the steps given in Exercise 9.28. Is the appropriate factor model 
for the men's data different from the one for the women's data? If not, are the 
interpretations of the factors roughly the same? If the models are different, 
explain the differences. 

9.31. Refer to Exercise 9.30. Convert the national track records for men to speeds 
measured in meters per second. (See Exercise 8.21 .) Perform a factor analy
sis of the speed data. Use the sample covariance matrix S and interpret the 
factors. Compute factor scores, and check for outliers in the data. Repeat 
the analysis with the sample correlation matrix R. Does it make a difference 
if R, rather than S, is factored? Explain. Compare your results with the results 
in Exercise 9.30. Which analysis do you prefer? Why? 

9.32. Perform a factor analysis of the data on bulls given in Table 1 . 10. Use the seven 
variables YrHgt, FtFrBody, PrctFFB, Frame, BkFat, SaleHt , and SaleWt. Fac
tor the sample covariance matrix S and interpret the factors. Compute factor 
scores, and check for outliers. Repeat the analysis with the sample correlation 
matrix R. Compare the results obtained from S with the results from R. Does 
it make a difference if R, rather than S, is factored? Explain. 
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CHAPTER 

1 0 
Canonical Correlation Analysis 

1 0. 1  INTRODUCTION 

Canonical correlation analysis seeks to identify and quantify the associations 
between two sets of variables. H. Hotelling ( [5 ] , [6] ) ,  who initially developed 
the technique, provided the example of relating arithmetic speed and arithmetic 
power to reading speed and reading power. (See Exercise 10 . 9 . )  Other exam
ples include relating governmental policy variables with economic goal variables 
and relating college "performance" variables with precollege "achievement" 
variables. 

Canonical correlation analysis focuses on the correlation between a linear com
bination of the variables in one set and a linear combination of the variables in an
other set. The idea is first to determine the pair of linear combinations having 
the largest correlation. Next, we determine the pair of linear combinations having the 
largest correlation among all pairs uncorrelated with the initially selected pair, and 
so on. The pairs of linear combinations are called the canonical variables, and their 
correlations are called canonical correlations. 

The canonical correlations measure the strength of association between the two 
sets of variables. The maximization aspect of the technique represents an attempt to 
concentrate a high-dimensional relationship between two sets of variables into a few 
pairs of canonical variables. 

1 0.2 CANONICAL VARIATES AND CANONICAL CORRELATIONS 

We shall be interested in measures of association between two groups of variables. The 
first group, of p variables, is represented by the (p X 1 ) random vector X(l ) . The sec
ond group, of q variables, is represented by the ( q X 1 ) random vector X(2) . We as
sume, in the theoretical development , that X(l ) represents the smaller set, so that 
p < q. 

543 
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For the random vectors X(l ) and X(2) , let 
E(X( l ) ) == IL( l ) ; 
E(X(2) ) == 11-(2) ; 

Cov (X( 1 ) ) = I1 1 
Cov (X(2) ) = I22 (10-1 ) 

It will be convenient to consider X(l ) and X(2) jointly, so, using results (2-38) through 
(2-40) and (10-1) ,  we find that the random vector 

has mean vector 

and covariance matrix 
I == E(X - P- ) (X - IL ) ' 

(p +q) X (p +q)  

(10-2) 

(10-3) 

= [ifi��� -=--:��-H-i���- -=--:���f-�-ifi���-=--:��-�-fi���- -=--:���+-J 
I1 1 1 I1 2 (pxp) 1 (px q) 

- - - - - - - - - - : - - - - - - - - - -I2 1 l I22 (qx p) l (qx q) 
I 

(10-4) 

The covariances between pairs of variables from different sets-one variable 
from X(l ) , one variable from X(2)-are contained in I1 2 or, equivalently, in I2 1 . That is, the pq elements of I1 2 measure the association between the two sets. Whenp and q are relatively large, interpreting the elements of I1 2 collectively is ordinarily hopeless. Moreover, it is often linear combinations of variables that are interesting and 
useful for predictive or comparative purposes. The main task of canonical correla
tion analysis is to summarize the associations between the X(l ) and X(2) sets in terms 
of a few carefully chosen covariances (or correlations) rather than the pq covari
ances in I1 2 . 
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Linear combinations provide simple summary measures of a set of variables. Set 
U = a 'X( l ) 
V = b 'X(2) (10-5) 

for some pair of coefficient vectors a and b. Then, using (10-5) and (2-45) ,  we obtain 
Var (U ) = a' Cov (X( 1 ) ) a = a' I1 1a 

Var (V ) = b '  Cov (X(2) ) b = b 'I22b 

Cov (U, V ) = a' Cov (X( 1 ) , X (2) ) b = a' I1 2b 

We shall seek coefficient vectors a and b such that 

is as large as possible. 
We define the following: 

(10-6) 

(10-7) 

The first pair of canonical variables, or first canonical variate pair, is the pair of 
linear combinations U1 , V1 having unit variances, which maximize the correlation (10-7) ; 
The second pair of canonical variables, or second canonical variate pair, is the 
pair of linear combinations u2 ' v2 having unit variances, which maximize the correlation (10-7) among all choices that are uncorrelated with the first pair of 
canonical variables. 

At the kth step, 
The kth pair of canonical variables, or kth canonical variate pair, is the pair of 
linear combinations Uk , Vk having unit variances, which maximize the correlation (10-7) among all choices uncorrelated with the previous k - 1 canonical 
variable pairs. 

The correlation between the kth pair of canonical variables is called the kth canoni
cal correlation. 

The following result gives the necessary details for obtaining the canonical vari
ables and their correlations. 

Result 10.1. Suppose p < q and let the random vectors X(l ) and X(2) have 
(pX l ) (q X l ) Cov (X( 1 ) ) = I1 1  , Cov (X (2) ) = I22 and Cov (X ( l ) , X(2) ) = I1 2 , where I has full 

(pX p) (qXq) (pXq ) rank. For coefficient vectors a and b , form the linear combinations U = a 'X( l ) 

and V = b 'X(2) . Then (pX l ) ( qX l ) 

max Corr (U, V) = Pi 
a, b 
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attained by the linear combinations (first canonical variate pair) 
U1 == e 1 I1i12 X ( l ) and Vi == f1 I2i12X(2) 

The kth pair of canonical variates, k == 2, 3 , . . . , p, 

maximizes 
U - e' �-l/2x( l ) k - k ... l l  v; _ f' �-1;2x(2) k - k ... 22 

Corr (Uk , Vk ) == Pk 
among those linear combinations uncorrelated with the preceding 1 ,  2, . . . , k - 1 canonical variables. 

H *2 *2 *2 h 0 
1 f �-1/2� �-1 � �-1/2 ere p1 > p2 > · · · > Pp are t e e1genva ues o _..1 1 ... 1 2 ... 22 ... 2 1 ... 1 1 , and e1 , e2 , . . .  , eP are the associated (p X 1 ) eigenvectors. [The quantities pf2 , pi2 , . . .  , p�2 

are also the p largest eigenvalues of the matrix I2i12I2 1I1ii1 2I2i12 with correspond
ing ( q X 1 )  eigenvectors f1 , f2 , . . .  , f P . Each fi is proportional to I2 i12 I2 1 I! i12 ei . ] The canonical variates have the properties 

for k, e == 1 , 2, 0 0 0 ' p. 

Var ( Uk ) == Var (Vk ) == 1 

Cov ( Uk , Ue ) == Corr ( Uk , Ue ) == 0 k =I= e 

Cov (Vk , Ve) == Corr (Vk , Ve ) == 0 k =I= e 

Cov ( Uk , Ve) == Corr ( Uk , Ve) == 0 k =I= e 

Proof. We assume that I 1 1 and I22 are nonsingular. 1 Introduce the symmetric square-root matrices Iii? and Ii�2 with I 1 1 == Iii?Iill and I1i == I1f/2I1f/2 . [See 
(2-22) . ] Set c == Iilla and d == Ii�2b, so a == I1f/2c and b == I2i12d. Then 

( ) ( ) a ' I1 2b Corr ( a ' X 1 , b ' X 2 ) == -----;:========::-----;::::::::====== 
� Vb' I22b 

By the Cauchy-Schwarz inequality (2-48) ,  

C , �-1/2� �-l/2d ... 1 1 ... 1 2 ... 2 2  (10-8) 

(10-9) 

Since I1f/2I1 2I2ii2 1I1f/2 is a p X p symmetric matrix, the maximization result 
(2-51 )  yields 

' �-1/2� �-1 � �-1/2 \ ' C _.. 1 1 _..1 2_..2 2_..2 1_.. 1 1 C < 1t1 C C (10-10) 

1 If I-1 1  or I-22 is singular, one or more variables may be deleted from the appropriate set, and the 
linear combinations a 'X ( l ) and b'X (2) can be expressed in terms of the reduced set. If p > rank (I- 1 2 ) = 

p1 , then the nonzero canonical correlations are p{ , . . .  , p; 1 • 
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where A.1 is the largest eigenvalue of I1if2I1 2I2ii2 1I1i12 . Equality occurs in (10-10) 
for c = e1 , a normalized eigenvalue associated with A1 . Equality also holds in (10-9) 
if d is proportional to I2i12I2 1I1F2e1 . Thus, 

max Corr ( a 'X( 1 ) , b 'X (2) ) = � 
a, b 

(10-1 1) 
with equality occurring for a = I1if2c = I1V2e1 and with b proportional to 
I2i12I2i12I2 1I1if2e1 , where the sign is selected to give positive correlation. We take 
b = I2il2f1 . This last correspondence follows by multiplying both sides of 

(I!i!2I1 2I2ii2 1I1if2 ) e1 = "-1 e1 

(10-12) 
Thus, if ("-1 , e1 ) is an eigenvalue-eigenvector pair for I1if2I1 2I2ii2 1I1i12 , then 
( A.1 , f1 )-with f1 the normalized form of I2i12I2 1 I1if2e1-is an eigenvalue-eigenvector 
pair for I2i12I2 1I1ii1 2I2i12 . The sign for f1 is chosen to give a positive correlation. 
We have demonstrated that U1 = e1I1if2 X ( 1 ) and V1 = f1I2i12 X (2) are the first pair of 
canonical variables and that their correlation is pf = �. Also, Var ( U1 ) = 
e1I1if2I1 1I1if2e1 = e1e1 = 1 , and similarly, Var (V1 ) = 1 . 

Continuing, we note that U1 and an arbitrary linear combination a 'X ( 1 ) = 
c ' I1if2X( l ) are uncorrelated if 

At the kth stage, we require that c .l e1 , e2 , . . .  , ek_ 1 . The maximization result (2-52) then yields 

and by (10-8) , 
' � -1/2� �-1 � �-1/2 \ ' C ""1 1  ""1 2...,.2 2""2 1""1 1  C < ltkC C 

c ' I-1f2I I-1/2d C ( 'X ( 1 ) b 'X(2 ) ) = 1 1  1 2 22 < � /""\ orr a , " r-;- � r;;-:; - v Ilk 
v c' c v d 'd  

with equality for c = ek or a = I1if2ek and b = I2i12fk , a s before. Thus, Uk = 
eki1if2 X (l ) and Vk = fki2i12 X(2) , are the kth canonical pair, and they have correla-
tion � =  Pk · Although we did not explicitly require the Vk to be uncorrelated, 

Also, 
Cov (Uk , Ve) = eki!if2I1 2I2i12fe = 0, 

since fk is a multiple of eki1i12I1 2I2i/2 by (10-12) . 

if k i= f < p 

if k =�= e < P 

• 
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If the original variables are standardized with z(l ) = [ Zfl ) , Z�1 ) , . . . , Z�1 ) ] ' and 
z (2) = [ zF) , z�2) , . . .  , z�2) J ' , from first principles, the canonical variates are of the form 

U - a' z(1 ) - e' p-1/2z ( 1 ) k - k - k 1 1  
T T  _ b' z(2 ) _ f' p-1!2z (2) v k - k - k 2 2  (10-13) 

Here, Cov (Z ( 1 ) ) = p1 1 , Cov (Z(2) ) = P22 , Cov (Z ( 1 ) , Z (2) ) = P12 = P2 1 , and ek and fk are the eigenvectors of P1fi2P1 2P2iP2 1Prfl2 and P2i12P2 1PriP1 2P2il2 , respectively. The canonical correlations, Pk ,  satisfy 
k = 1 ,  2, . . .  ' p  (10-14) 

where pf2 > pi_2 > · · · > p;2 are the nonzero eigenvalues of the matrix 
p-;}12p12P2iP21P1i12 (or, equivalently, the largest eigenvalues of P2i12p21P1f p12P2i12) . 

Comment. Notice that 
a k (X ( 1 ) - IL ( 1 ) ) = a k 1 (X i 1 ) - J.LP) ) + a k 2 (X� 1 ) - J.L� 1 ) ) 

+ · · · + a (X( l ) - 11. ( 1 ) ) kp p rp 

(x( 1 ) - ( 1 ) ) 
� r=- p J.Lp 

+ · · ·  + akp v a-PP � r=-v a-PP 
where Var(X?) ) = a-i i ' i = 1 ,  2, . . . � p. Therefore, the canonical coefficients for the 
standardized variables, z?) = (X?J - J.L?) )/VO::Z , are simply related to the canon
ical coefficients attached to the original variables x?) . Specifically, if ak is the coef
ficient vector for the kth canonical variate Uk ,  then ak Vi�2 is the coefficient vector for 
the kth canonical variate constructed from the standardized variables Z( 1) . Here Vi�2 
is the diagonal matrix with ith diagonal element va::z. Similarly, bk Vi�2 is the coef
ficient vector for the canonical variate constructed from the set of standardized vari
ables Z(2) . In this case Vi�2 is the diagonal matrix with ith diagonal element VO::Z = 
Vvar (X12 ) ) ,  The canonical correlations are unchanged by the standardization. 
However, the choice of the coefficient vectors ak , bk will not be unique if Pk2 = Pk� 1 . The relationship between the canonical coefficients of the standardized variables 
and the canonical coefficients of the original variables follows from the special struc
ture of the matrix [see also (10-16)] 

I1i12I1 2I2ii2 1Irif2 ( or P1fl2 P1 2P2iP2 1Prif2 ) 
and, in this book, is unique to canonical correlation analysis. For example, in princi
pal component analysis, if ak is the coefficient vector for the kth principal compo
nent obtained from I, then ak(X - IL ) = ak V112z, but we cannot infer that ak V1/2 
is the coefficient vector for the kth principal component derived from p. 
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Example 1 0. 1  (Calcu lati ng canonical  variates and canonica l  correlations 
for standardized variab les) 

Suppose Z( l )  == [ zi1 ) , Z�1 ) ] '  are standardized variables and Z(2) == [ z i2) , Z�2) ] ' are also standardized variables. Let Z == [Z(l ) , Z(2) ] ' and 

Cov ( Z) == [H�-� - l -P�-�J == 
P2 1 l P22 

1 .0 .4 .5 .6 
.4 1 .0 .3 .4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -.5 .3 1 .0 .2 
.6 .4 .2 1 .0 

Then 

and 

-1/2 - [ 1 .0681 p1 1 - - .2229 

-1 - [ 1 .0417 p22 -
- .2083 

- .2229] 
1 .0681 
- .2083 ] 
1 .0417 

-1/2 -1 -1/2 - [ .4371 .2178] P1 1 P1 2P22P2 1P1 1  -
.2178 . 1096 

Th · 1 *2 *2 f p-1/2p p-Ip p-1/2 b · d f e e1genva ues, p1 , p2 , o 1 1  1 2 2 2 2 1 1 1  are o ta1ne rom 
.4371 - A .2178 0 = _2178 _1096 _ A = ( .4371 - A) ( . 1096 - A) - (2.178 )2 

== A2 - .5467 A + .0005 
yielding pf2 = .5458 and p!2 = .0009 . The eigenvector e1 follows from the vector equation [ .4371 .2178] 

.2178 .1096 el == ( .5458) el 
Thus, e1 == [ . 8947 , .4466 ] and 

- -1/2 - [ .8561 ] a1 - P1 1 e 1 - .2776 

ex _1 _ 
[ .3959 .2292] [ .8561 ] 

== 
[ .4026] b1 P22p2 181 - .5209 .3542 .2776 .5443 

We must scale b1 so that 
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The vector [ .4026, .5443 J '  gives 

[ .4026, .5443 ] [ 1 .·2° ·2] [ ·4026] = .5460 1.0 .5443 
Using v3460 = .7389, we take 

1 [ .4026] [ .5448] bl = .7389 .5443 = .7366 
The first pair of canonical variates is 

U1 = a1Z ( l ) = .862i1 ) + .282�1 ) 
V1 = b1Z (2) = .542l2) + .742�2) 

and their canonical correlation is 
Pi = v'Pf2 = V3458 = .74 

This is the largest correlation possible between linear combinations of variables 
from the z(l ) and Z(2) sets. 

The second canonical correlation, Pi = \1.00()9 = .03, is very small, and 
consequently, the second pair of canonical variates, although uncorrelated with 
members of the first pair, conveys very little information about the association 
between sets. (The calculation of the second pair of canonical variates is con
sidered in Exercise 10.5 .) 

We note that U1 and V1 , apart from a scale change, are not much different from the pair 

For these variates, 

and 

Var (U1 ) = a' p1 1a = 12.4 
Var (Vr ) = b' P22b = 2.4 

Cov (U1 , Vr) = a' p1 2b = 4.0 

� � 4.0 Corr ( U1 , Vi) = v'IT.4 v'2.4 = . 73 12.4 2.4 
The correlation between the rather simple and, perhaps, easily interpretable 
linear combinations U1 , V1 is almost the maximum value Pi = .74. M 
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The procedure for obtaining the canonical variates presented in Result 10.1 has 
certain advantages. The symmetric matrices, whose eigenvectors determine the canon
ical coefficients, are readily handled by computer routines. Moreover, writing the 
coefficient vectors as ak == I1F2ek and bk == I2il2fk facilitates analytic descriptions and their geometric interpretations. To ease the computational burden, many peo
ple prefer to get the canonical correlations from the eigenvalue equation 

(10-15) 
The coefficient vectors a and b follow directly from the eigenvector equations 

I1ii1 2I2ii2 1a == p*2a 
I2ii2 1I1ii1 2b == p*2b (10-16) 

The matrices I1ii1 2I2ii2 1 and I2ii2 1I1ii1 2 are, in general, not symmetric. (See Exercise 10.4 for more details. ) 

1 0.3 INTERPRETI NG TH E POPU LATION CANONICAL VARIABLES 

Canonical variables are, in general, artificial. That is, they have no physical mean
ing. If the original variables X(l ) and X(2) are used, the canonical coefficients a and 
b have units proportional to those of the X(l ) and X(2) sets. If the original variables 
are standardized to have zero means and unit variances, the canonical coefficients 
have no units of measurement , and they must be interpreted in terms of the stan
dardized variables. 

Result 10.1 gives the technical definitions of the canonical variables and canon
ical correlations. In this section, we concentrate on interpreting these quantities. 
Identifyi ng the Canon ical Variables 

Even though the canonical variables are artificial, they can often be "identified" in 
terms of the subject-matter variables. Many times this identification is aided by com
puting the correlations between the canonical variates and the original variables. 
These correlations, however, must be interpreted with caution. They provide only 
univariate information, in the sense that they do not indicate how the original vari
ables contribute jointly to the canonical analyses. (See, for example, [11 ] . ) For this 
reason, many investigators prefer to assess the contributions of the original variables 
directly from the standardized coefficients (10-13) . 

Let A == [ a1 , a2 , . . .  , ap ] '  and B == [b1 , b2 , . . .  , bq ] ' , so that the vectors of (pxp) (qx q) canonical variables are 
U == AX(l ) 

(pX l ) V == BX(2) 
(qX l ) (10-17) 

where we are primarily interested in the first p canonical variables in V. Then 
(10-18) 
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Because Var (�) = 1 , Corr (� , Xk1 ) ) is obtained by dividing Cov (� , Xk1 ) ) by 
Vvar (Xi1 ) ) = a-}!'f . Equivalently, Corr (� , Xk1 ) ) = Cov (� , a-kV2Xk1 ) ) . Introduc
ing the (p X p) diagonal matrix V1if2 with kth diagonal element a-kV2 , we have, in 
matrix terms, 

Pu,xU ) = Corr (U, X(l ) ) = Cov (U, V1if2X( 1 ) ) = Cov (AX ( l ) , V1if2X( 1 ) ) 
(pXp) 

Similar calculations for the pairs (U, X (2 ) ) , (V, X (2 ) ) and (V, X( l ) ) yield 
Pu,x(I ) = AI1 1Viif2 

(pXp) 
Pu,x(2) = AI1 2 V2i12 

(pXq) 

Pv,x(2) = BI22  V2i12 
(qxq ) 
Pv,x( l ) = BI2 1 V1if2 

(qX p) 

(10-19) 

where v;-i/2 is the ( q  X q) diagonal matrix with ith diagonal element Vvar (X)2l ) . 
Canonical variables derived from standardized variables are sometimes inter

preted by computing the correlations. Thus, 
Pu, z(l ) = Az P1 1 
Pu,z(2 ) = Az P12 

Pv, z(2) = Bz P22 
Pv, z(l ) = Bz P2 1 (10-20) 

where Az and Bz are the matrices whose rows contain the canonical coefficients 
(pxp ) (qxq) 

for the z( l ) and Z(2) sets, respectively. The correlations in the matrices displayed in 
(10-20) have the same numerical values as those appearing in (10-19); that is, Pu,x( l )  == 
Pu, z( l ) , and so forth. This follows because, for example, Pu,x( l ) = AI1 1V1if2 == 
AVi�2V1if2I1 1V1if2 = Az P1 1 == Pu, z( l ) . The correlations are unaffected by the standardization. 
Example 1 0.2 (Computi ng corre lations between canonica l  va riates 

and thei r component variab les) 

Compute the correlations between the first pair of canonical variates and their 
component variables for the situation considered in Example 10.1 . 

The variables in Example 10.1 are already standardized, so equation 
(10-20) is applicable. For the standardized variables, 

and 

With p = 1 , 

[1 .0 .4] P l l = .4 1 .0 
[1 .0 .2] P22 = .2 1.0 

[ .5 .6] P1 2 = .3 .4 

Az = [ . 86, .28 ] Bz = [ .54, .74] 



so 

and 
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J 
[1 .0 .4] [ 

Pu1 , z( l )  = Az P1 1 = [ .86, .28 _4 1 _0 = . 97, .62] 

[1 .0 .2] 
J Pv1 , z(2 ) = Bz P22 = [ .54, .74 ] .2 1.0 = [ . 69, .85 

We conclude that, of the two variables in the set Z(l ) , the first is most 
closely associated with the canonical variate U1 . Of the two variables in the set 
Z (2) , the second is most closely associated with Vi .  In this case, the correlations 
reinforce the information supplied by the standardized coefficients Az and Bz . However, the correlations elevate the relative importance of Z�1 ) in the first set 
and Zl2) in the second set because they ignore the contribution of the remain
ing variable in each set. 

From (10-20), we also obtain the correlations 
[ .5 .6] 

Pub z(2) = Az P1 2 = [ . 86, .28 ] .3 .4 = [ . 51 , .63 ] 

and 
[ .5 .3] 

Pv1 , z( 1 ) = Bz P2 1 = Bz Pr 2 = [ . 54, .74 ] .6 .4 = [ .71 , .46 ] 

Later, in our discussion of the sa�ple canonical variates, we shall comment on 
the interpretation of these last correlations. • 

The correlations Pu, x( l ) and Pv,x(2) can help supply meanings for the canonical variates. The spirit is the same as in principal component analysis when the correla
tions between the principal components and their associated variables may provide 
subject-matter interpretations for the components. 
Canon ica l  Correlations as Genera l izations 
of Other Corre lation Coefficients 

First, the canonical correlation generalizes the correlation between two variables. 
When X(l ) and X(2) each consist of a single variable, so that p = q = 1 , 

for all a, b 

Therefore, the "canonical variates" ul = xP) and Vi = xi2) have correlation 
Pi = I Corr (XP) , Xl2) ) 1 .  When X(l ) and X(2) have more components, setting 
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a' = [0 , . . .  , 0 , 1 ,  0, . . .  , O J with 1 in the ith position and b' = [0 , . . .  , 0, 1 ,  0, . . .  , O J with 
1 in the kth position yields 

I Corr (X?) ' Xi2) ) 1 = I Corr ( a 'X ( l ) ' b 'X(2) ) 1 

< max Corr (a 'X ( l ) , b 'X (2) ) = Pi 
a, b 

(10-21) 

That is, the first canonical correlation is larger than the absolute value of any entry 
. P v-1;2� v-1;2 Ill 1 2 = 1 1  ""I 2 2 2 · 

Second, the multiple correlation coefficient p1 (x(2) ) [see (7 -54)] is a special case 
of a canonical correlation when X(l ) has the single element xP) (p = 1 ) .  Recall that 

for p = 1 (10-22) 

When p > 1 ,  Pi is larger than each of the multiple correlations of X�1 ) with X(2) or 
the multiple correlations of xj2) with X(l ) . 

Finally, we note that 
(10-23) 

k = 1 ,  2, . . .  ' p  
from the proof of Result 10 .1 .  Similarly, 

Pvk(x( l ) ) = max Corr ( a 'X (l ) , Vk) = Corr (Uk , Vk) = Pk , 
a 

(10-24) 

k = 1 ,  2, . . .  ' p 
That is, the canonical correlations are also the multiple correlation coefficients of Uk 
with X(2) or the multiple correlation coefficients of Vk with X(l ) . 

Because of its multiple correlation coefficient interpretation, the kth squared 
canonical correlation Pk2 is the proportion of the variance of canonical variate Uk 
"explained" by the set X(2) . It is also the proportion of the variance of canonical vari
ate Vk "explained" by the set X(l ) . Therefore, Pk2 is often called the shared variance 
between the two sets X(l ) and X(2) . The largest value, pi2

, is sometimes regarded as 
a measure of set "overlap." 

The Fi rst r Canonical Variab les as a Summary of Variab i l ity 

The change of coordinates from X(l ) to U = AX(l ) and from X(2) to V = BX(2) is 
chosen to maximize Corr (U1 , Vi)  and, successively, Corr (Vi , Vj) , where (Vi , Vi) have zero correlation with the previous pairs (U1 , Vi) ,  (U2 , V2) ,  . . .  , (Ui_ 1 , Vj_ 1 ) .  Correlation between the sets X(l ) and X(2) has been isolated in the pairs of canonical variables. 

By design, the coefficient vectors ai , bi are selected to maximize correlations, not necessarily to provide variables that (approximately) account for the subset covari
ances I1 1  and I22 . When the first few pairs of canonical variables provide poor sum
maries of the variability in I1 1  and I22 , it is not clear how a high canonical correlation 
should be interpreted. 
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Example 1 0.3  (Canonica l  correlation  as a poor summary of variab i l ity) 

Consider the covariance matrix 

Cov 
xP) 

x�l ) 

xi2) 

x�2) 

100 0 i 0 0 [Il l  ! I1 2J _ _ _ _ _  Q _ _ _ _ _  � _ _ _ _  j _ _  :�� _ _ _ _ _ _ _ _  Q_ = :t;-� -T-i;-�- = 
o .95 ; 1 o 

I 

0 0 0 100 
I 

The reader may verify (see Exercise 10 .1) that the first pair of canonical vari
ates ul = x�l ) and vl = xi2) has correlation 

pf = Corr (U1 , V1 )  = .95 

Yet U1 = X�1) provides a very poor summary of the variability in the first set. 
Most of the variability in this set is in xP) , which is uncorrelated with U1 . The same situation is true for Vi = VXl2) in the second set. • 

A Geometrica l I nterpretation of the Population Canon ica l  
Correlation  Analysis 

A geometrical interpretation of the procedure for selecting canonical variables pro
vides some valuable insights into the nature of a canonical correlation analysis. 

The transformation 
U = AX(l ) 

from x(l ) to u gives 
Cov (U) = AI1 1A' = I 

From Result 10.1 and (2-22) , A = E' I1i12 = E'P1A1112 P 1  where E' is an orthogonal 
matrix with row e; , and I1 1  = P1 A1 P1 . Now, P1X ( l ) is the set of principal components derived from X(l ) alone. The matrix A1112 P1 X( l ) has ith row ( 1 /\0\) pi X( 1 ) , which is the ith principal component scaled to have unit variance. That is, 

Cov ( A11/2P1X( l ) )  = A11/2 p 1Il lPl A11/2 = A11/2 P1Pl A1PrPl A11/2 

= A11/2 Al A11/2 = I 

Consequently, U = AX(l ) = E 'P1 A1112 P1X( l ) can be interpreted as ( 1 )  a 
transformation of X(l ) to uncorrelated standardized principal components, followed by (2) a rigid (orthogonal) rotation P1 determined by I1 1  and then (3) another ro
tation E' determined from the full covariance matrix I. A similar interpretation ap
plies to V = BX(2) . 
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1 0.4 TH E SAMPLE CANONICAL VARIATES AN D SAMPLE 
CANONICAL CORRELATIONS 

A random sample of n observations on each of the (p + q)  variables X(1 ) , X(2) can be assembled into the n X (p + q) data matrix 
x = [x( l ) i X(2) ] 

( 1 ) ( 1 ) ( 1 ) (2) (2) (2) X 1 1  X1 2 X1 p X1 1  X1 2 X1 q 
= 

[ xi; J , xi�J , ] ( 1 ) ( 1 ) ( 1 ) (2) (2) (2 ) X2 1 X2 2 X2p X2 1 X22 X2q (10-25) ( 1 ) , (2) , ( 1 ) ( 1 ) ( 1 ) (2) (2) (2) Xn Xn Xn 1 Xn2 Xnp Xn 1 Xn 2 Xn q 
The vector of sample means can be organized as 

1 n 
i( l ) = - :L x)1 ) n j= 1 

where 
1 n 

i(2) = - :L x}2) 
n j= 1 

(10-26) 

Similarly, the sample covariance matrix can be arranged analogous to the represen
tation (10-4) . Thus, 

where 

s 
(p+q) X (p+q) 

S1 1  i S1 2 
_ :�: � : _ �-- :� :��-S2 1  ! S2 2 (qx p) ! ( qxq) 

S - 1 � ( (k) - -(k) ) ( (/) - -(!) ) ' k l - _ 1 
£,; Xj X Xj X , 

n j= 1 

The linear combinations 
{; = a' x( 1 ) . ' 

have sample correlation [see (3-36)] 

a ' s1 2h r A A - -------u , v -
" � ,.. � 
v a ' S 1 1 a v b ' S22b 

k, l = 1 ,  2 (10-27) 

(10-28) 

(10-29) 

A A 
The first pair of sample canonical variates is the pair of linear combinations 

U1 , Vi having unit sample variances that maximize the ratio (10-29) .  
A A 

In general, the kth pair of sample canonical variates is the pair of linear combinations 
Uk , Vk having unit sample variances that maximize the ratio (10-29) among those linear 
combinations uncorrelated with the previous k - 1 sample canonical variates. 

The sample correlation between {;k and vk is called the kth sample canonical 
correlation. The sample canonical variates and the sample canonical correlations can be ob
tained from the sample covariance matrices S1 1 , S 1 2 = S2 1 , and S22 in a manner consistent with the population case described in Result 10. 1 .  



Sect ion 1 0 .4 The Sa mp le  Canon i ca l  Va r iates and Samp le  Canon ica l  Corre lat ions 557 

Result 10.2. Let pf2 > pf2 > · · · > p;2 be the p ordered eigenvalues of 
S1if2S1 2S2iS2 1S1if2 with corresponding eigenvectors e1 , e2 , . . .  , eP , where the Sk t are " " " defined in (10-27) and p < q. Let f1 , f2 , . . .  , fP be the eigenvectors of S2i12S2 1 S1�S1 2S2i12 , where the first p f's may be obtained from fk = 
( 1/p% ) S2ii2S2 1 S!�12ek , k = 1 ,  2, . . .  , p. Then the kth sample canonical variate pair2 is 

U" - e" ' s-1/2 x(1 ) k - k 1 1 t7 - r"' s-1/2 x(2 ) 
y k - k 22 

" 
bk 

where x(l ) and x(2) are the values of the variables X(l ) and X(2) for a particular ex
perimental unit . Also, the first sample canonical variate pair has the maximum sam
ple correlation 
and for the kth pair, 

ruk, Vk = Pk 
is the largest possible correlation among linear combinations uncorrelated with the 
preceding k - 1 sample canonical variates. 

The quantities Pi , Pi , . . .  , p; are the sample canonical correlations? 
Proof. The proof of this result follows the proof of Result 10. 1 ,  with Sk t sub-stituted for Ik1 , k, l = 1 ,  2. • 

The sample canonical variates have unit sample variances 
suk , uk = svk , vk = 1 

and their sample correlations are 

" " 

rub uc = rvk, Vc = 0, 

ruk , vc  = 0, 
k i= f  
k i= f  

(10-30) 

(10-31) 

The interpretation of Uk , Vk is often aided by computing the sample correlations be-tween the canonical variates and the variables in the sets X(1 ) and X(2) . We define 
the matrices 

A = [ a1 , a2 , . . . , ap J ' :8 
(pxp) (qxq) 

(10-32) 

whose rows are the coefficient vectors for the sample canonical variates.4 Analogous to (10-17) , we have 
iJ = A x(l ) 

(pX 1 ) 
V = Bx(2) 

(qX 1 ) 
(10-33) 

2When the distribution is normal, the maximum likelihood method can be employed using i = Sn 
in place of S. The sample canonical c�rrelations Pk are, therefore, the maximum likelihood estimates of 
Pk and v' n/ ( n - 1 )  ab v' n/ ( n - 1 )  bk are the maximum likelihood estimates of ak and bk , respectively. 

3 If p > rank ( S1 2 ) = p1 , the nonzero sample canonical correlations are pf , . . .  , p� 1 • 
4Th b"' - s-1;2 "'r b"' - s-1;2 "'r b"' - s-1;2 "'r d · d f  h · f e vectors p1 + 1 - 22 p 1+ 1 , p 1+2 - 2 2  p1+2 , ·;, . ,  q - 22 q are eterrmne rom a c o1ce o 

the last q - p1 mutually orthogonal eigenvectors f associated with the zero eigenvalue of 
s2Y2S2 1 S1i s1 2s2Y2 • 
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and we can define 
Ru,x( l ) == matrix of sample correlations of U with x( l ) 
Rv,x(2 ) == matrix of sample correlations of V with x(2) 
Ru,x(2 ) == matrix of sample correlations of iJ with x(2) 
Rv, x(l ) == matrix of sample correlations of V with x( l ) 

Corresponding to (10-19) , we have 
Ru,x( l ) == As1 1D!i!2 
Rv, x(2 ) == BS22D2�12 
Ru x(2 ) == As1 2D2�12 
Rv x( l ) == BS2 1D1il2 

(10-34) 

where D1if2 is the (p X p) diagonal matrix with ith diagonal element (sample 
var(x� l ) ) )-112 and D2�/2 is the (q X q) diagonal matrix with ith diagonal element 
(sample var( x�2) ) )-1/2. 

Comment. If the observations are standardized [see (8-25) ] ,  the data ma
trix becomes [ ( 1 ) ' z 1 Z = [ Z{l l  i z(zJ ] = : 

( 1 ) ' Zn 

(2) ' ] z 1 

(2 ) ' Zn 
and the sample canonical variates become 

iJ == A z ( 1 ) z V == B z (2) z 
(pX 1 ) (qX 1 ) 

(10-35) 

where Az == An}�? and Bz == BDi�2 . The sample canonical correlations are unaf
fected by the standardization. The correlations displayed in (10-34) remaip un
changed and may be calculated, for standardized observations, by substituting Az for 
A, Bz for B, and R for S . Note that D1i12 == I and D2�/2 == I for standardized 
observations. (pxp) (q x q) 

Example 1 0 .4 (Canon ical correlation ana lys is of the ch icken-bone data) 

In Example 9.14, data consisting of bone and skull measurements of white leghorn 
fowl were described. From this example, the chicken-bone measurements for {xP) == skun length 

X�1 ) == skull breadth {Xi2) == femur length 
X �2) == tibia length 
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have the sample correlation matrix 
I 1 .0 .505 : .569 .602 

a 
= [i-!�- - 1 - -:�-:J = -- - -:-�-�-�-- - - -� �%2-2- -h-�� ?:?:_ - - - - -��i� -

.602 .467 ! . 926 1 .0 
A canonical correlation analysis of the head and leg sets of variables using R 
produces the two canonical correlations and corresponding pairs of variables 

and 
Pi = .631 

Pi = .057 

V1 = .781zP ) + .345z�1 ) 
VI = .060zl2) + . 944z?) 

U2 = - .856zP ) + 1 .106z�1 ) 
V; = -2.648zl2) + 2.475z�2) 

Here z?) , i = 1 , 2 and z�2) , i = 1 , 2 are the standardized data values for sets 1 
and 2, respectively. The preceding results were taken from the SAS statistical 
software output shown in Panel 10 . 1 . In addition, the correlations of the orig
inal variables with the canonical variables are highlighted in that panel. • 

Example 1 0. 5  (Canon ica l  correlation  ana lys is of job satisfaction) 

As part of a larger study of the effects of organizational structure on "job sat
isfaction," Dunham [4] investigated the extent to which measures of job satis
faction are related to job characteristics. Using a survey instrument, Dunham 
obtained measurements of p = 5 job characteristics and q = 7 job satisfaction 
variables for n = 784 executives from the corporate branch of a large retail 
merchandising corporation. Are measures of job satisfaction associated with job 
characteristics? The answer may have implications for job design. 
PANEL 10.1 SAS ANALYSIS  FOR EXAMPLE 1 0 .4 US ING PROC CANCORR. 

t it le 'Canon ical Corre lat ion Ana lys is'; 
data sku l l  (type = corr); 
_type_ = 'CORR'; 
i n put _name_$ x1 x2 x3 x4; 
ca rds; 
x1  1 .0 
x2 . 505  1 .0 
x3 . 569 .422 1 .0 
x4 .602 .467 .926 1 .0 
I 

proc cancorr data = sku l l  vprefix = head wprefix = leg; 
va r x 1  x2; with x3 x4; 

PROGRAM COMMANDS 

(continues on next page) 
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PANEL 10.1 (continued) 

Canon ica l Corre lat ion Ana lys is 

2 

X1 
X2 

X3 
X4 

X1  
X2 

X3 
X4 

Adj usted Approx 
Canon ica l  Standard 

Corre lat ion 

0.62829 1 

E rror 

0.036286 
0.060 1 08 

Canon ica l  Structure 

H EAD1  
0 .9548 
0 .7388 

LEG 1 
0 .9343 
0.9997 

LEG 1 
0 .6025 
0.4663 

H EAD 1 
0 . 5897 
0 .6309 

HEAD2 
-0. 2974 

0 .6739 

LEG2 
-0 .3564 

0 .0227 

LEG2 
-0.0 1 69 

0 .0383 

H EAD2 
-0.0202 

0 .00 1 3  

Sq uared 
Canon ical 

Correlat ion 

0 .398268 
0 .003226 

OUTPUT 

(see 1 0-34) 

(see 1 0-34) 

(see 1 0-34) 

(see 1 0-34) 
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The original job characteristic variables, X(l ) , and job satisfaction vari
ables, X (2) , were respectively defined as 

x il ) feedback 
x�l ) task significance 

x( l ) = x�l ) task variety 
xil ) task identity 
x�l ) autonomy 
xF ) supervisor satisfaction 
x�2) career-future satisfaction 
x�2) financial satisfaction 

x(2) = x�2) = workload satisfaction 
x�2) company identification 
x�2) kind-of-work-satisfaction 
x�2) general satisfaction 

Responses for variables X(l ) and X(2) were recorded on a scale and then stan-
dardized. The sample correlation matrix based on 784 responses is 

[ Ru j R1 2 J R = - - - - - - - -:- - -- - - - - - -
R2 1 i R22 

= 

1 .0 .33 .32 .20 .19 .30 .37 .21 
.49 1.0 .30 .21 .16 .08 .27 .35 .20 
.53 .57 1 .0 .31 .23 .14 .07 .24 .37 .18 
.49 .46 .48 1.0 .24 .22 .12 .19 .21 .29 .16 
.51 .53 .57 .57 1.0 .38 .32 .17 .23 .32 .36 .27 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - r - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -.33 .30 .31 .24 .38 1.0 
.32 .21 .23 .22 .32 .43 1.0 
.20 .16 .14 .12 .17 .27 .33 1.0 
.19 .08 .07 .19 .23 .24 .26 .25 1.0 
.30 .27 .24 .21 .32 .34 .54 .46 .28 1.0 
.37 .35 .37 .29 .36 .37 .32 .29 .30 .35 1.0 
.21 .20 .18 .16 .27 .40 .58 .45 .27 .59 .31 1 .0 

The min(p, q )  = min( 5, 7 ) = 5 sample canonical correlations and the sample 
canonical variate coefficient vectors (from Dunham [4]) are displayed in the 
following table: 



U'1 0\ 
N 

CAN O N I CAL VAR IATE COEFF IC I E NTS AN D CAN O N I CAL CORRELATIONS  

Standardized variables 
( 1 ) Z1 ( 1 )  Z2 

( 1 ) Z3 ( 1 )  Z4 ( 1 )  Z5 
"' * 
P1 

(2 ) Z1 
"' 

a' · 1 · .42 .21 . 17 - .02 .44 .55 b' · 1 · .42 
"' 

a ' · 2 · - .30 . 65 .85 - .29 - .81 .23 b' · 2 · .03 
"' 

a' · 3 · - .86 .47 - .1 9  - .49 .95 .12 b' · 3 · .58 
"' 

a' · 4 · .76 - .06 - .12 -1 .14 - .25 .08 b' · 4 · .23 
"' 

a ' · 5 · .27 1 .01 - 1 .04 .1 6  .32 .05 b' · 5 · - .52 

Standardized variables 
(2 ) Z2 (2 ) Z3 (2 ) Z4 (2 ) Z5 (2 ) Z6 (2 ) Z7 

.22 - .03 .01 .29 .52 - . 12 

- .42 .08 - .91 . 14 .59 - .02 

- .76 - .41 - .07 . 1 9  - .43 .92 

.49 .52 - .47 .34 - .69 - .37 

- .63 .41 .21 .76 .02 . 10 
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For example, the first sample canonical variate pair is 
U1 = .42zP ) + .21z�1 ) + . 17 z�1 ) - .02z�1 ) + .44z�1 ) 
vl = .42zF ) + .22z�2) - .o3z�2) + .01z�2) + .29z�2) + . 52z�2) - .12z�2) 

with sample canonical correlation Pi A= .55. AccordingA to the coefficients, U1 is primarily a feedback and autonomy variable, while Vi represents supervisor, career-future, and kind-of-work satis-
faction, along with company identi�catiofl. A To provide interpretations for U1 an2 Vi , the sample correlations between U1 and its component variables and between Vi and its component variables were com
puted. Also, the following table shows the sample correlations between variables 
in one set and the first sample canonical variate of the other set. These correlations 
can be calculated using (10-34) . 

SAM PLE CORRELATIONS BETWEEN ORIG I NAL VARIABLES AND CANONICAL VARIABLES 

Sample Sample 
canonical canonical 
variates variates 

x(l ) variables A A X(2) variables A A 
ul vl ul vl 

1 . Feedback .83 .46 1 . Supervisor satisfaction .42 .75 
2. Task significance .74 .41 2 . Career-future satisfaction .35 .65 
3. Task variety . 75 .42 3. Financial satisfaction .21 .39 
4. Task identity .62 .34 4. Workload satisfaction .21 .37 
5. Autonomy .85 .48 5. Company identification .36 .65 

6. Kind-of-work satisfaction .44 .80 
7. General satisfaction .28 .50 

All five job characteristic �ariables have roughly the �arne correlations 
with the first canonical variate U1 . From this standpoint, U1 might be interpreted as a job characteristic "index." This differs from the preferred interpre
tation, based on coefficients, where the task variables are n9t important. 

The other member of the first canonical variate pair, V1 , seems to be representing, primarily, supervisor satisfaction, career-future satisfaction, c2mpany 
identification, and kind-of-work satisfaction. As the variables suggest, Vi might 
be regarded as a job satisfaction-company identification index. This agrees with 
the preceding interpretation based on the cal}onicalAcoefficients of the z�2) 's. The sample correlation between the two indices U1 and Vi is Pi = .55. There appears to be some overlap between job characteristics and job satisfaction. We explore 
this issue further in Example 10.7. • 

A A Scatter plots of the first (U1 , V1 ) pair may reveal atypical observations xj re-quiring further study. If the canonical correlations Pi , pj ,  . . .  are also moderately 
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large, scatter plots of the pairs cu2 , v2) ,  cu3 ,  v3 ) , . . .  may also be helpful in this re
spect. Many analysts suggest plotting "significant" canonical variates against their 
component variables as an aid in subject-matter interpretation. These plots reinforce 
the correlation coefficients in (10-34) . 

If the sample size is large, it is often desirable to split the sample in half. The 
first half of the sample can be used to construct and evaluate the sample canoni
cal variates and canonical correlations. The results can then be "validated" with 
the remaining observations. The change (if any) in the nature of the canonical 
analysis will provide an indication of the sampling variability and the stability of 
the conclusions. 

1 0.5  ADDITIONAL SAMPLE DESCRIPTIVE M EASURES 

If the canonical variates are "good" summaries of their respective sets of variables, 
then the associations between variables can be described in terms of the canonical 
variates and their correlations. It is useful to have summary measures of the extent 
to which the canonical variates account for the variation in their respective sets. It 
is also useful, on occasion, to calculate the proportion of variance in one set of vari
ables explained by the canonical variates of the other set. 
Matrices of E rro rs of Approximations 

Given the matrices A and B defined in (10-32), let 8( i ) and b (i ) denote the ith column 
of .A-1 and :B-1 , respectively. Since iJ = Ax(1 ) and V = Bx(2) we can write 

x( l ) = A-1 iJ 
(pX 1 ) (pXp) (pX 1 ) 

x(2) = :B-1 V 
(qX 1 ) (qX q ) (qX 1 ) 

(10-36) 

Because sample C?v (1}, V) = As1 2B' ,  sample Cov (iJ)  = As1 1.N = I , and 
(pXp) sample Cov (V) = BS22B' = I , 

(qxq) 

Pi 0 0 

s1 2 = A-1 0 Pi 0 
0 (:8-1 ) ' == pf8( 1 )b ( 1 ) ' + pf8(2)b(2) 1 

0 0 p; + . . . + p;8(P) b(p) 1 

S1 1  = (A-1 ) (A-1 ) ' = 8( 1 ) 8( 1 ) 1 + 8(2) 8(2) 1 + . . . + 8(P) 8(p) 1 

S22 = ( B-1 ) (:8-1 ) ' = -b( l )-b ( l ) l  + -b(2)b(2) 1 + · · · + -b(q )-b(q) l  

(10-37) 

Since x( l ) = A-1U and iJ has sample covariance I, the firstAr c�lumns Aof .A- 1 
contain the sample covariances of the first r canonical variates U1 , U2 , . • •  , U, with 
their component variables Xi1 l , X�1 l , 0; 0 ,  X�1; 0 Similarly, the first r columns of .8� 1 
contain the sample covariances of V1 , V2 , . • •  , V, with their component variables. 
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If only the first r canonical pairs are used, so that for instance, 
" 
u1 " 

x( 1 ) = [ 8( 1 ) 8(2) 8(r) J u2 

" 
ur 

(10-38) 
" Vi " 

X'(2 ) = [b ( 1 ) b(2 ) b(r) J v2 
" 

vr 

then S1 2 is approximated by sample Cov (x( 1 ) , x(2) ) . 
Continuing, we see that the matrices of errors of approximation are 

s1 1  _ ( 8( 1 ) 8( 1 ) 1 + 8(2) 8(2 ) 1 + . . .  + 3(r) 3(r) 1 ) = 8(r+ 1 ) 8(r+ 1 ) 1 + . . .  + 8(P) 8(p) 1 

s22 - (b( l )b ( l ) l  + b(2)b (2 ) 1 + . . . + b(r)t;(r) l ) = (;(r+ 1 )(; (r+ 1 ) 1 + . . .  + b(q)(; (q ) l  

s1 2 - (/Ji8( 1 )b ( l ) I + iJi8(2)b(2) I + . . . + ;J;8(r)t; (r) I ) 
= p"* 8(r+ 1 )b (r+ 1 ) 1 + . . .  + p"*8(P)b(P) 1 r+ 1 p 

(10-39) 
The approximation error matrices (10-39) may be interpreted as descriptive 

summaries of how well the first r sample canonical variates reproduce the sample 
covariance matrices. Patterns of large entries in the rows and/or columns of the ap
proximation error matrices indicate a poor "fit" to the corresponding variable ( s ) . 

Ordinarily, the first r variates do a better job of reproducing the elements of 
S1 2 = S2 1 than the elements of S1 1 or S22 . Mathematically, this occurs because the residual matrix in the former case is directly related to the smallest p - r sample canon
ical correlations. These correlations are usually all close to zero. On the other hand, the 
residual matrices associated with the approximations to the matrices s1 1 and s22 depend only on the last p - r and q - r coefficient vectors. The elements in these vec
tors may be relatively large, and hence, the residual matrices can h,...ave "large" entri�s. For standardized observations, Rk1 replaces Sk 1 and 8�k ) , b�1) replace 8(k) , b(l ) 
in (10-39) . 
Example 1 0.6 {Ca lcu lati ng matrices of errors of approximation) 

In Example 10.4, we obtained the canonical correlations between the two head 
and the two leg variables for white leghorn fowl. Starting with the sample cor
relation matrix 

[ I J R1 1  ! R12 R = - - - - - - - - +-- - - - - - - - = 
R2 1 l R22 

1.0 .505 .569 .602 
.505 1 .0 .422 .467 ... - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -.569 .422 1.0 .926 
.602 .467 .926 1.0 
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we obtained the two sets of canonical correlations and variables 

and 

ri == .631 

pf = .057 

u1 = .781zP) + .345z�1 ) 
VI = .060zi2) + . 944z�2) 

u2 = - .856zP ) + 1 . 1o6z�1 ) 
v2 = -2.648zi2) + 2.475z�2) 

where z?) , i == 1 , 2 and z�2) , i = 1 , 2 are the standardized data values for sets 1 
and 2, respectively. 

We first calculate (see Panel 10 .1) 

A _1 = [ .781 .345]-1 [ . 9548 - .2974] z - .856 1 . 106 - .7388 .6739 
8-1 == [ .9343 - .3564] z .9997 .0227 

Consequently, the matrices of errors of approximation created by using only 
the first canonical pair are 

R12 - sample Cov (Z( l ) , Z(2l ) = ( .057 ) [ - :���: J [ - .3564 .0227 ] 
= [ .006 -.000] - .014 .001 

'"'"'( 1 ) [ - .2974] R1 1 - sample Cov ( z ) = .6739 [ - .2974 

= [ .088 - .200] - .200 .454 

R22 - sample Cov (Zt2l ) = 
[ -:���� J [ - .3564 

= [ . 127 - .008] - .008 .001 

.6739] 

.0227 ] 

where z(1 ) z(2) are given by (10-38) with r = 1 and 8(1 ) b(l ) replace 8(1 ) b( l ) ' z ' z ' ' respectively. 
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We see that the first pair of canonical variables effectively summarizes 
(reproduces) the intraset correlations in R1 2 . However, the individual variates are not particularly effective summaries of the sampling var�ability in the orig
inal z ( 1 ) and z (2) sets, respectively. This is especially true for U1 . • 

Proportions of Exp la ined Sample Variance 

When the observations are standardized, the sample covariance matrices Sk 1 are c9rrelation matrices Rkl · The canonical coefficient vectors are the rows of the matrices Az and 
Bz and the columns of A;1 and B;1 are the sample correlations between the canonical vari
ates and their component variables. 

and 

so 

Specifically, 
sample Cov ( z ( 1 ) , iJ) == sample Cov (A;1U, iJ) == A;1 

sample Cov ( z (2) , V) == sample Cov (B;1 V, V) == :8;1 

B" -1 == [b" ( 1 ) b" (2) b" (q) J z z ' z ' • • . ' z 

ru l , z ( i ) 

r{; l · z(� ) 

ru l , z (1) 

rv l , z (i ) 

Yv l , Z (�) 

rv l , Z (�) 

ru2, z( i ) 

Y{;2 , Z (� ) 

ru2 , z (1) 

rv 2 • z (i ) 

Yv 2 • Z (�) 

rv2 , Z (�) 

ru z( l )  P '  1 
r{; z( l ) P '  2 

r{; z( l ) P '  P 

rv z(2) P '  1 
rv z (2) P,' 2 

rv z(2 ) P '  P 

(10-40) 

where rul ' z(P and rvl ' z (� ) are the sample correlation coefficients between the quantities with subscripts. 
Using (10-37) with standardized observations, we obtain 

Total (standardized) sample variance in first set 
== tr (R1 1 ) == tr ( a�1 ) a�1 ) ' + a�2) a�2) ' + · . . + a�p) a�p) , ) == p (10-41a) 

Total (standardized) sample variance in second set 
(10-41b) 

Since the correlations in th� fi�st r < p colu�ms 
A 
of A;1

A 
and :8;1 involve only the 

sample canonical variates U1 , U2 , . • •  , U, and V1 , V2, . . . , V,. ,  respectively, we define 
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the contributions of the first r canonical variates to the total (standardized) sample 
variances as 

and 

The proportions of total (standardized) sample variances "explained by" the first r 
canonical variates then become 

and 

(proportion of total standardized) 
Ri( 1 ) i u 1 , u2 , . . .  , u r  = sample varian�e il} first s�t 

= 

explained by U1 , U2 , • • •  , U, 

t ( -" ( 1 ) -" ( 1 ) , + + -" ( Y) -" ( Y) 1 ) r az az . . . az az 
tr (R1 1 ) 

p 

(proportion of total standardized) 
Ri(2) 1 v 1 , v2 , . . .  , vr = sample variance,._ in �econd,._set 

explained by Vi , V2, . . . , V, 

q 

(10-42) 

Descriptive measures (10-42) provide some indication of how well the canoni
cal variates represent their respective sets. They provide single-number descriptions 
of the matrices of errors. In particular, 

! tr [R - a( 1 ) a ( 1 ) ' - a(2) a (2 ) ' - . . .  - a (r) a (r) , J = 1 - R2( 1 ) A A A 

p 1 1  z z z z z z z I U 1 , U2 , . . .  , Ur 

according to (10-41) and (10-42) . 
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Example 1 0.7  (Ca lcu lati ng proportions of sample variance expla i ned 
by canonica l  variates) 

Consider the job characteristic-job satisfaction data discussed in Example 10.5 . 
Using the table of sample correlation coefficients presented in that example, 
we find that 

" The first sample canonical variate U1 of the job characteristics set account§._ for 
58% of the set's total sample variance. The first sample canonical variate V1 of the job satisfaction set explains 37% of the set's total sample v�riance. We might 
thus infer that U1 is a "better" representative 9f its set than Vi is of its set. The 
interested reader may wish to see how well U1 and V1 reproduce the correlation matrices R1 1  and R22 , respectively. [See (10-39).] • 

1 0.6 LARG E SAMPLE INFERENCES 

When I1 2 = 0, a 'X( l ) and b 'X(2 ) have covariance a 'I1 2b = 0 for all vectors a and b. 
Consequently, all the canonical correlations must be zero, and there is no point in 
pursuing a canonical correlation analysis. The next result provides a way of testing 
I1 2 = 0, for large samples. 

Result 10.3. Let 

j = 1 ,  2, . . .  , n 

be a random sample from an Np+q ( #L , I )  population with 

I = 

I 

I1 1  l I12 -��-�-�L_l _���:} _ _ 
I2 1 l I22 (qXp) i (qXq ) 

Then the likelihood ratio test of H0 : I1 2 = 0 versus H1 : I1 2 # 0 rej ects H0 for 
large values of (pxq ) (px q) 

(10-43) 
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where 

[ I J S1 1 l S1 2 s = - - - - - - + - - - - - - - -

82 1 l S22 

i s the unbiased estimator of I. For large n, the test statistic (10-43) i s approximate
ly distributed as a chi-square random variable with pq d.f. 

Proof. See Kshirsagar [8] . • 

The likelihood ratio statistic (10-43) compares the sample generalized variance 
under H0 , namely, 

with the unrestricted generalized variance I S I · Bartlett [3] suggests replacing the multiplicative factor n in the likelihood ratio 
statistic with the factor n - 1 - � (p + q + 1 ) to improve the x2 approximation to 
the sampling distribution of -2 ln A. Thus, for n and n - (p + q) large, we 

Reject H0 : I1 2 = 0 (pi = Pi = · · · = p; = 0)  at significance level a if 

(10-44) 

where X�q( a) is the upper ( 1COa )th percentile of a chi-square distribution with pq d.f. 
lf the null hypothesis H0 : I1 2 = 0 (Pi = Pi =  . . .  = p; = 0) is rejected, it is nat

ural to examine the "significance" of the individual canonical correlations. Since the 
canonical correlations are ordered from the largest to the smallest, we can begin by 
assuming that the first canonical correlation is nonzero and the remaining p - 1 
canonical correlations are zero. If this hypothesis is rejected, we assume that the first 
two canonical correlations are nonzero, but the remaining p - 2 canonical correla
tions are zero, and so forth. 

Let the implied sequence of hypotheses be 

H� : Pi =I= 0, Pi =I= 0, . . .  , Pk =I= 0, Pk+ l = . . · = P; = 0 

H� : pj # 0, for some i > k + 1 
(10-45) 

Bartlett [2] has argued that the kth hypothesis in (10-45) can be tested by the likeli
hood ratio criterion. Specifically, 
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Reject H�k)at significance level a if 

where xtp- k) (q-k) ( a) is the upper (100a )th percentile of a chi-square distribution with (p - k) ( q - k) d.f. We point out that the test statistic in (10-46) involves 
p II ( 1 - pj2 ) , the "residual" after the first k sample canonical correlations have i=k+ l p been removed from the total criterion A 2/n = II ( 1 - pj2 ) . i= l 
If the members of the sequence H0 , H�1 ) , H�2) , and so forth, are tested one at 

a time until H�k) is not rejected for some k, the overall significance level is not a 
and, in fact, would be difficult to determine. Another defect of this procedure is the 
tendency it induces to conclude that a null hypothesis is correct simply because it is 
not rejected. 

To summarize, the overall test of significance in Result 10.3 is useful for multi
variate normal data. The sequential tests implied by (10-46) should be interpreted 
with caution and are, perhaps, best regarded as rough guides for selecting the num
ber of important canonical variates. 

Example 1 0.8 (Testi ng the s ign ificance of the canon ica l  corre lations 
for the job satisfaction data) 

Test the significance of the canonical correlations exhibited by the job 
characteristics-job satisfaction data introduced in Example 10.5 . 

All the test statistics of immediate interest are summarized in the table on 
page 572. From Example 10.5 , n = 784, p = 5, q = 7, Pi = .55, Pi = .23, 

A * - A * 
- d A * 

- 5 p3 - .12, p4 - .08, an p5 - .0 . 
Assuming multivariate normal data, we find that the first two canonical 

correlations, Pi and Pi , appear to be nonzero, although with the very large sample size, small deviations from zero will show up as statistically significant. From 
a practical point of view, the second (and subsequent) sample canonical corre
lations can probably be ignored, since (1) they are reasonably small in magni
tude and (2) the corresponding canonical variates explain very little of the 
sample variation in the variable sets x(l ) and X(2) . • 

The distribution theory associated with the sample canonical correlations and 
the sample canonical variate coefficients is extremely complex (apart from the p = 1 
and q = 1 situations) , even in the null case, I1 2 = 0. The reader interested in the 
distribution theory is referred to Kshirsagar [8] . 



U'1 ._,... 
N 

TEST RESULTS 

Null hypothesis 
lo Ho : I1 2 == 0 

(all pf == 0) 

2 H(l ) * 0 0 o : P1 =I= , 

Pi == 0 0 0 == Pt == 0 

Upper 1% point 
of x2 Observed test statistic 

(Barlett correction) Degrees of freedom distribution Conclusion 
- ( n - 1 - � (p + q + 1 ) ) In D ( 1 - Pi2 ) pq = 5 (7 ) = 35 

= - ( 784 - 1 - � ( 5 + 7 + 1 ) ) In ( .6453 ) 
== 34001 

X�s ( 001 ) == 57 Reject H0 o 

- ( n - 1 - � (p + q + 1 ) ) m a ( 1 - Pi2 ) 
== 6004 

(p - 1 ) ( q - 1 ) == 24 x�4 ( o01 ) == 42098 Reject H0 o 

3° H�2) : Pi =I= 0, Pi =I= 0, - (n - 1 - ! (p + q + 1 ) ) In IT (1 - Pi2 ) 2 i = 3  
(p - 2) ( q - 2) == 15 xi5 ( .01 ) == 30058 Do not 

reject H0 o pf == 0 0 • == Pt == 0 == 18 °2 
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10.1. Consider the covariance matrix given in Example 10.3 : 

100 0 0 0 

Cov 
xil ) 

x�l ) - - - - -Q - - -} _ _ _ _  ) _ _  : �� - - - - - - - -Q-
xi2) 

x�2) 
0 .95 i 1 0 
0 0 ! 0 100 

Verify that the first pair of canonical variates are U1 = X�1 ) , V1 = Xl2) with 
canonical correlation Pi = .95. 

10.2. The (2 X 1 ) random vectors X( l ) and X(2) have the joint mean vector and joint 
covariance matrix 

[IL(l )
J IL = - - - - - - - - - = 

11-(2) 

-3 
2 
0 
1 

(a) Calculate the canonical correlations pf , Pi .  
(b) Determine the canonical variate pairs ( U1 , V1 ) and ( U2 , V2) .  
(c) Let U = [U1 , U2 ] '  and V = [Vi , V2] ' .  From first principles, evaluate 

Compare your results with the properties in Result 10 .1 .  
10.3. Let Z( l ) = V1if2 (X ( 1 ) - 11- (1 ) ) and Z(2) = V2i12 (X (2) - IL (2) ) be two sets of 

standardized variables. If Pi , Pi ,  . . . , p; are the canonical correlations for the 
X(l ) X (2) sets and (U.· V) = ( a �X ( l ) b�X (2) ) i = 1 2 p are the associat-' n l l ' l ' ' , • • • , ' ed canonical variates, determine the canonical correlations and canonical vari-
ates for the z(l ) , Z (2) sets. That is, express the canonical correlations and 
canonical variate coefficient vectors for the z( l ) , Z (2) sets in terms of those for 
the X(l ) , X(2) sets. 

10.4. (Alternative calculation of canonical correlations and variates.) Show that, if 
Ai is an eigenvalue of I1if2I1 2I2ii2 1 I1F2 with associated eigenvector ei , then Ai 
is also an eigenvalue of I1ii1 2I2ii2 1 with eigenvector I1F2ei . 
Hint: I I!f!2I1 2I2ii2 1I1F2 - Ail I = 0 implies that 

0 = I I1F2 I I  I1F2I1 2I2ii2 1I1F2 - Ail I I  Ii1l l 
= I I1ii1 2I2ii2 1 - Ail I 
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10.5. Use the information in Example 10.1 . 
(a) Find the eigenvalues of I1ii1 2I2ii2 1 and verify that these eigenvalues are the same as the eigenvalues of I1f!2I1 2I2ii2 1I1F2 . 
(b) Determine the second pair of canonical variates ( U2 , V2) and verify, from first principles, that their correlation is the second canonical correlation Pi = .03 .  

10.6. Show that the canonical correlations are invariant under nonsingular linear transformations of the X(l ) X(2) variables of the form C X( l ) and D X(2) ' 0 

(pXp) (pX l ) (qXq) (qX l ) 

Hint: Consider Cov ( [��-��:-] ) = [_��-U-��-L��J_?p_�-J . Consider any linear [nx( ) [ni2 1 c ! DI22D 
combination a1 ( CX(l ) ) = a 'X(l ) with a' = a1 C. Similarly, consider 
b1 (DX(2 ) ) = b 'X(2) with b' = b!D . The choices a1 = e 'I1fi2C-1 and b� == 

f' I2i12D-1 give the maximum correlation. 

10.7. Let p12 = [: : J and p1 1  = p22 = [: � J corresponding to the equal 
correlation structure where X(l ) and X(2) each have two components. 
(a) Determine the canonical variates corresponding to the nonzero canonical 
correlation. 

(b) Generalize the results in Part a to the case where X(l ) hasp components and 
X(2) has q > p components. 

Hint: p1 2 = p11' , where 1 is a (p X 1 ) column vector of 1 's and 1 ' is a ( q X 1 ) 
row vector of 1 's. Note that p1 1 1 = [ 1 + (p - 1 )p] 1  so 
P1i121 = [ 1 + (p - 1 )p ]-1121. 

10.8. (Correlation for angular measurement. ) Some observations, such as wind 
direction, are in the form of angles. An angle 02 can be represented as the pair X (2) = [ cos( 02) , sin( 02) ] ' . 
(a) Show that b 'X(2) = Vr-

bi
_

+
_
b
_
� cos (02 - {3 )  where b1/Vbi + b� = cos (f3 ) 

and b2/Ybi + b� = sin(f3 ) . 
Hint: cos( 02 - f3 ) = cos ( 02) cos ( f3 ) + sin( 02) sin( f3 ) . 
(b) Let X(l ) have a single component Xl1 ) . Show that the single canonical 
correlation is Pi = max Corr (XP) , cos ( 02 - {3 )  ) . Selecting the canoni-
cal variable Vi amoun�s to selecting a new origin f3 for the angle 02 • (See Johnson and Wehrly [7] .) 

(c) Let xP) be ozone (in parts per million) and 02 = wind direction measured 
from the north. Nineteen observations made in downtown Milwaukee, 
Wisconsin, give the sample correlation matrix 

Find the sample canonicaJ correlation Pi and the canonical variate vl representing the new origin {3.  
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(d) Suppose X(l ) is also angular measurements of the form X(l ) = 
[ cos ( B1 ) , sin (B1 ) ] ' . Then a 'X( 1 ) = v'ar + a� cos (B1 - a ) . Show that 

pf = max Corr (cos ( 01 - a ) , cos ( 02 - {3 ) )  a, {3 
(e) Twenty-one observations on the 6:00 A.M. and noon wind directions give 
the correlation matrix 

cos (B1 ) sin(B1 ) cos (B2 ) sin (B2 ) 
1.0 - .291 ! .440 .372 

a = - - -= ����- - - - - -�-�ios+ - -� �6Q�-- - - - - - -

-�i-�i- -

.372 .243 ! . 181 1.0 
I 

Find the sample canonical correlation Pi and &1 ' Vi . 
The following exercises may require a computer. 

10.9. H. Hotelling [5] reports that n = 140 seventh-grade children received four tests 
on xP) = reading speed, x�1 ) = reading power, xi2) = arithmetic speed, and 
X�2) = arithmetic power. The correlations for performance are 

1.0 .6328 1 .2412 .0586 [R1 1 l R1 2J .6328 1 .0 1 - .0553 .0655 R = -- - - - - - - r - - - - - - - - - = - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - :- - - - - - - - - - - - - - - - - - - - - - - - - - - - --R2 1 : R22 .2412 - .0553 : 1 .0 .4248 , .0586 .0655 : .4248 LO 

(a) Find all the sample canonical correlations and the sample canonical variates. 
(b) Stating any assumptions you make, test the hypotheses 

Ho : I1 2 = P1 2 = 0 (pf = Pi = 0) 
H1 : I1 2 = P1 2 * 0 

at the a = .05 level of significance. If H0 is rejected, test 
H�1 ) : pf =I= O, pi = 0 
Hi1 ) : Pi =I= 0 

with a significance level of a = .05. Does reading ability (as measured by 
the two tests) correlate with arithmetic ability (as measured by the two 
tests)? Discuss. 

(c) Evaluate the matrices of approximation errors for �1 11 R22 , and R1 2 de-termined by the first sample canonical variate pair U1 , Vi . 
10.10. In a study of poverty, crime, and deterrence, Parker and Smith [10] report cer

tain summary crime statistics in various states for the years 1970 and 1973. A 
portion of their sample correlation matrix is 

1 .0 .615 ! - .111 - .266 
a = [:-��+-:�-!-] = - -��-�-K - - - -�-:-i-§s-- l -i���--- -=����-

- .266 - .085 ! - .269 1 .0 
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The variables are 
xP) 

== 1973 nonprimary homicides 
x�l ) == 1973 primary homicides (homicides involving family or 

acquaintances) 
xi2) == 1970 severity of punishment (median months served) 
X�2) == 1970 certainty of punishment (number of admissions to prison 

divided by number of homicides) 
(a) Find the sample canonical correlati9ns� 
(b) Determine the first canonical pair U1 , Vi and interpret these quantities. 

10.11. Example 8.5 presents the correlation matrix obtained from n = 100 successive 
weekly rates of return for five stocks. Perform a canonical correlation analy
sis with x(l ) == [ xil ) ' x�l ) ' X�1 ) ] ' , the rates of return for the chemical compa-
nies, and X(2) == [ xi2) ' X�2) ] ' , the rates of return for the oil companies. 

10.12. A random sample of n == 70 families will be surveyed to determine the as
sociation between certain "demographic" variables and certain "consump
tion" variables. 
Let 

Criterion 
set 

Predictor 
set 

{xP) == annual frequency of dining at a restaurant 
X�1 ) == annual frequency of attending movies { xF) 

= age of head of household 
X�2) == annual family income 
X�2) == educational level of head of household 

Suppose 70 observations on the preceding variables give the sample correla
tion matrix 

[ I J R1 1  i R12 R == - - - - - - - - -: - - - - - - - - - = 
R2 1 l R22 

1 .0 I 

- - - :  §Q- - - -� :  Q- - - - l - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -.26 .33 ; 1.0 
.67 .59 ! .37 1.0 
.34 .34 1 .21 .35 1.0 

(a) Determine the sample canonical correlations, and test the hypothesis 
H0 : I1 2 == 0 (or, equivalently, p12 == 0) at the a = .OS level. If H0 is reject
ed, test for the significance (a = .05 ) of the first canonical correlation. 

(b) Using standardized variables, construct the canonical variates correspond
ing to the "significant" canonical correlation( s ). 

(c) Using the results in Parts a and b, prepare a table showing the canonical 
variate coefficients (for "significant" canonical correlations) and the sample 
correlations of the canonical variates with their component variables. 

(d) Given the information in (c) , interpret the canonical variates. 
(e) Do the demographic variables have something to say about the consump
tion variables? Do the consumption variables provide much information 
about the demographic variables? 
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10.13. Waugh [12] provides information about n = 138 samples of Canadian hard red 
spring wheat and the flour made from the samples. The p = 5 wheat mea
surements (in standardized form) were 

z i1 ) = kernel texture 
z�1 ) = test weight 
z�1 ) = damaged kernels 
z�1 ) = foreign material 
z�1 ) = crude protein in the wheat 

The q = 4 (standardized) flour measurements were 

z i2) = wheat per barrel of flour 
z�2) = ash in flour 
z�2) = crude protein in flour 
z�2) = gluten quality index 

The sample correlation matrix was [Rl l ! R1 2J R = - - - - - - - - - i - - - - - - - - -

R2 1 l R22 

1 .0 
.754 1 .0 
- .690 - .712 1.0 
-.446 - .515 .323 1 .0 

= .692 .412 - .444 -.334 1.0 
- .605 - .722 .737 .527 - .383 1.0 
- .479 - .419 .361 .461 - .505 .251 
.780 .542 - .546 - .393 .737 - .490 
- .152 - .102 .172 - .019 - . 148 .250 

1.0 
- .434 1 .0 
- .079 - .163 1.0 

(a) Find the sample canonical variates corresponding to significant (at the 
a = .01 level) canonical correlations. 

A A 

(b) Interpret the first sample canonical variates U1 , Vi . Do they in some sense represent the overall quality of the wheat and flour, respectively? 
(c) What proportion of the total sa:rp.ple variance of the first set z( l ) is ex
plained by the canonical variate U1? What proportion of the t9tal sample variance of the Z(2) set is explained by the canonical variate Vi? Discuss 
your answers. 
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10.14. Consider the correlation matrix of profitability measures given in Exercise 9.15 . Let X(l ) = [ xP) ' x�l ) ' . . . ' X�1 ) ] ' be the vector of variables representing ac
counting measures of profitability, and let X(2) = [ Xi2) , X�2) ] ' be the vector of 
variables representing the two market measures of profitability. Partition the 
sample correlation matrix accordingly, and perform a canonical correlation 
analysis. Specifically, 

A A 

(a) Determine the first sample canonical variates U1 , Vi and their correlation. 
Interpret these canonical variates. 

(b) Let Z(l ) and Z(2) be the sets of standardized variables corresponding to X( l ) 
and X(2) , respectively. What proporti9n of the total sample variance of Z(l ) 
is explained by the canonical variate U1? What proportion of the total sample variance of Z(2) is explained by the canonical variate Vi ? Discuss your answers. 

10.15. Observations on four measures of stiffness are given in Table 4.3 and discussed 
in Example 4.14. Use the data in the table to construct the sample covariance 
matrix S. Let X( l ) = [ xP) , X�1 ) ] ' be the vector of variables representing the 
dynamic measures of stiffness (shock wave, vibration) , and let 
X(2) = [ xi2) ' X�2) ] ' be the vector of variables representing the static measures 
of stiffness. Perform a canonical correlation analysis of these data. 

10.16. Andrews and Herzberg [1] give data obtained from a study of a comparison of 
nondiabetic and diabetic patients. Three primary variables, 

xP) 
= glucose intolerance 

x�l) = insulin response to oral glucose 
x�l ) = insulin resistance 

and two secondary variables, 
xi2) = relative weight 
X�2) = fasting plasma glucose 

were measured. The data for n = 46 nondiabetic patients yield the covari
ance matrix 

[sl l  i S1 2J s = -- - - - - - -:- - - - - - - - = 
S2 1 i S22 

1106.000 396.700 108.400 ! .787 26.230 
396.700 2382.000 1143 .000 ! - .214 -23 .960 

_ _ }Q§����--- -n���i�--- -�1���i��- - l _)��i�- ----��9�i-n-
26.230 -23 .960 -20.840 i .216 70.560 

Determine the sample canonical variates and their correlations. Interpret these 
quantities. Are the first canonical variates good summary measures of their 
respective sets of variables? Explain. Test for the significance of the canoni
cal relations with a = .05. 

10.17. Data concerning a person's desire to smoke and psychological and physical 
state were collected for n = 110 subjects. The data were responses, coded 1 
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to 5, to each of 12 questions (variables) . The four standardized measurements 
related to the desire to smoke are defined as 

zP) == smoking 1 (first wording ) 
z�1 ) == smoking 2 (second wording ) 
z�l ) == smoking 3 (third wording) 
zi1 ) == smoking 4 (fourth wording) 

The eight standardized measurements related to the psychological and physi
cal state are given by 

zl2) == concentration 
z�2) == annoyance 
z�2) == sleepiness 
z12) == tenseness 
z�2) == alertness 
z�2) == irritability 
z�2) == tiredness 
z�2) == contentedness 

The correlation matrix constructed from the data is [ Ru R1 2J R == - - - - - - - - - - - - - - - - - -

R2 1 R22 

where 
1 .000 .785 .810 .775 

R1 1  == 
.785 1 .000 .816 .813 
.810 .816 1 .000 .845 
.775 .813 .845 1 .000 

.086 .144 .140 .222 .101 
R1 2 == R2 1 == 

.200 .119 .21 1 .301 .223 

.041 .060 .126 .120 .039 

.228 .122 .277 .214 .201 
1 .000 .562 .457 .579 .802 
.562 1 .000 .360 .705 .578 
.457 .360 1.000 .273 .606 
.579 .705 .273 1 .000 .594 

R22 == .802 .578 .606 .594 1 .000 

.189 

.221 

.108 

.156 
.595 
.796 
.337 
.725 
.605 

.595 .796 .337 .725 .605 1.000 

.512 .413 .798 .364 .698 .428 

.492 .739 .240 .711 .605 .697 

.199 .239 

.274 .235 

.139 .100 

.271 .171 
.512 .492 
.413 .739 
.798 .240 
.364 .71 1 
.698 .605 
.428 .697 
1 .000 .394 
.394 1 .000 
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CHAPTE R 

1 1  
Discrimination and Classification 

1 1 . 1 I NTRODUCTION 

Discrimination and classification are multivariate techniques concerned with sepa
rating distinct sets of objects (or observations) and with allocating new objects ( ob
servations) to previously defined groups. Discriminant analysis is rather exploratory 
in nature. As a separative procedure, it is often employed on a one-time basis in 
order to investigate observed differences when causal relationships are not well un
derstood. Classification procedures are less exploratory in the sense that they lead 
to well-defined rules, which can be used for assigning new objects. Classification or
dinarily requires more problem structure than discrimination does. 

Thus, the immediate goals of discrimination and classification, respectively, are 
as follows: 

Goal l . To describe, either graphically (in three or fewer dimensions) or alge
braically, the differential features of objects (observations) from several 
known collections (populations) . We try to find "discriminants" whose 
numerical values are such that the collections are separated as much as 
possible. 

Goal 2. To sort objects (observations) into two or more labeled classes. The 
emphasis is on deriving a rule that can be used to optimally assign new 
objects to the labeled classes. 

We shall follow convention and use the term discrimination to refer to Goal l . 
This terminology was introduced by R.  A. Fisher [9] in the first modern treatment of 
separative problems. A more descriptive term for this goal, however, is separation. 
We shall refer to the second goal as classification or allocation. 

A function that separates objects may sometimes serve as an allocator, and, 
conversely, a rule that allocates objects may suggest a discriminatory procedure. In 
practice, Goals 1 and 2 frequently overlap, and the distinction between separation 
and allocation becomes blurred. 

581 
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1 1 .2 SEPARATION AND CLASS IF ICATION FOR TWO POPU LATIONS 

To fix ideas, let us list situations in which one may be interested in ( 1 )  separating two classes of objects or (2) assigning a new object to one of two classes (or both). It is convenient to label the classes 1r1 and 1r2 • The obj ects are ordinarily separated or classified on the basis of measurements on, for instance, p associated random variables 
X' = [ X1 , X2, . • •  , XP] . The observed values of X differ to some extent from one 
class to the other. 1 We can think of the totality of values from the first class as being 
the population of x values for 1r1 and those from the second class as the population of x values for 1r2 • These two populations can then be described by probability density functions f1 (x) and f2(x) , and consequently, we can talk of assigning observations to populations or objects to classes interchangeably. 

You may recall that some of the examples of the following separation
classification situations were introduced in Chapter 1 .  

Populations 1r1 and 7T2 
1 .  Solvent and distressed property-liability 
insurance companies. 

2. Nonulcer dyspeptics (those with upset 
stomach problems) and controls 
("normal") . 

3. Federalist Papers written by James 
Madison and those written by Alexander 
Hamilton. 

4. Two species of chickweed. 
5 . Purchasers of a new product and 
laggards (those "slow" to purchase) . 

6. Successful or unsuccessful (fail to 
graduate) college students. 

7. Males and females. 
8. Good and poor credit risks. 
9. Alcoholics and nonalcoholics. 

Measured variables X 

Total assets, cost of stocks and bonds, market value 
of stocks and bonds, loss expenses, surplus, amount 
of premiums written. 
Measures of anxiety, dependence, guilt , 
perfectionism. 
Frequencies of different words and lengths of 
sentences. 
Sepal and petal length, petal cleft depth, bract 
length, scarious tip length, pollen diameter. 
Education, income, family size, amount of previous 
brand switching. 
Entrance examination scores, high school grade
point average, number of high school activities. 
Anthropological measurements, like circumfer
ence and volume on ancient skulls. 
Income, age, number of credit cards, family size. 
Activity of monoamine oxidase enzyme, activity of 
adenylate cyclase enzyme. 

We see from item 5, for example, that objects (consumers) are to be separated 
into two labeled classes ("purchasers" and "laggards") on the basis of observed values 

1 If the values of X were not very different for objects in 1r1 and 1r2 , there would be no problem; that 
is, the classes would be indistinguishable, and new objects could be assigned to either class indiscriminately. 



Sect ion 1 1 . 2 Separation and Class if icat ion for Two Popu l at ions 583 

of presumably relevant variables (education, income, and so forth) . In the terminol
ogy of observation and population , we want to identify an observation of the form 
x' = [x1 ( education) , x2( income) , x3 ( family size ) , x4( amount of brand switching) ] as population 1r1 , purchasers, or population 1r2 , laggards. At this point, we shall concentrate on classification for two populations, re
turning to separation in Section 1 1 .5 .  

Allocation or classification rules are usually developed from "learning" sam
ples. Measured characteristics of randomly selected objects known to come from 
each of the two populations are examined for differences. Essentially, the set of all 
possible sample outcomes is divided into two regions, R1 and R2 , such that if a new 
observation falls in R1 , it is allocated to population 1r1 , and if it falls in R2 , we allocate it to population 1r2 . Thus, one set of observed values favors 1r1 , while the other set of values favors 1r2 • You may wonder at this point how it is we know that some observations be
long to a particular population, but we are unsure about others. (This, of course, is 
what makes classification a problem! ) Several conditions can give rise to this appar
ent anomaly (see [19] ) :  

1. Incomplete knowledge of future performance. 
Examples: In the past, extreme values of certain financial variables were ob
served 2 years prior to a firm's subsequent bankruptcy. Classifying another 
firm as sound or distressed on the basis of observed values of these leading in
dicators may allow the officers to take corrective action, if necessary, before it 
is too late. 

A medical school applications office might want to classify an applicant 
as likely to become M.D. or unlikely to become M.D. on the basis of test scores 
and other college records. Here the actual determination can be made only at 
the end of several years of training. 

2. "Perfect" information requires destroying the object. 
Example: The lifetime of a calculator battery is determined by using it until 
it fails, and the strength of a piece of lumber is obtained by loading it until it 
breaks. Failed products cannot be sold. One would like to classify products as 
good or bad (not meeting specifications) on the basis of certain preliminary 
measurements. 

3. Unavailable or expensive information . 
Examples: It is assumed that certain of the Federalist Papers were written by 
James Madison or Alexander Hamilton because they signed them. Others of 
the Papers, however, were unsigned and it is of interest to determine which 
of the two men wrote the unsigned Papers. Clearly, we cannot ask them. Word 
frequencies and sentence lengths may help classify the disputed Papers. 

Many medical problems can be identified conclusively only by conduct
ing an expensive operation. Usually, one would like to diagnose an illness from 
easily observed, yet potentially fallible, external symptoms. This approach helps 
avoid needless-and expensive-operations. 
It should be clear from these examples that classification rules cannot usually 

provide an error-free method of assignment. This is because there may not be a clear 
distinction between the measured characteristics of the populations; that is, the groups 
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may overlap. It is then possible, for example, to incorrectly classify a '7T2 object as belonging to '7T 1 or a '7T 1 obj ect as belonging to '7T 2 . 

Example 1 1 . 1 {Discrimi nati ng owners from nonowners of r id ing mowers) 

Consider two groups in a city: '7T1 , riding-mower owners, and '7T2 , those without riding mowers-that is, nonowners. In order to identify the best sales prospects 
for an intensive sales campaign, a riding-mower manufacturer is interested in 

classifying families as prospective owners or nonowners on the basis of 
x1 = income and x2 = lot size. Random samples of n1 = 12 current owners 
and n2 = 12 current nonowners yield the values in Table 11 . 1 . 

TABLE 1 1 . 1 

'7T1 : Riding-mower owners 7T2 : Nonowners 
x1 (Income x2 (Lot size x1 (Income x2 (Lot size in $1000s) in 1000 ft2) in $1000s) in 1000 ft2) 
60.0 18.4 75.0 19.6 
85.5 16.8 52.8 20.8 
64.8 21.6 64.8 17.2 
61.5 20.8 43.2 20.4 
87.0 23.6 84.0 17.6 
110.1 19.2 49.2 17.6 
108.0 17.6 59.4 16.0 
82.8 22.4 66.0 18.4 
69.0 20.0 47.4 16.4 
93.0 20.8 33.0 18.8 
51.0 22.0 51.0 14.0 
81.0 20.0 63.0 14.8 

These data are plotted in Figure 11 . 1 . We see that riding-mower owners 
tend to have larger incomes and bigger lots than nonowners, although income 
seems to be a better "discriminator" than lot size. On the other hand, there is 
some overlap between the two groups. If, for example, we were to allocate those 
values of ( x1 , x2 ) that fall into region R1 (as determined by the solid line in the figure) to '7T 1 , mower owners, and those ( x1 , x2) values which fall into R2 to '7T2 , nonowners, we would make some mistakes. Some riding-mower owners would 
be incorrectly classified as nonowners and, conversely, some nonowners as own
ers. The idea is to create a rule (regions R1 and R2) that minimizes the chances of making these mistakes. (See Exercise 11 .2.) • 

A good classification procedure should result in few misclassifications. In other 
words, the chances, or probabilities, of misclassification should be small. As we shall 
see, there are additional features that an "optimal" classification rule should possess. 

It may be that one class or population has a greater likelihood of occurrence 
than another because one of the two populations is relatively much larger than the 
other. For example, there tend to be more financially sound firms than bankrupt 
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firms. As another example, one species of chickweed may be more prevalent than an
other. An optimal classification rule should take these "prior probabilities of occur
rence" into account. If we really believe that the (prior) probability of a financially 
distressed and ultimately bankrupted firm is very small, then one should classify a 
randomly selected firm as nonbankrupt unless the data overwhelmingly favors 
bankruptcy. 

Another aspect of classification is cost. Suppose that classifying a 1r1 object as belonging to 1r2 represents a more serious error than classifying a 1r2 object as be
longing to 1r1 . Then one should be cautious about making the former assignment. As an example, failing to diagnose a potentially fatal illness is substantially more "cost
ly" than concluding that the disease is present when, in fact, it is not. An optimal 
classification procedure should, whenever possible, account for the costs associated 
with misclassification. 

Let f1 (x) and f2 (x) be the probability density functions associated with the 
p X 1 vector random variable X for the populations 1r1 and 1r2 , respectively. An ob
ject with associated measurements x must be assigned to either 1r1 or 1r2 • Let n be 
the sample space-that is, the collection of all possible observations x. Let R1 be that set of x values for which we classify objects as 1r1 and R2 = n -R1 be the remaining 
x values for which we classify objects as 1r2 • Since every object must be assigned to 
one and only one of the two populations, the sets R1 and R2 are mutually exclusive and exhaustive. For p = 2, we might have a case like the one pictured in Figure 1 1 .2. 

The conditional probability, P(2 1 1  ) , of classifying an object as 1r2 when, in fact, 
it is from 1r1 is 

P(2 l l ) = P(X E R2 1 1T1 ) = 12=fl-R1 !1 (x) dx (11 -1 )  

Similarly, the conditional probability, P(2 1 1  ) , of classifying an object as 1r1 when it is really from 1r2 is 
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Figure 1 1 .2 Class ificat ion reg ions 
for two popu lat ions .  

(11 -2) 
The integral sign in (11-1) represents the volume formed by the density function f1 ( x )  
over the region R2 • Similarly, the integral sign in (11-2) represents the volume formed 
by f2 (x) over the region R1 • This is illustrated in Figure 1 1 .3 for the univariate case, 
p = 1 .  

Let p1 be the prior probability of 1r1 and p2 be the prior probability of 1r2 , 
where p1 + p2 = 1 .  Then the overall probabilities of correctly or incorrectly clas
sifying objects can be derived as the product of the prior and conditional classifi
cation probabilities: 
P( observation is correctly classified as 1r1 ) = P( observation comes from 1r1 and is correctly classified as 1r1 ) 

= P(X E Rl 1 7Tl )P( 7Tl ) = P( 1 1 1  )Pl 
P( observation is misclassified as 1r1 ) = P( observation comes from 1r2 and is misclassified as 1T 1 ) 

= P(X E Rl 1 7T2 )P( 7T2) = P(l  I 2)p2 
P(  observation is correctly classified as 1r2) = P( observation comes from 1r2 and is correctly classified as 1r2) 

P( l l 2) = J f 2 (x) dx 
Rt 

= P(X E R2 1 7T2)P( 1T2) = P(2 1 2 )p2 

P(2 l l ) = J f 1 ( x) dx 
R2 

I�--------- Rl ----------���------- R2 ------� 
Classify as 1t 1 Classify as 1t 2 

Figure 1 1 .3 Misclassificat ion probab i l it ies for hypothetica l  classificat ion reg ions when p = 1 .  
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P( observation is misclassified as 1r2) == P( observation comes from 1r1 and is misclassified as 1r2) 
== P(X E R2 1 7Tl )P (  7Tl ) == P(2 1 1  )Pl 

(11 -3) 

Classification schemes are often evaluated in terms of their misclassification 
probabilities (see Section 11 .4), but this ignores misclassification cost . For example, 
even a seemingly small probability such as .06 == P(2 1 1 ) may be too large if the cost 
of making an incorrect assignment to 1r2 is extremely high. A rule that ignores costs 
may cause problems. 

The costs of misclassification can be defined by a cost matrix: 

True population: 

Classify as: 
7Tl 7T2 
0 

c ( 1 1 2 ) 
c ( 2 1 1 ) 

0 
(11 -4) 

The costs are (1) zero for correct classification, (2) c ( 1 1 2 ) when an observation from 
1r2 is incorrectly classified as 1r1 , and (3) c ( 2 1 1 ) when a 1r1 observation is incorrectly classified as 1r2 • 

For any rule, the average, or expected cost of misclassification (ECM) is pro
vided by multiplying the off -diagonal entries in ( 11 -4) by their probabilities of oc
currence, obtained from ( 1 1 -3) . Consequently, 

ECM == c(2 1 1 )P(2 1 1 )p1 + c( 1 I 2 )P( 1 1 2 )p2 (1 1 -5) 

A reasonable classification rule should have an ECM as small , or nearly as 
small, as possible. 

Result 11.1. The regions R1 and R2 that minimize the ECM are defined by the values x for which the following inequalities hold: 
R1 :  

/1 (x) 
> ( c ( 1 1 2 ) ) (P2) 

f2 (x) c (2 1 1 ) P1 (den�ity) > ( co�t ) ( r::!��lit ) ratio ratio p 
t" Y ra IO 

R2 : 
/1 (x) < ( c ( 1 1 2 ) ) (P2) 
/2(x) c (2 1 1 ) P1 (den�ity) < ( co�t ) ( r::!��lit ) ratio ratio p 

t" 
y 

ra IO 

Proof. See Exercise 11 .3 . 

( 11 -6) 

• 

It is clear from ( 11 -6) that the implementation of the minimum ECM rule re
quires (1) the density function ratio evaluated at a new observation x0 , (2) the cost 
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ratio, and (3) the prior probability ratio. The appearance of ratios in the definition 
of the optimal classification regions is significant. Often, it is much easier to specify 
the ratios than their component parts. 

For example, it may be difficult to specify the costs (in appropriate units) of classifying a student as college material when, in fact, he or she is not and classifying 
a student as not college material, when, in fact, he or she is. The cost to taxpayers of 
educating a college dropout for 2 years, for instance, can be roughly assessed. The cost 
to the university and society of not educating a capable student is more difficult to 
determine. However, it may be that a realistic number for the ratio of these mis
classification costs can be obtained. Whatever the units of measurement, not admit
ting a prospective college graduate may be five times more costly, over a suitable 
time horizon, than admitting an eventual dropout. In this case, the cost ratio is five. 

It is interesting to consider the classification regions defined in (11-6) for some 
special cases. 

When the prior probabilities are unknown, they are often taken to be equal, 
and the minimum ECM rule involves comparing the ratio of the population densities 
to the ratio of the appropriate misclassification costs. If the misclassification cost 
ratio is indeterminate, it is usually taken to be unity, and the population density ratio 
is compared with the ratio of the prior probabilities. (Note that the prior probabilities 
are in the reverse order of the densities. ) Finally, when both the prior probabili
ty and misclassification cost ratios are unity, or one ratio is the reciprocal of the other, 
the optimal classification regions are determined simply by comparing the values of 
the density functions. In this case, if x0 is a new observation and /1 (x0)/ f2(x0 ) > 1-
that is, /1 (x0 ) > /2(x0)-we assign x0 to 1r1 • On the other hand, if /1 (x0)/f2 (x0) < 1 , 
or /1 (x0 ) < /2(x0 ) , we assign x0 to 1r2 . It is common practice to arbitrarily use case (c) in (1 1-7) for classification. This 
is tantamount to assuming equal prior probabilities and equal misclassification costs 
for the minimum ECM rule.2 

2This is the justification generally provided. It is also equivalent to assuming the prior probability 
ratio to be the reciprocal of the misclassification cost ratio. 
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Example 1 1 .2 (Classifying a new observation i nto one 
of the two popu lations) 

A researcher has enough data available to estimate the density functions f1 (x) 
and /2(x) associated with populations 1r1 and 1r2 , respectively. Suppose c(2 1 1 ) == 5 units and c ( 1  1 2 ) == 10 units. In addition, it is known that about 
20% of all objects (for which the measurements x can be recorded) belong to 
1r2 • Thus, the prior probabilities are p1 = .8 and p2 == .2. 

Given the prior probabilities and costs of misclassification, we can use 
(11 -6) to derive the classification regions R1 and R2 • Specifically, we have 

/1 (x) < ( 10 ) ( ·2 ) 
== .5 

/2 (x) 5 . 8  

Suppose the density functions evaluated at a new observation x0 give 
/1 (x0) == .3 and /2(x0) == .4. Do we classify the new observation as 1r1 or 1r2? To answer the question, we form the ratio 

and compare it with .5 obtained before. Since 
fl (xo) = .?S > ( c ( 1 1 2 ) ) (P2) == .5 
/2(xo) c (2 1 1 ) P1 

we find that x0 E R1 and classify it as belonging to 1r1 . • 

Criteria other than the expected cost of misclassification can be used to derive 
"optimal" classification procedures. For example, one might ignore the costs of mis
classification and choose R1 and R2 to minimize the total probability of misclassifi
cation (TPM) : 
TPM = P(misclassifying a 1r1 observation or misclassifying a 1r2 observation) 

= P( observation comes from 1r1 and is misclassified ) 
+ P( observation comes from 1r2 and is misclassified ) 

= P1 { /1 (x) dx + P2 { f2(x) dx JR2 JR1 ( 11 -8) 

Mathematically, this problem is equivalent to minimizing the expected cost of mis
classification when the costs of misclassification are equal. Consequently, the opti
mal regions in this case are given by (b) in ( 11 -7) . 

We could also allocate a new observation x0 to the population with the largest 
"posterior" probability P( 1Ti I x0) .  By Bayes's rule, the posterior probabilities are 
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I 
P( 1r1 occurs and we observe x0) P( 1T1 Xo ) = ----------P(we observe x0 ) 

P(we observe x0 l 1r1 )P( 1T1 ) 
P(we observe x0 l 1r1 )P( 1r1 ) + P(we observe x0 l 1r2 )P ( 1r2) 

P1f1 (xo) 
P1!1 (xo) + P2f2(xo ) 

P2f2 (xo ) P ( 1T 2 I Xo) = 1 - P ( 1T 1 I Xo) = 
f ( ) f ( ) 

( 11 -9) 
P1 1 Xo + P2 2 Xo 

Classifying an observation x0 as 1r1 when P( 1r1 I x0 )  > P( 1r2 l x0) is equivalent to using 
the (b) rule for total probability of misclassification in ( 11 -7) because the denomi
nators in ( 11 -9) are the same. However, computing the probabilities of the popula
tions 1r1 and 1r2 after observing x0 (hence the name posterior probabilities) is 
frequently useful for purposes of identifying the less clear-cut assignments. 

1 1 .3 CLASSIF ICATION WITH TWO M U LTIVARIATE NORMAL POPU LATIONS 

Classification procedures based on normal populations predominate in statistical 
practice because of their simplicity and reasonably high efficiency across a wide va
riety of population models. We now assume that f1 (x) and f2 (x) are multivariate nor
mal densities, the first with mean vector ILl and covariance matrix I1 and the second with mean vector IL2 and covariance matrix I2 • The special case of equal covariance matrices leads to a particularly simple lin
ear classification statistic. 
Classification of Normal Populations When I1 = I2 = I 

Suppose that the joint densities of X' = [ X1 , X2 , • • •  , Xp] for populations 1r1 and 1r2 are given by 
1 [ 1 

' -1 ] 
/;(x) = 

(27T)P/2 1 I 1 1/2 
exp - 2 (x - IL;) I (x - IL;) for i = 1 ,  2 ( 11 -10) 

Suppose also that the population parameters ILl , IL2 , and I are known. Then, after 
cancellation of the terms ( 21T )P/2 1 I 1 1/2 the minimum ECM regions in ( 11 -6) become 

R1 : exp [ - � (x - 1Ll ) ' I-1 (x - 1L1 ) + � (x - IL2 ) ' I-1 (x - ILJ ] 
> 
( c( 1 1 2 ) ) (p2) 

c (2 1 1 ) P1 

R2 : exp [ - � (x  - 1Ll ) ' I-1 (x - ILl ) + � (x - ILJ ' I-1 (x  - 1L2) ] 
< ( c( 1 1 2 ) ) (P2) (11 -11 )  c(2 1 1 ) P1 

Given these regions R1 and R2 , we can construct the classification rule given in the following result . 
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Result 11.2. Let the populations 1r1 and 1r2 be described by multivariate normal densities of the form (1 1-10) . Then the allocation rule that minimizes the ECM 
is as follows: 
Allocate x0 to 1T 1 if 

, _1 1 , _1 [ ( c ( 1 1 2) ) (P2 ) ] ( P-1 - P-J I x0 - 2 ( P-1 - P-2) I (P-1 + P-J > ln c (Z i l ) p1 (11 -12) 
Allocate x0 to '1T2 otherwise. 

Proof. Since the quantities in (11-11) are nonnegative for all x, we can take 
their natural logarithms and preserve the order of the inequalities. Moreover (see 
Exercise 11 .5) , - � (x - P-di-1 (x - IJ-1 ) + � (x - P2 ) ' I-1 (x - /A-2) 

1 
= ( P-1 - P2) ' I-1x - 2 ( P-1 - P2) 'I-1 ( P1 + /A-2) (11-13) 

and, consequently, 
R1 : ( p1 - p2) ' I-1 x - � ( p1 - p2) ' I-1 ( P1 + IJ-2) > ln [ (:g : �D (;:) J 
R2 : ( p1 - p2) ' I-1 x - � ( p1 - p2) ' I-1 ( P-1 + p2) < ln [ (:g : �� ) (;:) J 

(11 -14) 
The minimum ECM classification rule follows. • 

In most practical situations, the population quantities JL1 , JL2 , and I are unknown, so the rule (11-12) must be modified. Wald [27] and Anderson [2] have sug
gested replacing the population parameters by their sample counterparts. 

Suppose, then, that we have n1 observations of the multivariate random variable 
X' == [ X1 , X2 , . • •  , Xp] from 7T1 and n2 measurements of this quantity from 7T2 , with n1 + n2 - 2 > p. Then the respective data matrices are 

x1 1  
xl x1 2 == 

(n1 Xp )  ' Xl nl (11-15) 
x; l 

x2 x22 
== 

(n2Xp )  
' X2n2 

From these data matrices, the sample mean vectors and covariance matrices 
are determined by 
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(11 -16) 

Since it is assumed that the parent populations have the same covariance matrix I, 
the sample covariance matrices sl and s2 are combined (pooled) to derive a single, unbiased estimate of I as in (6-21) . In particular, the weighted average [ n 1 - 1 J [ n2 - 1 J Spoolect = 

(n, - 1 ) + (n2 - 1 ) S, + 
( n, - 1 ) + (n2 - 1 ) S2 ( 11 - 17) 

is an unbiased estimate of I if the data matrices X1 and X2 contain random samples 
from the populations 1r1 and 1r2 , respectively. 

Substituting x1 for JL1 , x2 for JL2 , and Spoolect for I in (11-12) gives the "sample" 
classification rule: 

If, in (11 -18) , ( c ( 1 1 2) ) (p2) 
== 1 c(2 1 1 ) P1 

then ln( 1 ) = 0, and the estimated minimum ECM rule for two normal populations 
amounts to comparing the scalar variable 

(11-19) 
evaluated at x0 , with the number 

1 fn = 2 ( X, - X2) ' S��o1ect ( X, + X2) 

1 
= 2 ( :Yl + :Y2) ( 11 -20) 

where 

and 
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That is, the estimated minimum ECM rule for two normal populations is tantamount 
to creating two univariate populations for the y values by taking an appropriate lin
ear combination of the observations from populations 1r1 and 1r2 and then assigning a new observation Xo to 7Tl or 7T2 ' depending upon whether Yo == a' Xo falls to the right 
or left of the midpoint m between the two univariate means y1 and y2 • 

Once parameter estimates are inserted for the corresponding unknown popu
lation quantities, there is no assurance that the resulting rule will minimize the ex
pected cost of misclassification in a particular application. This is because the optimal 
rule in (11 -12) was derived assuming that the multivariate normal densities f1 (x) and 
f2(x) were known completely. Expression ( 11 -18) is simply an estimate of the opti
mal rule. However, it seems reasonable to expect that it should perform well if the 
sample sizes are large. 3 

To summarize, if the data appear to be multivariate normal\ the classification 
statistic to the left of the inequality in ( 11 -18) can be calculated for each new obser
vation x0 . These observations are classified by comparing the values of the statistic 
with the value of ln [ ( c ( 1 l 2)/c (2 1 1 ) ) (p2/ PI ) ] .  

Example 1 1 .3 (Classification with two normal populations-common 
I and equal  costs) 

This example is adapted from a study [4] concerned with the detection of he
mophilia A carriers. (See also Exercise 1 1 .32.) 

To construct a procedure for detecting potential hemophilia A carriers, 
blood samples were assayed for two groups of women and measurements on the 
two variables, 

X1 == log10 ( AHF activity ) 
X2 == log10 (AHF-like antigen ) 

recorded. ("AHF" denotes antihemophilic factor. ) The first group of n 1 == 30 
women were selected from a population of women who did not carry the he
mophilia gene. This group was called the normal group. The second group of 
n2 == 22 women was selected from known hemophilia A carriers (daughters of 
hemophiliacs, mothers with more than one hemophilic son, and mothers with 
one hemophilic son and other hemophilic relatives) . This group was called the 
obligatory carriers. The pairs of observations ( x1 , x2) for the two groups are plotted in Figure 11 .4. Also shown are estimated contours containing 50% and 
95% of the probability for bivariate normal distributions centered at x 1 and x2 , respectively. Their common covariance matrix was taken as the pooled sample 
covariance matrix Spooled . In this example, bivariate normal distributions seem 
to fit the data fairly well. 

3 As the sample sizes increase, x1 , x2 , and Spooled become, with probability approaching 1, indistin
guishable from J.L1 , J.L2 , and I, respectively [see (4-26) and (4-27)] .  

4 At the very least, the marginal frequency distributions of the observations on each variable can be 
checked for normality. This must be done for the samples from both populations. Often, some variables 
must be transformed in order to make them more "normal looking." (See Sections 4.6 and 4.8.) 
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x2 = log 10 (AHF-like antigen ) 

.4 

.3 0 0 

. 2  x2 

. 1  

0 

- . 1  

- .2 • • Normals 
- .3 o Obligatory carriers 

- .4 
'-------''----'----'-------'--"'-----'----'-------'-_.______.________._ _ _.____� x 1 = log 1 0 ( AHF activity ) 

- .7 - .5 - .3 - . 1  . 1  .3  

Figure 1 1 .4 Scatter p lots of [ log 1 0(AHF  activity}, log 1 0(AHF- I i ke ant igen} ]  for the norma l  g roup  
and  ob l igatory hemoph i l i a  A carr iers .  

The investigators (see [4]) provide the information 

and 

[- .0065] [- .2483 ] x 1 == - .0390 ' x2 == .0262 

-1 - [ 131 .158 -90.423 ] spooled - -90.423 108.147 
Therefore, the equal costs and equal priors discriminant function [see (11-19)] 
IS 

Moreover, 

y == a ' X == [ X 1 - X 2 ] ' s�;oled X 

== [ 2418 _ 065 J [ 131 .158 -90.423 ] [x1] · · 2 -90.423 108.147 x2 
== 37.61x1 - 28.92x2 

[- .0065] y1 == a' x1 == [ 37.61 -28.92] 
_ .0390 == .88 

)12 = i' X2 = [37 .61 -28.92] [ - :��:� J = -10.10 
and the midpoint between these means [see (11-20)] is 

m == � ( Y1 + Y2) == � ( .88 - 10.10 ) == -4.61 
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Measurements of AHF activity and AHF-like antigen on a woman who 
may be a hemophilia A carrier give x1 == - .210 and x2 == - .044. Should this 
woman be classified as 1r1 (normal) or 1r2 (obligatory carrier)? Using (1 1 -18) with equal costs and equal priors so that ln ( 1 ) == 0, we 
obtain 

Allocate Xo to 7Tl if Yo == a' Xo > m == -4.61 
Allocate Xo to 7T2 if Yo == a ' Xo < m == -4.61 

where x' 0 == [ - .210, - .044 ] . Since 
Yo = a ' xa = [37.61 -28.92 ] [ = :�:�] = -6.62 < -4.61 

we classify the woman as 7T2 , an obligatory carrier. The new observation is indicated by a star in Figure 11 .4. We see that it falls within the estimated .50 
probability contour of population 1r2 and about on the estimated .95 probability contour of population 1T 1 •  Thus, the classification is not clear cut. 

Suppose now that the prior probabilities of group membership are known. 
For example, suppose the blood yielding the foregoing x1 and x2 measurements is drawn from the maternal first cousin of a hemophiliac. Then the genetic 
chance of being a hemophilia A carrier in this case is .25. Consequently, the 
prior probabilities of group membership are p1 == .75 and p2 == .25. Assuming, 
somewhat unrealistically, that the costs of misclassification are equal, so that 
c ( 1 1 2 ) == c (2 1 1 ) , and using the classification statistic 

W == ( xl - X2 ) ' S�;oled XO - � ( xl - X2) 'S�;oled ( xl + X2 ) 
or w == a' xo - m with x' o == [ - .210, - .044 ] , m == -4.61 , and a' xo == -6.62, 
we have 

w == -6.62 - ( -4.61 ) == -2.01 
Applying (11-18) , we see that " [P2 ] [ .25 ] w = -2.01 < ln 

PI 
= ln _75 = -1 .10 

and we classify the woman as 7T2 , an obligatory carrier. 
Sca l i ng 

• 

The coefficient vector a == s�;oled ( xl - x2 ) is unique only up to a multiplicative constant, so, for c * 0, any vector ca will also serve as discriminant coefficients. 
The vector a is frequently "scaled" or "normalized" to ease the interpretation 

of its elements. Two of the most commonly employed normalizations are 
1. Set 

a* == (11 -21 ) 
so that a* has unit length. 
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2. Set 

so that the first element of the new coefficient vector a* is 1 . 
( 11 -22) 

In both cases, a* is of the form ca. For normalization ( 1 ) ,  c = (a' a) -112 and for (2) , c = a11 . 
The magnitudes of ai , ai , . . .  , a; in (1 1 -21 ) all lie in the interval [ -1 ,  1 ] .  In 

(11 -22) , ai = 1 and ai , . . .  , a; are expressed as multiples of ai . Constraining the a;' 
to the interval [ -1 ,  1 J usually facilitates a visual comparison of the coefficients. Sim
ilarly, expressing the coefficients as multiples of ai allows one to readily assess the rel
ative importance (vis-a-vis X1) of variables X2, • • •  , XP as discriminators. Normalizing the a/s is recommended only if the X variables have been stan
dardized. If this is not the case, a great deal of care must be exercised in interpret
ing the results. 
Classification  of Normal Popu lations When I1 -:/= I2 

As might be expected, the classification rules are more complicated when the popu
lation covariance matrices are unequal. 

Consider the multivariate normal densities in (11-10) with Ii , i = 1 ,  2, replac
ing I. Thus, the covariance matrices, as well as the mean vectors, are different from 
one another for the two populations. As we have seen, the regions of minimum ECM 
and minimum total probability of misclassification (TPM) depend on the ratio of the 
densities, f1 (x)//2 (x) , or, equivalently, the natural logarithm of the density ratio, 
ln [/1 (x)/ /2(x) ] = ln [/1 (x) ] - ln [/2 (x) ] .  When the multivariate normal densities 
have different covariance structures, the terms in the density ratio involving I Ii 1 1/2 do not cancel as they do when I1 = I2 . Moreover, the quadratic forms in the exponents of f1 (x) and f2(x) do not combine to give the rather simple result in ( 11 -13) .  

Substituting multivariate normal densities with different covariance matrices 
into (11 -6) gives, after taking natural logarithms and simplifying (see Exercise 1 1 . 15) , 
the classification regions 

R _ _!_ ' (�-1 _ �-1 ) + ( � �-1 _ , �-1 ) _ k > l [ ( c ( 1 1 2) ) (P2) ] 1 : 2 
x �1 �2 x #Ll�l IL2�2 I x - n 

c (2 1 1 ) Pl 

R _ _!_ ' (�-1 _ �-1 ) + ( � �-1 _ � �-1 ) _ k < 1 
[ ( c ( 1 1 2) ) (P2 ) ] 2 : 2 

x �1 �2 x #Ll�l #L2�2 x n 
c (2 1 1 ) Pl 

where 
k _ 

1 1 
( I I1 l ) + 1 ( , �-1 , �-1 ) - 2 n I I2 l 2 #L1�1 #L1 - #L2�2 #L2 

( 11 -23) 

(11 -24) 

The classification regions are defined by quadratic functions of x. When I1 = I2 , the quadratic term, - �x '  (I11 - I21 )x, disappears, and the regions defined by (11 -23) 
reduce to those defined by ( 11 -14) . 
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The classification rule for general multivariate normal populations follows di
rectly from (11-23) . 

Result 11.3. Let the populations 1r1 and 1r2 be described by multivariate normal densities with mean vectors and covariance matrices �t1 , I1 and �t2 , I2 , respectively. The allocation rule that minimizes the expected cost of misclassification is 
given by 
Allocate x0 to 7T1 if 

1 , (�-1 �-1 ) + ( , �-1 , �-1 ) k 1 [ ( c ( 1 1 2) ) (P2) ] - 2 xo �� - �2 Xo P1�1 - P2�2 Xo - > n c (l [ l ) PI 
Allocate x0 to 1r2 otherwise. 

Here k is set out in (11-24) . • 

In practice, the classification rule in Result 11 .3 is implemented by substituting 
the sample quantities x1 , x2 , S1 , and S2 (see (11 -16)) for �t1 , �t2 , I1 , and I2 , respectively. 5 

Classification with quadratic functions is rather awkward in more than two di
mensions and can lead to some strange results. This is particularly true when the 
data are not (essentially) multivariate normal. 

Figure 11 .5 (a) shows the equal costs and equal priors rule based on the ideal
ized case of two normal distributions with different variances. This quadratic rule 
leads to a region R1 consisting of two disjoint sets of points. In many applications, the lower tail for the 1T 1 distribution will be smaller than that prescribed by a normal distribution. Then, as shown in Figure 11 .5(b ) , the lower 
part of the region R1 , produced by the quadratic procedure, does not line up well with the population distributions and can lead to large error rates. A serious weak
ness of the quadratic rule is that it is sensitive to departures from normality. 

If the data are not multivariate normal, two options are available. First, the 
nonnormal data can be transformed to data more nearly normal, and a test for the 
equality of covariance matrices can be conducted to see whether the linear rule (11-18) 

5 The inequalities n1 > p and n2 > p must both hold for S11 and S2 1 to exist. These quantities are 
used in place of I11 and I21 , respectively, in the sample analog (11 -25) .  
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(a) 

(b) 
Figure 1 1 .5 Quadratic ru les for (a) two normal  d ist r ibut ion with unequa l  va r ia nces and  
(b) two d istri but ions, one  of which i s  non  normal-ru le  not appropr iate. 

or the quadratic rule ( 1 1 -25) is appropriate. Transformations are discussed in Chap
ter 4. (The usual tests for covariance homogeneity are greatly affected by nonnor
mality. The conversion of nonnormal data to normal data must be done before this 
testing is carried out.) 

Second, we can use a linear (or quadratic) rule without worrying about the form 
of the parent populations and hope that it will work reasonably well. Studies (see [20] 
and [21 ] )  have shown, however, that there are nonnormal cases where a linear clas
sification function performs poorly, even though the population covariance matrices 
are the same. The moral is to always check the performance of any classification pro
cedure. At the very least, this should be done with the data sets used to build the 
classifier. Ideally, there will be enough data available to provide for "training" sam
ples and "validation" samples. The training samples can be used to develop the clas
sification function, and the validation samples can be used to evaluate its performance. 

1 1 .4 EVALUATI NG CLASS IF ICATION FUNCTIONS 

One important way of judging the performance of any classification procedure is to 
calculate its "error rates," or misclassification probabilities. When the forms of the par
ent populations are known completely, misclassification probabilities can be calculated 
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with relative ease, as we show in Example 1 1 .4. Because parent populations are rarely 
known, we shall concentrate on the error rates associated with the sample classifica
tion function. Once this classification function is constructed, a measure of its per
formance in future samples is of interest . 

From ( 11 -8) , the total probability of misclassification is 
TPM = p1 { f1 (x) dx + p2 { /2(x) dx u�R2 u�R1 

The smallest value of this quantity, obtained by a judicious choice of R1 and R2 , is called the optimum error rate (OER) . 

Thus, the OER is the error rate for the minimum TPM classification rule. 

Example 1 1 .4 (Ca lcu lati ng misclass ification probab i l ities) 

Let us derive an expression for the optimum error rate when p1 == p2 == � and 
f1 (x) and f2(x) are the multivariate normal densities in ( 11 -10) . 

Now, the minimum ECM and minimum TPM classification rules coincide 
when c ( 1 \ 2 ) == c (2 \ 1  ) . Because the prior probabilities are also equal, the min
imum TPM classification regions are defined for normal populations by ( 11 -12) ,  

with ln [ (:g : �D (�:)] = 0 .  We find that 

R1 :  ( IL l - IL2 ) ' I-1x - � ( ILl - IL2) ' I-1 ( 1L l  + 1L2) > 0 

R2 : ( IL 1 - 1L2) ' I-1X - � ( IL1 - 1L2 ) ' I-1 ( IL1 + 1L2) < 0 

These sets can be expressed in terms of y == ( IL 1 - IL2) ' I-1x == a 'x  as 
R1 (y ) : Y > � ( ILl - IL2 ) ' I-1 ( 1Ll + 1L2 ) 
R2(y ) : Y < � ( ILl - IL2) ' I-1 ( 1Ll + 1L2) 

But Y is a linear combination of normal random variables, so the probability 
densities of Y, f1 (y) and f2(y  ) , are univariate normal (see Result 4.2) with means 
and a variance given by 

Now, 

f.L1 Y == a ' IL1 == ( IL1 - 1L2) ' I-1 1L1 
f.L2 Y == a' IL2 == ( /L1 - 1L2 ) ' I-1 1L2 
a} == a ' Ia == ( 1L1 - 1L2) ' I-1 ( 1-t 1 - 1L2) == d 2 

TPM == � P [ misclassifying a 1r1 observation as 1r2] 
+ � P [ misclassifying a 1r2 observation as 1r1 ] 
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P( 1 1 2) 

Figure 1 1 .6 The misclassificat ion probab i l ities based on Y. 

But, as shown in Figure 11 .6 
P[ misclassifying a 1r1 observation as 1r2 ] == P (2 1 1 ) 

== P[Y < � ( ILl - IL2) ' 'I-1 ( 1Ll + 1L2) ] 

== p (y - JL1 y 
< 

� ( IL1 - IL2) ' !,-1 ( 1L l  + IL2) - ( IL1 - ILJ ' !,-l IL1 ) 
�y d ( _ _!_ d2 ) ( ) 

= p z < � = cp -
2
/). 

where ci> ( ·) is the cumulative distribution function of a standard normal ran
dom variable. Similarly, 

P[ misclassifying a 1r2 observation as 1r1 ] 
== P ( 1 1 2 ) == P[Y > � ( ILl - IL2) ' 'I-1 ( 1Ll + 1L2) ] 

= p ( z > � ) = 1 - cp ( � ) = cp ( -
2
/). ) 

Therefore, the optimum error rate is 
1 ( -d )  1 ( -d )  ( -d ) OER == minimum TPM == 2 ci> 2 + 2 ci> 2 == ci> 2 (11 -27) 

lf, for example, d2 == ( IL1 - IL2 ) ' I-1 ( 1L1 - IL2) == 2 .56 , then d == V236 == 1 .6, 
and, using Table 1 in the appendix, we obtain 

Minimum TPM = cl> ( -�·6 ) = cl> ( - .8 ) = .21 19 

The optimal classification rule here will incorrectly allocate about 21% of the 
items to one population or the other. • 

Example 11 .4 illustrates how the optimum error rate can be calculated when the 
population density functions are known. If, as is usually the case, certain population 
parameters appearing in allocation rules must be estimated from the sample, then 
the evaluation of error rates is not straightforward. 
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The performance of sample classification functions can, in principle, be evalu
ated by calculating the actual error rate (AER) , 

" " 

AER = P1 ( f1 (x) dx + P2 ( f2(x) dx }R2 }R1 ( 11 -28) 

where R1 and R2 represent the classification regions determined by samples of size 
n1 and n2 , respectiv�ly. Foi example, if the classification function in (11 -18) is em
ployed, the regions R1 and R2 are defined by the set of x's for which the following inequalities are satisfied. 
Rl : ( X\ - X2 ) ' s�;olect x - � ( X1 - X2) ' S�;olect ( X1 + X2) > ln [ (:g : �D (�) J 
R2 : ( X1 - X2) 's�;o1ect X - � ( X1 - X2 ) ' s�;olect ( X1 + X2) < ln [ ( :g : �� ) (;�) J 
The AER indicates how the sample classification function will perform in future 

samples. Like the optimal error rate, it cannot, in general, be calculated, because it 
depends on the unknown density functions /1 (x) and f2(x ) . However, an estimate of a quantity related to the actual error rate can be calculated, and this estimate will be 
discussed shortly. 

There is a measure of performance that does not depend on the form of the 
parent populations and that can be calculated for any classification procedure. This 
measure, called the apparent error rate (APER) , is defined as the fraction of obser
vations in the training sample that are misclassified by the sample classification func
tion. 

The apparent error rate can be easily calculated from the confusion matrix, 
which shows actual versus predicted group membership. For n1 observations from 1r1 and n2 observations from 1r2 , the confusion matrix has the form 

Predicted membership 
7Tl 

Actual 
membership 1r2 

where 
n1 c = number of 1r1 items �orrectly classified as 1r1 items 
n1 M = number of 1r1 items misclassified as 1r2 items 
n2c = number of 1r2 items �orrectly classified 
n2M = number of 1r2 items misclassified 

The apparent error rate is then 
APER = 

nl M  + n2M 
nl + n2 

( 11 -29) 

(11 -30) 

which is recognized as the proportion of items in the training set that are misclassified. 
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Example 1 1 . 5 (Ca lcu lating the apparent error rate) 

Consider the classification regions R1 and R2 shown in Figure 11 . 1 for the riding-mower data. In this case, observations northeast of the solid line are clas
sified as 1r 1 , mower owners; observations southwest of the solid line are classified as 1r2 , nonowners. Notice that some observations are misclassified. The con
fusion matrix is 

Actual 
membership 

riding-
7T'1 : mower owners 
1r2 : nonowners 

Predicted membership 
1r1 : riding-mower owners 1r2 : nonowners 

n1 c = 10 

The apparent error rate, expressed as a percentage, is 
APER = 

c�
: 
�
2
)
100% = 

(
2
:)
100% = 16 .7% • 

The APER is intuitively appealing and easy to calculate. Unfortunately, it tends 
to underestimate the AER, and the problem does not disappear unless the sample 
sizes n1 and n2 are very large. Essentially, this optimistic estimate occurs because the data used to build the classification function are also used to evaluate it. 

Error-rate estimates can be constructed that are better than the apparent error 
rate, remain relatively easy to calculate, and do not require distributional assump
tions. One procedure is to split the total sample into a training sample and a valida
tion sample. The training sample is used to construct the classification function, and 
the validation sample is used to evaluate it. The error rate is determined by the pro
portion misclassified in the validation sample. Although this method overcomes the 
bias problem by not using the same data to both build and judge the classification 
function, it suffers from two main defects: 

(i) It requires large samples. 
(ii) The function evaluated is not the function of interest. Ultimately, almost all of 
the data must be used to construct the classification function. If not, valuable 
information may be lost. 
A second approach that seems to work well is called Lachenbruch's "holdout" 

procedure6 (see also Lachenbruch and Mickey [22] ) : 
1. Start with the 1r1 group of observations. Omit one observation from this group, and develop a classification function based on the remaining n1 - 1 , n2 observations. 

6Lachenbruch's holdout procedure is sometimes referred to as jackknifing or cross-validation. 
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2. Classify the "holdout" observation, using the function constructed in Step 1 .  
3. Repeat Steps 1 and 2 until all of the 1r1 observations are classified. Let n ilfJ be 
the number of holdout (H) observations misclassified in this group. 

4. Repeat Steps 1 through 3 for the 1r2 observations. Let n�lf) be the number of 
holdout observations misclassified in this group. 
Estimates P(2 i 1 ) and P( 1 i 2) of the conditional misclassification probabilities 

in (11 -1 )  and ( 1 1 -2) are then given by 
(H )  

P(2 i 1 ) == 
nl M nl 

( H )  
P( 1 i 2) == 

n2M ( 11 -31 )  n2 
and the total proportion misclassified, (n ilfJ + n�lf} )j(n 1 + n2 ) , is, for moderate samples, a nearly unbiased estimate of the expected actual error rate, E(AER) . 

Lachenbruch's holdout method is computationally feasible when used in conjunction with the linear classification statistics in ( 11 -18) or ( 11 -19) .  It is offered as 
an option in some readily available discriminant analysis computer programs. 
Example 1 1 .6 (Ca lcu lati ng an estimate of the e rror rate 

us ing the holdout procedure) 

We shall illustrate Lachenbruch's holdout procedure and the calculation 
of error rate estimates for the equal costs and equal priors version of (11-18) .  
Consider the following data matrices and descriptive statistics. (We shall as
sume that the n1 == n2 == 3 bivariate observations were selected randomly from 
two populations 7T1 and 7T2 with a common covariance matrix. ) 

xl = [: 12] 
1� ; X1 = [ 1�} 2Sl = [ -� 

Xz = [! :J Xz = [� J 282 = [ -� 
The pooled covariance matrix is 

1 [ 1 
Spooled == 4 (2Sl + 2S2 ) == _ 1 

-�] 
-�] 

Using Spooled ' the rest of the data, and Rule ( 11 -18) with equal costs and equal 
priors, we may classify the sample observations. You may then verify (see Ex
ercise 1 1 .19) that the confusion matrix is 
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True population: 

Classify as: 
7T1 7T2 
2 
1 

1 
2 

and consequently, 
2 APER( apparent error rate ) = 6 = .33 

Holding out the first observation XH = [2, 12 J from x1 ' we calculate 
X1H = [� 1�} x 1 H = [3�5} and 1S1 H = [ ·: �] 

The new pooled covariance matrix, SH, pooled , is 

with inverse7 
SH, poolect = � [ 1S1 H  + 282 ] = � [ =� �� J 

-1 - 1 [ 10 1 J SH, pooled - 8 1 2.5 
It is computationally quicker to classify the holdout observation x1 H on the basis of its squared distances from the group means i1 H  and i2 . This procedure is equivalent to computing the value of the linear function y = aHxH 

= ( i1 H  - X2) ' SJ[� pooled XH and comparing it to the midpoint mH == 

� ( x1 H - X2) ' Sfl, pooled ( x1 H + i2) . [See (11-19) and (11-20) .] 
Thus with xH = [2, 12] we have 

Squared distance from x1 H = (xH - x1 H) ' S:H1, pooled (xH - x1 H) 
= [2 - 3.5 12 - 9] � [ 1� 2�5 J [ 1� = � .5 J = 4.5 

Squared distance from x2 == (xH - x2) 'S:H1, pooled (xH - x2 ) 

= [2 - 4 12 - 7] � [ 1� 2�5 J [ 1� = � J = 10.3 
Since the distance from XH to x1 H is smaller than the distance from XH to X2 , we classify xH as a 1r1 observation. In this case, the classification is correct. If XH = [ 4, 10] is withheld, x1 H and Sfl,pooled become 

- - [2.5] -1 - 1 [ 16 4 J x 1 H - 10 and SH, pooled - 8 4 2.5 

7 A matrix identity due to Bartlett [3 ]  allows for the quick calculation of S:f/pooled directly from s�;oled . Thus one does not have to recompute the inverse after withholding each observation. (See Exer
cise 11 .20.) 
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(xH - i1 H  ) 'SJl, pooled (xH - il H ) = [ 4 - 2.5 10 - 10 ) 1_ [ 16 4 J [ 4 - 2·5] 8 4 2.5 10 - 10 
== 4.5 

(xH - X2) ' SJl, pooled (xH - X2) = [ 4 - 4 10 - 7] � [ 1� 2�5 J [ 1� = � J 
== 2.8 

and consequently, we would incorrectly assign xH == [ 4, 10] to '7T2 • Holding out 
xH == [ 3 , 8 ] leads to incorrectly assigning this observation to '7T2 as well. Thus, 
n(H) - 2 1 M - · 

Turning to the second group, suppose xH == [ 5 , 7 ] is withheld. Then 
X [3 9] [3 .5] [ .

5 -2] 2 H  == 4 5 ; X2H  == 7 ; and 1S2H  == -2 8 
The new pooled covariance matrix is 

with inverse 

We find that 

SH, poolect = � [281 + 1S2 H ] = � [ =� �: J 
-1 - 3 [ 16 4 J SH,pooled - 24 4 2.5 

(xH - Xr ) 'SJl, pooled (xH - X1 ) = [5 - 3 7 - 10] :4 [ 
1
4
6 

2�5 J [� � :OJ 
== 4 .8 

- 7] 1_ [ 16 4 J [5 - 3.5] (xH - i2H) ' Sil, poo!ed (XH - i2H) = [ 5 - 3 .5 7 24 4 2.5 7 _ 7 
== 4.5 

and xH == [ 5, 7 ]  is correctly assigned to '7T2 • When xH == [ 3 , 9 ] is withheld, 
(xH - Xr ) 'SJl, pooled (xH - X1 ) = [ 3 - 3 9 - 10] :4 [ 1� 2�5] D = �O] 

== .3 
(xH - i2H ) 'SJ/pooled (xH - i2H ) = [ 3 - 4.5 9 - 6 ) :4 [ 

1� 2�5 J [� = :·5 J 
== 4.5 

and xH == [ 3 , 9 ] is incorrectly assigned to 1r1 . Finally, withholding xH == [ 4, 5 ] 
leads to correctly classifying this observation as 1r2 • Thus, n�IJJ == 1 .  
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An estimate of the expected actual error rate is provided by 
(H )  + (H )  2 + 1 E(AER) = 

nl M n2M 5 n1 + n2 
= 3 + 3 = · 

Hence, we see that the apparent error rate APER = .33 is an optimistic mea
sure of performance. Of course, in practice, sample sizes are larg_fr than those 
we have considered here, and the difference betweenAPER and E (AER ) may 
not be as large. M 

If you are interested in pursuing the approaches to estimating classification 
error rates, see [21 ] .  

The next example illustrates a difficulty that can arise when the variance of the 
discriminant is not the same for both populations. 

Example 1 1 .7 (Classifying Alaskan and Canad ian sa l mon) 

The salmon fishery is a valuable resource for both the United States and Cana
da. Because it is a limited resource, it must be managed efficiently. Moreover, 
since more than one country is involved, problems must be solved equitably. 
That is, Alaskan commercial fishermen cannot catch too many Canadian salmon 
and vice versa. 

These fish have a remarkable life cycle. They are born in freshwater 
streams and after a year or two swim into the ocean. After a couple of years in 
salt water, they return to their place of birth to spawn and die. At the time they 
are about to return as mature fish, they are harvested while still in the ocean. 
To help regulate catches, samples of fish taken during the harvest must be iden
tified as coming from Alaskan or Canadian waters. The fish carry some infor
mation about their birthplace in the growth rings on their scales. Typically, the 
rings associated with freshwater growth are smaller for the Alaskan-born than 
for the Canadian-born salmon. Table 1 1 .2 gives the diameters of the growth 
ring regions, magnified 100 times, where 

xl = diameter of rings for the first-year freshwater growth 
(hundredths of an inch ) 

x2 = diameter of rings for the first-year marine growth 
(hundredths of an inch ) 

In addition, females are coded as 1 and males are coded as 2. 
Training samples of sizes n1 = 50 Alaskan-born and n2 = 50 Canadian

born salmon yield the summary statistics [ 98.380] x 1 = 429.660 ' 

[ 137 .460] x2 = 366.620 ' 

s 
= 
[ 260.608 -188.093] 1 - 188.093 1399.086 

s 
= 
[326.090 133.505] 

2 133 .505 893.261 
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TABLE 1 1 .2 SALMON DATA (G ROWTH-R ING  D IAM ETERS) 

Alaskan Canadian 
Gender Freshwater Marine Gender Freshwater Marine 

2 108 368 1 129 420 
1 131 355 1 148 371 
1 105 469 1 179 407 
2 86 506 2 152 381 
1 99 402 2 166 377 
2 87 423 2 124 389 
1 94 440 1 156 419 
2 117 489 2 131 345 
2 79 432 1 140 362 
1 99 403 2 144 345 
1 114 428 2 149 393 
2 123 372 1 108 330 
1 123 372 1 135 355 
2 109 420 2 170 386 
2 112 394 1 152 301 
1 104 407 1 153 397 
2 1 1 1  422 1 152 301 
2 126 423 2 136 438 
2 105 434 2 122 306 
1 119 474 1 148 383 
1 114 396 2 90 385 
2 100 470 1 145 337 
2 84 399 1 123 364 
2 102 429 2 145 376 
2 101 469 2 115 354 
2 85 444 2 134 383 
1 109 397 1 117 355 
2 106 442 2 126 345 
1 82 431 1 118 379 
2 118 381 2 120 369 
1 105 388 1 153 403 
1 121 403 2 150 354 
1 85 451 1 154 390 
1 83 453 1 155 349 
1 53 427 2 109 325 
1 95 41 1 2 117 344 
1 76 442 1 128 400 
1 95 426 1 144 403 
2 87 402 2 163 370 
1 70 397 2 145 355 
2 84 511 1 133 375 

(continues on next page) 
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TABLE 1 1 .2 (continued) 

Alaskan Canadian 
Gender Freshwater Marine Gender Freshwater Marine 

2 91 469 1 128 383 
1 74 451 2 123 349 
2 101 474 1 144 373 
1 80 398 2 140 388 
1 95 433 2 150 339 
2 92 404 2 124 341 
1 99 481 1 125 346 
2 94 491 1 153 352 
1 87 480 1 108 339 

Gender Key: 1 == female; 2 == male. 
Source: Data courtesy of K. A. Jensen and B. Van Alen of the State of Alaska Department of 
Fish and Game. 

The data appear to satisfy the assumption of bivariate normal distributions (see 
Exercise 11 .31 ) ,  but the covariance matrices may differ. However, to illustrate 
a point concerning misclassification probabilities, we will use the linear classi
fication procedure. 

The classification procedure, using equal costs and equal prior probabili
ties, yields the holdout estimated error rates 

Actual 
membership 

'1T 1 : Alaskan 
'1T 2 : Canadian 

Predicted membership 
'1T 1 : Alaskan 

44 6 
1 49 

based on the linear classification function [see (1 1-19) and (11 -20)] 
w == y - m == -5.54121 - .12839x1 + .05194x2 

There is some difference in the sample standard deviations of w for the 
two populations : 

Alaskan 
Canadian 

n 

50 
50 

Sample 
Mean 
4. 144 

-4.147 

Sample 
Standard Deviation 

3.253 
2.450 

Although the overall error rate (7 /100, or 7%) is quite low, there is an un
fairness here. It is less likely that a Canadian-born salmon will be misclassified 
as Alaskan born, rather than vice versa. Figure 1 1 .7, which shows the two 
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Y2 m Y1 

Figure 1 1 .7 Schematic of norma l  densities for l i near d i scri m i nant-sa l mon data. 

normal densities for the linear discriminant y , explains this phenomenon. Use 
of the midpoint between the two sample means does not make the two mis
classification probabilities equal. It clearly penalizes the population with the 
largest variance. Thus, blind adherence to the linear classification procedure 
can be unwise. • 

It should be intuitively clear that good classification (low error rates) will de
pend upon the separation of the populations. The farther apart the groups, the more 
likely it is that a useful classification rule can be developed. This separative goal, al
luded to in Section 1 1 . 1 ,  is explored further in Sections 1 1 .5 and 1 1 .7 .  

As we shall see, allocation rules appropriate for the case involving equal prior 
probabilities and equal misclassification costs correspond to functions designed to 
maximally separate populations. It is in this situation that we begin to lose the dis
tinction between classification and separation. 

1 1 . 5 F ISHER'S DI SCRI MINANT FUNCTION-SEPARATION OF POPU LATIONS 

Fisher [9] actually arrived at the linear classification statistic (1 1-19) using an entire
ly different argument from the one in Section 1 1 .3 .  Fisher's idea was to transform the 
multivariate observations x to univariate observations y such that the y's derived 
from populations 1r1 and 1r2 were separated as much as possible. Fisher suggested taking linear combinations of x to create y's because they are simple enough functions 
of the x to be handled easily. Fisher's approach does not assume that the popula
tions are normal . It does, however, implicitly assume that the population covariance 
matrices are equal, because a pooled estimate of the common covariance matrix is 
used. 

A fixed linear combination of the x's takes the values y1 1 , y1 2 , . . .  , y1 n1 for the observations from the first population and the values y2 1 , y22 , . . .  , y2 n2 for the observations from the second population. The separation of these two sets of univariate y's 
is assessed in terms of the difference between y1 and y2 expressed in standard deviation units. That is, 

nl n2 
L ( Yl j - Y1 )2 + L ( Y2j - Y2 )2 j= l  j= l  where s2 = -------------Y n l + n2 - 2 

is the pooled estimate of the variance. The objective is to select the linear combina
tion of the x to achieve maximum separation of the sample means y1 and y2 • 
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Result l1.4. The linear combination y = a' x  = ( x1 - x2) ' s�;oled xmaximizes 
the ratio ( Squared distance ) 

between sample means of y 
(Sample variance of y) 

( Y1 - Y"2 )2 

s2 y 

( a ' x1 - a' x2 ) 2 
" ' S " a pooled a 

( a ' d)2 
a ' Spooled a 

(11 -33 ) 

over all possible coefficient vectors a where d = ( x1 - x2 ) . The maximum of the ratio (11 -33) is D2 = ( x1 - i2) ' s�;oled ( x1 - x2 ) . 

Proof. The maximum of the ratio in ( 11 -33) is given by applying (2-50) di
rectly. Thus, setting d = ( x1 - x2) , we have 

( " ' d) 2 a - d' S-1 d - ( - - ) 'S-1 ( - - ) - D2 m�x " ' s " - pooled - x 1 - x2 pooled x 1 - x2 -a a pooled a 

where D2 is the sample squared distance between the two means. 
Note that s� in (11 -33) may be calculated as 

nl n2 
L (Y1 j - Y1 )2 + L (Y2j - Y2 )2 j= 1 j= 1 s2 = ------------Y n1 + n2 - 2 

" th " ' d " ' WI y1 j = a x1 j an y2j = a x2j . 

Example 1 1 .8 (Fisher's l i near d i scri mi nant fo r the hemoph i l i a data) 

• 

( 11 -34) 

A study concerned with the detection of hemophilia A carriers was introduced 
in Example 1 1 .3 . Recall that the equal costs and equal priors linear discrimi
nant function was 

y = a ' x = ( x1 - X2 ) 'S�;oled X = 37.61x1 - 28.92x2 
This linear discriminant function is Fisher's linear function, which maxi

mally separates the two populations, and the maximum separation in the sam
ples is 

D2 = ( x1 - x2) ' s�;oled ( x1 - i2) 

[ - .0652] [ 131 . 158 -90.423] [ .2418] 
= •2418 ' -90.423 108.147 - .0652 
= 10.98 • 

Fisher 's solution to the separation problem can also be used to classify new 
observations. 
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The procedure ( 11 -33) is illustrated, schematically, for p = 2 in Figure 1 1 .8. All 
points in the scatter plots are projected onto a line in the direction a, and this direc
tion is varied until the samples are maximally separated. 

Fisher 's linear discriminant function in ( 1 1 -35) was developed under the as
sumption that the two populations, whatever their form, have a common covariance 
matrix. Consequently, it may not be surprising that Fisher's method corresponds to 
a particular case of the minimum expected-cost-of-misclassification rule. The first 
term, y = ( X1 - X2) 's�;oled X, in the classification rule (11-18) is the linear function Ob
tained by Fisher that maximizes the univariate "between" samples variability relative 
to the "within" samples variability. [See ( 11 -33) . ]  The entire expression 

y = a'x 
x2 • • •• • • • • • • 1t2 . . . . .... . . -

. . . . ::. ·.. . . • • • · · ··�· • x2 
. .'- ...... . . . 

. . ...... · . • ••·· . . . . . 
. / . . · -..· : :  . . . . • • • • • 0 0 • • • • • • • o • • o• .• Q. • •• • • • � • • �... / 0 0 0 0 00 0 0 0 1t -

�· .• •• o o o �o o ao o I X I 
::1 J.\ •• • • 0 0 0 0 0 0 

� 
� ··:. 0 0 g 0 0 0 Do 0 0 

f.ll 

• • o o '6 o 
-p. \� • • g. o ooo o o 
� �\ �OoO ...- ""'o O 0 Oo 0 0 0 0 \�\ / 

/ 0 / 
/ 

/ 
00 0 0 0 6 00 00 

? / o o 0 
""' )( ' g'bo ""' ""' 

....L 0 0 / 
�......� 0 o.- / 

a ...e o 
0 ._L\ �0 
� .... o o �· --4��------------------------------------� x i  

::1 00 
� 

-p. .,.,. 
Figure 1 1 .8 A pictor ia l  representat ion of F i sher's proced u re for two popu lat ions with p = 2 .  

8We must have (n l  + n2 - 2)  2:: p ;  otherwise spooled i s  singular, and the usual inverse, s��oled ' does 
not exist. 
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w = ( x 1 - x 2) ' s�;olect x - � ( x 1 - x 2 ) ' S�;olect ( x 1 + x 2 ) 
( x1 - x2) 'S�;oled [ x - � ( x1 + x2) ] ( 11 -36) 

is frequently called Anderson 's classification function (statistic) . Once again, if 
[ ( c ( 1 1 2 )/c (2 1 1 ) ) (p2/p1 ) ] = 1 ,  so that ln [ ( c ( 1 1 2)/c (2 1 1 ) ) (p2 /p1 ) ]  = 0, Rule 
(1 1 -1 8) is comparable to Rule (11 -35) , based on Fisher's linear discriminant function. 
Thus, provided that the two normal populations have the same covariance matrix, 
Fisher's classification rule is equivalent to the minimum ECM rule with equal prior 
probabilities and equal costs of misclassification. 

In sum, for two populations, the maximum relative separation that can be ob
tained by considering linear combinations of the multivariate observations is equal 
to the distance D2 • This is convenient because D2 can be used, in certain situations, 
to test whether the population means ILl and IL2 differ significantly. Consequently, a test for differences in mean vectors can be viewed as a test for the "significance" of 
the separation that can be achieved. 

Suppose the populations 1r1 and 1r2 are multivariate normal with a common c o 
variance matrix I.  Then, as in Section 6.3 , a test of H0 : IL1 = IL2 versus H1 : ILl * 1!2 is accomplished by referring 

( ��
n: :2

n�! 2�p
l ) ( n1

n:2
nJD2 

to an F-distribution with v1 = p and v2 = n1 + n2 - p - 1 d.f. If H0 is rejected, we 
can conclude that the separation between the two populations 7T1 and 1r2 is significant . 

Comment. Significant separation does not necessarily imply good classifica
tion. As we have seen in Section 1 1 .4, the efficacy of a classification procedure can 
be evaluated independently of any test of separation. On the other hand, if the sep
aration is not significant, the search for a useful classification rule will probably prove 
fruitless. 

1 1 .6 CLASSIF ICATION WITH SEVERAL POPU LATIONS 

In theory, the generalization of classification procedures from 2 to g > 2 groups is 
straightforward. However, not much is known about the properties of the corre
sponding sample classification functions, and in particular, their error rates have not 
been fully investigated. 

The "robustness" of the two group linear classification statistics to, for instance, 
unequal covariances or nonnormal distributions can be studied with computer gen
erated sampling experiments. 9 For more than two populations, this approach does 

9Here robustness refers to the deterioration in error rates caused by using a classification procedure 
with data that do not conform to the assumptions on which the procedure was based. 

It is very difficult to study the robustness of classification procedures analytically. However, data 
from a wide variety of distributions with different covariance structures can be easily generated on a com
puter. The performance of various classification rules can then be evaluated using computer-generated 
"samples" from these distributions. 
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not lead to general conclusions, because the properties depend on where the popu
lations are located, and there are far too many configurations to study conveniently. 

As before, our approach in this section will be to develop the theoretically op
timal rules and then indicate the modifications required for real-world applications. 
The Min imum Expected Cost of Misclassification  Method 

Let fi (x) be the density associated with population '7Ti , i = 1, 2, . . .  , g . [For the most 
part, we shall take fi (x) to be a multivariate normal density, but this is unnecessary 
for the development of the general theory.] Let 

Pi = the prior probability of population '7Ti , i = 1, 2, . . .  , g 
c (k I i ) = the cost of allocating an item to '7Tk when, in fact , it belongs 

to '7Ti , for k, i = 1 ,  2, . . .  , g 
For k = i, c ( i I i ) = 0. Finally, let Rk be the set of x's classified as 7Tk and 

P(k I i ) = P( classifying item as 7Tk 1 7T; ) = r /;(x) dx }Rk 
g for k, i = 1 , 2, . . .  , g with P( i I i ) = 1 - 2: P(k I i ) . 

k= l  k=F i The conditional expected cost of misclassifying an x from 7T1 into 7T2 , or 7T3 , • • •  , 
or '7T g is 

ECM( 1 ) = P(2 1 1 ) c (2 1 1 ) + P( 3 l 1 ) c ( 3 l 1 ) + · · · + P(g l 1 ) c (g 1 1 ) 
g 

= 2: P(k l 1 ) c ( k 1 1 ) 
k=2 

This conditional expected cost occurs with prior probability p1 , the probability of '7T1 . In a similar manner, we can obtain the conditional expected costs of misclassi
fication ECM(2) , . . .  , ECM(g ) . Multiplying each conditional ECM by its prior prob
ability and summing gives the overall ECM: 

ECM = p1ECM( 1 ) + p2ECM(2) + · · · + pgECM(g )  

= P1 (� P(k l l ) c (k 1 1 ) ) + P2 (� P(k l 2) c ( k 1 2)) 
k=F-2 

+ · · · + Pg (% P(k I g)c (k I g ) ) 
= � P; (� P(k I i ) c (k I i )) 

k=F i 
(11 -37) 

Determining an optimal classification procedure amounts to choosing the mu
tually exclusive and exhaustive classification regions R1 , R2 , • • •  , Rg such that ( 11-37) is a minimum. 
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Result 11.5. The classification regions that minimize the ECM (11-37) are de
fined by allocating x to that population 1Tk , k = 1 ,  2, . . .  , g, for which 

g 
� Pz fz(x) c (k  I i ) 
i= l  i=F-k 

is smallest. If a tie occurs, x can be assigned to any of the tied populations. 
Proof. See Anderson [2] . 

(11-38) 

• 

Suppose all the misclassification costs are equal, in which case the minimum expect
ed cost of misclassification rule is the minimum total probability of misclassification 
rule. (Without loss of generality, we can set all the misclassification costs equal to 
1 . )  Using the argument leading to (11 -38) , we would allocate x to that population 
1Tk , k  = 1 , 2, . . . , g, for which 

g 
� Pifz(x) 
i= l  i=l-k 

( 11 -39) 

is smallest. Now, (11 -39) will be smallest when the omitted term, Pkfk (x) , is largest. 
Consequently, when the misclassification costs are the same, the minimum expected 
cost of misclassification rule has the following rather simple form. 

It is interesting to note that the classification rule in (11-40) is identical to the 
one that maximizes the "posterior" probability P(  1Tk I x) = P (x comes from 1Tk given that x was observed) , where 

(prior ) X ( likelihood ) 
I [ (prior ) X ( likelihood ) J for k = 1 ,  2, . . .  , g 

(11-42) 
Equation (11 -42) is the generalization of Equation (11 -9) to g > 2 groups. 
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You should keep in mind that, in general, the minimum ECM rules have three 
components: prior probabilities, misclassification costs, and density functions. These 
components must be specified (or estimated) before the rules can be implemented. 
Example 1 1 .9 {Classifying a new observation 

i nto one of th ree known popu lations) 

Let us assign an observation x0 to one of the g = 3 populations 1r1 , 1r2 , or 1r3 , given the following hypothetical prior probabilities, misclassification costs, and 
density values: 

True population 
7TJ 1T2 1T3 

7Tl c ( 1 1 1 ) = 0 c ( 1 1 2) = 500 c ( 1 1 3 ) = 100 
Classify as: 1T2 c (2 1 1 ) = 10 c (2 1 2 ) = 0 c (2 1 3 )  = 50 

1T3 c (3 1 1 ) == 50 c (3 1 2 ) = 200 c ( 3 1 3 ) == 0 
Prior probabilities: PI = .05 P2 == .60 P3 == .35 
Densities at x0 : /1 ( x0) = .01 /2 ( x0) == .85 f1 (xo ) == 2 

We shall use the minimum ECM procedures. 3 
The values of � Pifi (x0 ) c ( k I i ) [see (11 -38)] are 

i= l 
i =F k  

k == 1 : p2/2 ( x0) c ( 1 I 2) + p3f:, ( x0) c ( 1 I 3 ) 
= ( . 60 ) ( . 85 ) (500 ) + ( . 35 ) (2) ( 100 ) == 325 

k = 2: p1/1 (x0) c (2 1 1 ) + p3/3 (x0) c (2 1 3 ) 
== ( .05 ) ( .01 ) ( 10 ) + ( . 35 ) (2) (50 ) = 35 .055 

k = 3 : p1/1 (x0) c ( 3 1 1 ) + p2/2 (x0) c (3 1 2 ) 
= ( .05 ) ( .01 ) ( 50) + ( . 60 ) ( .85 ) ( 200 ) = 102.025 

3 
Since � Pi fi(x0) c ( k I i ) is smallest for k == 2, we would allocate x0 to 1r2 • 

i = l 
i =F k  

I f all costs of misclassifica tion were equal, we would assign x0 according to 
(11 -40) , which requires only the products 

Since 

P1/1 (xo ) = ( .05 ) ( .01 ) == .0005 
P2/2 Cxo ) == ( .60 ) ( .85 ) == .510 
P3f3 ( Xo ) = ( .35 ) ( 2 ) = . 700 
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we should allocate x0 to 7T3 • Equivalently, calculating the posterior probabilities [see (11 -42)] , we obtain 
P1/1 (xo) P( 'TT1 I Xo) == _3 __ _ 

:L Pi fz(xo ) 
i= l  

( .05 ) ( .01 ) 
= 

.0005 
= 0004 ( .05 ) ( .01 ) + ( .60) ( .85 ) + ( .35 ) (2) 1 .2105 ° 

P2/2(xo ) ( .60 ) ( . 85 ) .510 P (  1r2 l x0 ) == 3 == == == .421 
"" ( ) 

1 .2105 1 .2105 
£..J Pi fz Xo i= l  

I 
P3/:,(xo) ( .35 ) (2) .700 P( TT3 xo ) == _3 ___ == 1 .2105 == 1 .2105 == '578 

:L Pi fz(xo) i= l  
We see that x0 i s allocated to 1r3 , the population with the largest posterior probability. • 

Classification with Normal Populations 

An important special case occurs when the 
_ 

1 [ 1 'I-1 ] 
/; (x) - (27T )P/2 1 I; 1 1/2 

exp - 2  (x - /1-; ) ; (x - /1-;) ' 
i == 1 ,  2, 0 .  0 '  g (11 -43) 

are multivariate normal densities with mean vectors ILi and covariance matrices Iz . 
If, further, c ( i I i ) == 0, c ( k I i ) == 1 , k # i (or, equivalently, the misclassification costs 
are all equal) , then (11 -41 ) becomes 
Allocate x to 1rk if 

ln pdk(x) = ln pk - (�) ln (27T) - � ln i ik l - � (x - P-k) 'Ik1 (x - P-k) 

== m�x ln Pi fi (x) (11 -44) 
l 

The constant (p/2) ln (27r ) can be ignored in (11 -44) , since it is the same for all 
populations. We therefore define the quadratic discrimination score for the ith pop
ulation to be 

dF(x) == - � ln I Ii I - � (x - ILi) 'Ii1 (x - ILi) + ln Pi 
i == 1 ' 2, . . .  ' g ( 1 1 -45) 

The quadratic score dF(x) is composed of contributions from the generalized variance 
I Ii I , the prior probability Pi , and the square of the distance from x to the population 
mean ILi · Note, however, that a different distance function, with a different orientation and size of the constant-distance ellipsoid, must be used for each population. 
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Using discriminant scores, we find that the classification rule (11-44) becomes 
the following: 

In practice, the ILi and Ii are unknown, but a training set of correctly classified observations is often available for the construction of estimates. The relevant sam
ple quantities for population 1Ti are 

xi = sample mean vector 
Si = sample covariance matrix 

and 
n i = sample size 

The estimate of the quadratic discrimination score df (x) is then 
df(x) = - � ln i Si l - � (x - xJ 'Si1 (x - xJ + ln pi , i = 1 , 2 , . . .  , g  (11 -47) 

and the classification rule based on the sample is as follows: 

A simplification is possible if the population covariance matrices, Ii , are equal. When Ii = I, for i = 1, 2, . . .  , g, the discriminant score in (11-45) becomes 
df(x) = - � ln i i i - � x ' I-1x + 1L;I-1x - � 1L;I-1 1Li + ln pi 

The first two terms are the same for d� (x) , d� (x) , . . .  , d� (x) , and, consequently, they 
can be ignored for allocative purposes. The remaining terms consist of a constant 
ci = ln Pi - � JL;I-1 1Li and a linear combination of the components of x. 

Next, define the linear discriminant score 
d ( ) - '""'-1 1 '""'-1 + 1 i x - ILi� x - 2 1Li� ILi n Pi 

for i = 1 , 2, . . .  , g 

(11 -49) 
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An estimate di (x) of the linear discriminant score di (x ) is based on the pooled esti
mate of I .  

1 
S - ( (n1 - 1 ) S1 + ( n2 - 1 ) S2 + · · · + (n - 1 ) S )  pooled - n + n + . . . + n - g 

g g 1 2 g 

and is given by 
d
,...

( ) - -,s-1 1 -, s-1 - + I i X - xi pooled X - 2 xi pooled x i n Pi 
for i = 1 ,  2, . . .  , g 

Consequently, we have the following: 

(11 -50) 

( 1 1 -5 1) 

Comment. Expression (11 -49) i s a convenient linear function of x. An equiv
alent classifier for the equal-covariance case can be obtained from ( 11 -45) by ignor
ing the constant term, - � In I I I · The result, with sample estimates inserted for unknown population quantities, can then be interpreted in terms of the squared 
distances 

Dr(x) = (x - xi ) ' s�;oled (x  - xi ) 
from x to the sample mean vector xi . The allocatory rule is then 

Assign x to the population 1ri for which - � Dr (x) + In Pi is largest 

(11 -53) 

(11 -54) 
We see that this rule-or, equivalently, (11 -52)-assigns x to the "closest" popula
tion. (The distance measure is penalized by In Pi . ) 

If the prior probabilities are unknown, the usual procedure is to set p1 = p2 = · · · 

= Pg = 1/ g. An observation is then assigned to the closest population. 
Example 1 1 . 1 0  (Calcu lati ng sample d iscri mi nant scores, 

assuming a common covariance matrix) 

Let us calculate the linear discriminant scores based on data from g = 3 pop
ulations assumed to be bivariate normal with a common covariance matrix. 

Random samples from the populations 1r1 , 1r2 , and 1r3 ,  along with the 
sample mean vectors and covariance matrices, are as follows: [ -2 5 ] 
1T1 : x1 = o 3 , 

-1 1 
[-1 ] [ 1 -1] so n1 = 3 ,  x1 = 3 ' and s 1 = -1 4 
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Given that p1 = p2 = .25 and p3 = .50, let us classify the observation 
x0 = [ x0 1 , x02 ] = [ -2 -1 ]  according to (11-52) . From (11-50) , 

so 

Next, 

and 

so 

3 - 1 [ 1 -1 ] 3 - 1 [ 1 -1] 3 - 1 [1 
4
1] 

spooled = 9 - 3 - 1 4 + 9 - 3 -1 4 + 9 - 3 1 

= 
� [ 1 + 1 + 1 -1 - 1 + 1 ] 

= 6 -1 - 1 + 1 4 + 4 + 4 
1 

1 
3 

4 _!_ 
-1 - 9 3 

= l_ [36 3] 
spooled - 35 1 35 3 9 - 1 3 

1 
3 

4 

_, -1 - [ J 1 [36 3] 
= l_ [ -27 24 ] x 1Spooled - -1 3 35 3 9 35 

= ln ( .25 ) + (��7) x0 1 + (��) x02 - � (�� ) 
Notice the linear form of d1 (x0 ) = constant + ( constant ) x0 1 + ( constant ) x02 •  In a similar manner, 

-, -1 - [ J 
1 [36 3] - 1 [ x2Spoolect - 1 4 35 3 9 - 35 48 39 ] 

xzs��oled x2 = 3
1
5 

[ 48 39 ] [! J = 
2
3
°
5
4 
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and 
" ( 48 ) ( 39 ) 1 (204 ) d2(x0) == ln ( .25) + 35 Xo 1 + 35 Xo2 - 2 35 

Finally, 

and 
" ( -6 ) ( -18 ) 1 ( 36 ) d3 (x0 )  == ln ( .50) + 35 Xo 1 + 3s Xo2 - 2 35 

Substituting the numerical values x0 1 = -2 and x02 == -1 gives 
d1 (x0) = -1 .386 + ( ��7) ( -2) + (��) ( -1 ) - �� = -1 .943 
d2(x0 ) = -1 .386 + (:�) ( -2) + G�) ( -1 ) - �004 = -8.158 

d3 (x0 ) = - .693 + ( ;:) ( -2) + ( ��8) ( -1 ) - �� = - .350 
" Since d3 (x0 ) = - .350 is the largest discriminant score, we allocate x0 to '7T3 • • 

Example 1 1 . 1 1 (Class ifyi ng a potentia l  busi ness-school graduate student) 

The admission officer of a business school has used an "index" of undergradu
ate grade point average (GPA) and graduate management aptitude test 
(GMAT) scores to help decide which applicants should be admitted to 
the school's graduate programs. Figure 11 .9 shows pairs of x1 = GPA, 
x2 = GMAT values for groups of recent applicants who have been categorized 
as '7T1 : admit ; 7T2 : do not admit; and 7T3 : borderline. 10 The data pictured are listed in Table 11 .6 . (See Exercise 11 .29 . ) These data yield (see the SAS statisti
cal software output in Panel 11 . 1 ) 

n1 = 31 
[ 3 .40] x 1 = 561 .23 [ 2.97] 

X = 488.45 

n2 == 28 n3 = 26 
[ 2.48] 

x2 = 447 .07 
[ 2.99] x3 == 446.23 

[ .0361 -2.0188] Spooled == -2.0188 3655 .9011 
10 In this case, the populations are artificial in the sense that they have been created by the admis

sions officer. On the other hand, experience has shown that applicants with high GPA and high GMAT 
scores generally do well in a graduate program; those with low readings on these variables generally ex
perience difficulty. 



Sect ion 1 1 .6 Class if icat ion with Severa l Popu l at ions 621 

GMAT 

720 
A 
A 

A A 
A 

630 A 
A A 

A A A 
A 

AAAA A A 
540 B B BB c A 

B A AA A  A A 
B B B c c A 

BB cere A 
B B c c CA A 

450 BB c cc cc A 
B c c c  A 

B B B B BB cc cc 
B B B c c 

B B c 
360 

B A : Admit ( n 1 ) 
B B : Do not admit ( n2 ) 

c C : Borderline ( n3 ) 
270 

GPA 
2. 1 0  2.40 2.70 3 .00 3.30 3 .60 3.90 

Figure 1 1 .9 Scatter p lot of (x1 = GPA, x2 = GMAT) for app l icants to a g raduate school of 
bus i ness who have been classif ied as adm it, do not adm it, or  border l i ne .  

PANEL 1 1 . 1  SAS ANALYSIS FOR ADMISS ION DATA US ING PROC DI SCRI M .  

t it le 'D iscr im inant Ana lysis'; 
data g pa; 
i nfi l e  'T1 1 -6 .dat'; 
i n put g pa gmat adm it $ ;  
proc d iscr im data = g pa PROGRAM COMMANDS 
method = normal  pool = yes manova wcov pcov l i sterr cross l i sterr; 
pr iors 'admit' = .3333 'notadm it' = .3333 'border' = .3333; 
c lass adm it; va r g pa gmat; 

D I SCRI M INANT ANALYSIS 
85 Observat ions 84 DF Tota l  

2 Va r iables 82 DF  With in  Classes 
3 Classes 2 DF Between Classes 

Class Leve l I nfo rmation 

Weight 
3 1 .0000 
26 .0000 
28.0000 

Proport ion 
0 .364706 
0 .305882 
0 .3294 1 2 

OUTPUT 

(continues on next page) 
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PANEL 1 1 . 1 (continued) 

Stat istic 
Wi l ks' Lambda 
P i l l a i 's Trace 

DISCRIM I NANT ANALYSIS WITH IN-CLASS COVARIANCE MATRICES 
ADMIT = admit DF = 30 

Var iab le GPA G MAT 
G PA 0.043558 0 .058097 
G MAT 0.058097 46 1 8.2473 1 2  

ADMIT = border 
Va r iab le G PA 
G PA 0.029692 
GMAT -5.403846 

ADMIT = notadmit 
Va r iab le GPA 
G PA 0.033649 
G MAT -1 . 1 92037 

Var iab le 

G PA 
GMAT 

GPA 

DF = 25 
GMAT 

-5 .403846 
2246.9046 1 5  

DF  = 27 
G MAT 

-1 . 1 92037 
3891 .253968 

GMAT 

M u ltivar iate Stat istics and  F Approxi mations 
S = 2 M = -0 .5  N = 39 .5  

Va lue  F Num DF 
0 . 1 263766 1 73 .4257 4 
1 . 00963002 4 1 .7973 4 

Hote l l i n g-Lawley Trace 5 .83665601 1 1 6 .733 1 4 

Den DF 
1 62 
1 64 
1 60 

Roy's G reatest Root 5 .64604452 231 .4878 2 82 
NOTE:  F Stat istic fo r Roy's Greatest Root is a n  u pper bou n d .  

NOTE :  F Statistic for Wi l ks' Lambda is  exact. 

D ISCRI M I NANT ANALYSIS  L INEAR DISCRI M INANT FUNCTION 
Constant = - . 5Xj cov-1 Xj + I n  PRIORj Coeffic ient Vector = cov-1 Xj 

CONSTANT 
G PA 
GMAT 

admit 
-24 1 .47030 

1 06 .2499 1 
0 .2 1 2 1 8  

ADMIT 
border 

- 1 78.4 1 437 
92 .66953 

0. 1 7323 

Genera l ized Squa red Distance Funct ion :  
Df (X) = (X - Xj ) ' cov-1 (X - Xj ) 

notadmit 
-1 34.99753 

78.08637 
0 . 1 6541 

Poster ior Probab i l ity of Membersh i p  i n  each ADM IT: 
Pr (j I X) = exp ( - .5Df (X) )/SUM exp ( - . 5D� (X ) )  

k 

Pr > F 
0 .0001 
0 .0001 
0 .0001 
0 .0001 
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(continued) 

Poster ior Probab i l ity of Membersh i p  i n  ADM IT: 
Obs From Classified 

ADMIT into ADMIT adm it border 
2 admit border * 0 . 1 202 0 .8778 
3 admit border * 0 .3654 0 .6342 

24 admit border * 0.4766 0. 5234 
3 1  admit border * 0 . 2964 0.7032 
58 notadm it border * 0 .000 1 0 .7550 
59 notadm it border * 0 .000 1 0 .8673 
66 border admit * 0 .5336 0.4664 

* M isclassified observat ion 

Genera l i zed Sq uared Distance Funct ion : 
Df (X) = (X - X(X)j ) '  COV(�) (X - X(X)j ) 
Poster ior Proba b i l ity of Membersh i p  i n  each ADM IT: 
Pr (j I X) = exp ( - .5Df (X) )/SUM exp ( - .5D� (X) )  

k 

N u m ber of Obse rvat ions and  Percent  C lassif ied i nto ADM IT: 

ADMIT 

83.87 1 6 . 1 3  0.00 

3.85 92 . 3 1  3 .85 

0.00 7 . 1 4  92 .86 
Tota l  27 3 1  27 
Percent 3 1 .76 36.47 3 1 .76 
Pr iors 0 .3333 0 .3333 0 .3333 

E rror Count  Est imates for ADMIT: 
admit  border notadmit 

Rate 0. 1 6 1 3  0. 0769 0 .07 1 4  
Pr iors 0 .3333 0 .3333 0 .3333 

notadmit 
0 .0020 
0 .0004 
0 .0000 
0 .0004 
0 .2450 
0 . 1 326 
0 .0000 

Tota l 

3 1  

1 00.00 

26 

1 00.00 

28 

1 00 .00 
85 

1 00 .00 

Tota l 
0. 1 032 
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Suppose a new applicant has an undergraduate GPA of x1 == 3.21 and a 
GMAT score of x2 == 497. Let us classify this applicant using the rule in (11 -54) with equal prior probabilities. 

With x0 == [3 .21 , 497 ] ,  the sample squared distances are 
Di(xo) == (xo - i1 ) ' s�;olect (xo - i1 ) 

J [28.6096 .0158] [ 3 .21 - 3 .40 J = [ 3 .21 - 3 .40, 497 - 561 .23 .0158 .0003 497 - 561 .23 
== 2.58 

D�(x0) == (xo - i2) 's�;olect (x0 - x2) == 17 .10 
D�(x0) == (xo - i3 ) 's�;o1ect (x0 - x3 )  == 2.47 

Since the distance from x0 == [3 .21 , 497 ] to the group mean x3 is smallest, we as
sign this applicant to 1r3 , borderline. • 

The linear discriminant scores ( 11 -49) can be compared, two at a time. Using 
these quantities, we see that the condition that dk (x) is the largest linear discrimi
nant score among d1 (x) , d2 (x) , . . .  , dg(x) is equivalent to 

0 < dk (x) - di (x) 

= ( P-k - P-; ) ' I-1x - � ( ILk - P-;) ' I-1 ( P-k + P-;) + ln (��) 
for all i == 1 ,  2, . . .  , g . 

Adding -ln (pk j Pi ) == ln (Pi/  Pk ) to both sides of the preceding inequality gives the alternative form of the classification rule that minimizes the total probability of 
misclassification. Thus, we 
Allocate x to 1rk if 

( ILk - p, ) ' I-1x - � ( ILk - P; ) ' I-1 ( Pk + p,) > ln (;J (11-55) 

for all i == 1 , 2, . . .  , g. 

Now, denote the left-hand side of ( 1 1 -55) by dk i (x ) .  Then the conditions in 
(11 -55) define classification regions R1 , R2 , • • •  , Rg , which are separated by (hyper) 
planes. This follows because dk i (x) is a linear combination of the components of x. 
For example, when g == 3, the classification region R1 consists of all x satisfying 

R1 : dl i (x) > ln (:: ) for i == 2, 3 

That is, R1 consists of those x for which 

dn(x) = ( P- 1 - Pz) ' I-1x - � ( P- 1 - Pz) ' I-1 ( P1 + Pz) > ln (;:) 
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• 

Figure 1 1 . 1 0  The cl assificat ion 
reg ions R1 , R2 , and R3 for the l i near  
m i n imum TPM ru le  
( 1 1 1 ) P1 = 4 ,  P2 = 2 ,  P3 = 4 · 

and, simultaneously, 

d1 3 ( x) = ( P-1 - IL3 )  1 I -l x - � ( IL 1 - IL3 ) 1 I-1 ( IL 1 + IL3 )  > ln ( ;: ) 
Assuming that IL1 , IL2 , and 1L3 do not lie along a straight line, the equations d1 2 (x) = 
ln (p2 / p1 ) and d1 3 (x) = ln (p3 /  p1 ) define two intersecting hyperplanes that delineate 
R1 in the p-dimensional variable space. The term ln (p2 / p1 ) places the plane closer to ILl than IL2 if p2 is greater than p1 . The regions R1 , R2 , and R3 are shown in Figure 11 .10 for the case of two variables. The picture is the same for more variables if 
we graph the plane that contains the three mean vectors. 

The sample version of the alternative form in (11-55) is obtained by substitut
ing xi for ILi and inserting the pooled sample covariance matrix Spooled for I. When 

g 
� ( ni - 1 ) > p, so that s�;oled exists, this sample analog becomes i = l 
Allocate x to '7T k if 

A 1 
dk ; (x) = ( Xk - X; ) 1s�;oled x - 2 (Xk - X; ) 1 s�;oled ( Xk + X; ) 

> ln (::) for all h �  k 

A 

(11 -56) 
Given the fixed training set values xi and Spooled ' dk i (x) is a linear function of 

the components of x. Therefore, the classification regions defined by (11 -56)-or, 
equivalently, by (11 -52)-are also bounded by hyperplanes, as in Figure 11 . 10. 

As with the sample linear discriminant rule of (11-52), if the prior probabilities 
are difficult to assess, they are frequently all taken to be equal. In this case, 
ln (Pi / Pk ) = 0 for all pairs. 
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Actual 
membership 

Because they employ estimates of population parameters, the sample classifi
cation rules (11 -48) and (11 -52) may no longer be optimal. Their performance, how
ever, can be evaluated using Lachenbruch's holdout procedure. If n�Z) is the number 
of misclassified holdout observations in the ith group, i == 1, 2, . . .  , g, then an esti
mate of the expected actual error rate, E (AER ) , is provided by 

g ( H )  L ni M 

E(AER ) == _i=_� - (11-57) 
L ni 
i = l  

Example 1 1 . 1 2  (Effective classification with fewer variab les) 

In his pioneering work on discriminant functions, Fisher [8] presented an analy
sis of data collected by Anderson [1] on three species of iris flowers. (See Table 
1 1 .5 ,  Exercise 1 1 .27 . ) 

Let the classes be defined as 
1r1 : Iris setosa; 1r2 : Iris versicolor; 1r3 : Iris virginica 

The following four variables were measured from 50 plants of each species. 
xl == sepal length, x2 == sepal width 
x3 == petal length, x4 == petal width 

Using all the data in Table 11 .5 , a linear discriminant analysis produced the con
fusion matrix 

7T1 : Setosa 
1r2 : Versicolor 
1r3 : Virginica 

1r1 : Setosa 
50 
0 
0 

Predicted membership 
Percent 

1r2 : Versicolor 1r3 : Virginica correct 
0 0 100 
48 2 96 
1 49 98 

The elements in this matrix were generated using the holdout procedure, so 
(see 11 -57) 

The error rate, 2%, is low. 

A 3 E (AER ) == 150 == .02 

Often, it is possible to achieve effective classification with fewer variables. 
It is good practice to try all the variables one at a time, two at a time, three at a 
time, and so forth, to see how well they classify compared to the discriminant 
function, which uses all the variables. 
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If we adopt the holdout estimate of the expected AER as our criterion, we 
find for the data on irises: 

Single variable 

Pairs of variables 
xl , x2 
xl , x3 
Xl , X4 
X2 , X3 
x2 , x4 
X3 , X4 

Misclassification rate 
.253 
.480 
.053 
.040 

Misclassifica tion rate 
.207 
.040 
.040 
.047 
.040 
.040 

We see that the single variable X4 = petal width does a very good job of dis
tinguishing the three species of iris. Moreover, very little is gained by includ
ing more variables. Box plots of X4 = petal width are shown in Figure 11 . 1 1  for 
the three species of iris. It is clear from the figure that petal width separates the 
three groups quite well, with, for example, the petal widths for Iris setosa much 
smaller than the petal widths for Iris virginica . 

Darroch and Mosimann [6] have suggested that these species of iris may 
be discriminated on the basis of "shape" or scale-free information alone. Let 

2.5 

2.0 

..c= 1 .5 � ·�  
ca � � 1 .0 

0.5 

0.0 

* * 
I 

$ 

1t2 
Group 

Figure 1 1 . 1 1  Box p lots of peta l width for the th ree species of i r is .  
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Yi == X1 1 X2 be the sepal shape and Y2 == x3 1 X4 be the petal shape. The use ot the variables Y1 and Y2 for discrimination is explored in Exercise 11 .28. The selection of appropriate variables to use in a discriminant analysis is 
often difficult. A summary such as the one in this example allows the investi
gator to make reasonable and simple choices based on the ultimate criteria of how well the procedure classifies its target objects. • 

Our discussion has tended to emphasize the linear discriminant rule of (1 1 -52) 
or (11 -56) , and many commercial computer programs are based upon it. Although 
the linear discriminant rule has a simple structure, you must remember that it was de
rived under the rather strong assumptions of multivariate normality and equal co
variances. Before implementing a linear classification rule, these tentative 
assumptions should be checked in the order multivariate normality and then equal
ity of covariances. If one or both of these assumptions is violated, improved classifi
cation may be possible if the data are first suitably transformed. 

The quadratic rules are an alternative to classification with linear discriminant 
functions. They are appropriate if normality appears to hold, but the assumption of 
equal covariance matrices is seriously violated . However, the assumption of nor
mality seems to be more critical for quadratic rules than linear rules. If doubt exists 
as to the appropriateness of a linear or quadratic rule, both rules can be constructed 
and their error rates examined using Lachenbruch's holdout procedure. 

1 1 .7 F ISHER'S M ETHOD FOR DISCRI M I NATI NG 
AMONG SEVERAL POPULATIONS 

Fisher also proposed an extension of his discriminant method, discussed in Section 
1 1 .5 ,  to several populations. The motivation behind the Fisher discriminant analysis 
is the need to obtain a reasonable representation of the populations that involves 
only a few linear combinations of the observations, such as ai x, a2x, and a3x. His ap
proach has several advantages when one is interested in separating several popula
tions for (1) visual inspection or (2) graphical descriptive purposes. It allows for the 
following: 

1. Convenient representations of the g populations that reduce the dimension 
from a very large number of characteristics to a relatively few linear combina
tions. Of course, some information-needed for optimal classification-may 
be lost, unless the population means lie completely in the lower dimensional 
space selected. 

2. Plotting of the means of the first two or three linear combinations ( discrimi
nants) . This helps display the relationships and possible groupings of the pop
ulations. 

3. Scatter plots of the sample values of the first two discriminants, which can in-
dicate outliers or other abnormalities in the data. 

The primary purpose of Fisher's discriminant analysis is to separate populations. It 
can, however, also be used to classify, and we shall indicate this use. It is not neces
sary to assume that the g populations are multivariate normal . However, we do 
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assume that the p X p population covariance matrices are equal and of full rank. 11 
That is, I1 = I2 = · · · = Ig = I .  

Let ji denote the mean vector of the combined populations and BJ.t the between groups sums of cross products, so that 
g 

B�-t = � ( ILi - ji )  ( ILi - ji ) ' 
i = l  

We consider the linear combination 
Y = a 'X 

which has expected value 
E(Y ) == a' E(X l 1rJ == a' ILi 

and variance 
Var (Y) = a' Cov (X)a == a' Ia 

1 g where ji == - � ILi 
g i = l 

for population 1Ti 

for all populations 

( 11 -58) 

Consequently, the expected value JLi Y == a' #Li changes as the population from which 
X is selected changes. We first define the overall mean 

Jiy = ! ± JLi Y = ! ± a' P-i = a' (! ± ll-i) 
g i = l  g i = l  g i = l  

= a' ji 
and form the ratio 

or 

( Sum of squared distances from ) populations to overall mean of Y 
(Variance of Y) 

g - 2 
� (JLi Y - JLy ) 
i = l  

g 2 � ( a' #Li - a' ji )  
i= l  

a' Ia 

a' ( � ( P-i - ji ) ( P-i - ji ) ') a 

g - 2 � (JLi Y - JLy ) 
i = l  a ' B a J.t 

a 'Ia 

a' Ia 

( 11 -59) 

The ratio in (11-59) measures the variability between the groups of Y-values relative 
to the common variability within groups. We can then select a to maximize this ratio. 

Ordinarily, I and the #Li are unavailable, but we have a training set consisting 
of correctly classified observations. Suppose the training set consists of a random 
sample of size ni from population 1Ti , i = 1 ,  2, . . .  , g. Denote the n i X p data set, 
from population 1Tj , by Xi and its jth row by xij ·  After first constructing the sample mean vectors 

1 1  If not, we let P = [ e1 , . . .  , eq] be the eigenvectors of I corresponding to nonzero eigenvalues 
[J\ 1 , . . .  , Aq ] ·  Then we replace X by P ' X  which has a full rank covariance matrix P ' I.P. 
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and the covariance matrices Si , i = 1, 2, . . .  , g, we define the "overall average" vector 
g 
"" n ·X · ..£.J l l i= 1  x = -g-- = 
L ni 
i= 1  

g nt 
2: L xij i= 1  j = 1  

g 
L ni 
i = 1  

which is the p X 1 vector average taken over all of the sample observations in the 
training set. 

Next, we define the sample between groups matrix B which includes the sample 
sizes. Let 

g B = 2: ni (xi - x) ( xi - x) ' i= 1  
Also, an estimate of I i s based on the sample within groups matrix 

g g nt 
w = 2: ( ni - 1 ) si = 2: 2: (x i j - xt ) (xi j - xJ ' 

i= 1  i= 1  j= 1  

( 11 -60) 

( 11 -61)  

Consequently, W / ( n1 + n2 + · · · + ng - g ) = Spooled is the estimate of l.  
Before presenting the sample discriminants, we note that W is the constant 
( n1 + n2 + · · ·  + ng - g) times Spooled , so the same a that maximizes a ' Baja' Spooled a 
also maximizes a' Ba/a 'Wa. Moreover, we can present the optimizing a in the more 
customary form as eigenvectors ei of w-1 B, because if w-1 Be = Ae then s��oled Be 
= A (n1 + n2 + · · · + ng - g ) e. 

Exercise 11 .21 outlines the derivation of the Fisher discriminants. The discriminants 
will not have zero covariance for each random sample Xi . Rather, the condition 

,... ,... { 1 if i = k < s  
a; Spooled ak = 

0 th . o erw1se ( 11 -63) 
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will be satisfied. The use of Spooled is appropriate because we tentatively assumed that the g population covariance matrices were equal. 
Example 1 1 . 1 3  (Calcu lat ing F isher's sample d iscrim inants 

for three popu lations) 

Consider the observations on p = 2 variables from g = 3 populations given in 
Example 11 .10 . Assuming that the populations have a common covariance ma
trix I, let us obtain the Fisher discriminants. The data are 

7Tl (nl = 3 ) 1T2 (n2 = 3 ) 7T3 ( n3 = 3 ) [ -2 5 ] 
xl = o 3 ; 

-1 1 
x2 = [� �} x3 = [ � -�] 

-1 -4 
In Example 11 . 10, we found that 

so 

X = [i} 3 [6 3] B = � 3 (X; - X) ( X; - X) ' = 3 62 
3 nt 

W = � � (xij - xJ (xij - xi ) ' = (n 1 + n2 + n3 - 3 ) Spooled i= l  j= l  [ 6 -2] - -2 24 
-1 - 1 [24 w - 140 2 -1 - [ 1 .07143 1 .4] W B - .21429 2.7 

To solve for the s < min (g - 1, p) = min (2, 2 ) = 2 nonzero eigenvalues of 
w-1B, we must solve 

or 
I -1 - I = 

[ 1 .07143 - A 1 .4 J = 0 W B AI .21429 2.7 - A 

( 1 .07143 - A ) (2.7 - A ) - ( 1 .4 ) ( .21429 ) = A2 - 3.77143A + 2.5929 = 0 
Using the quadratic formula, we find that A1 = 2.8671 and A2 = .9044. 

The normalized eigenvectors al and 32 are obtained by solving 
i = 1, 2 

and scaling the results such that a; spooled ai = 1 . For example, the solution of 
_1 _ ,... 

) ,... _ [ 1 .07143 - 2.8671 1 .4 J [a1 1 ] = 
[o] 

(W B A1I 31 - .21429 2.7 - 2.8671 tl1 2  0 
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is, after the normalization a1Spoolect a1 = 1 ,  
a1 = [ .386 .495 J 

Similarly, 
a2 = [ .938 - .112 ] 

The two discriminants are 

yl = alx = [ .386 .495 ] [ :J = .386xl + .495x2 

y2 = azx = [ .938 - .112] [ :J = .938xl - .ll2x2 

Example 1 1 . 14  (Fisher's d iscrim inants for the crude-o i l  data) 

• 

Gerrild and Lantz [12] collected crude-oil samples from sandstone in the Elk 
Hills, California, petroleum reserve. These crude oils can be assigned to one of 

the three stratigraphic units (populations) 
7T1 : Wilhelm sandstone 
7T2 : Sub-Mulinia sandstone 
1r3 : Upper sandstone 

on the basis of their chemistry. For illustrative purposes, we consider only the 
five variables: 

X1 = vanadium (in percent ash) 
x2 = Viron (in percent ash) 
x3 = Vberyllium (in percent ash) 
X4 = 1/ [ saturated hydrocarbons (in percent area) J 
X5 = aromatic hydrocarbons ( in percent area ) 

The first three variables are trace elements, and the last two are determined 
from a segment of the curve produced by a gas chromatograph chemical analy
sis. Table 1 1 .7 (see Exercise 11 .30) gives the values of the five original vari
ables (vanadium, iron, beryllium, saturated hydrocarbons, and aromatic 
hydrocarbons) for 56 cases whose population assignment was certain. 

A computer calculation yields the summary statistics 
3 .229 4.445 7.226 6 .180 
6.587 5 .667 4.634 5.081 

xl = .303 x2 = . 344 x3 = .598 x = . 511 
.150 . 157 .223 .201 

1 1 .540 5.484 5 .768 6.434 

and 
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Y2 

( n l + n2 + n3 - 3 ) spooled == ( 38 + 11 + 7 - 3 ) spooled 

187.575 
1 .957 141 .789 

== W == -4.031 2. 128 3 .580 
1 .092 - .143 - .284 .077 

79.672 -28.243 2.559 - .996 338.023 
There are at most s == min ( g  - 1 ,  p) == min (2, 5 ) == 2 positive eigenvalues of 
w-1 B, and they are 4.354 and .559. The centered Fisher linear discriminants are 

)\ == .312 (x1 - 6 .180) - .710 (x2 - 5 .081 ) + 2.764(x3 - .511 ) 
+ 11 .809 ( x4 - .201 ) - .235 (x5 - 6.434 ) 

y2 == . 169 (x1 - 6 .180) - .245 (x2 - 5.081 ) - 2.046 ( x3 - .511 ) 
- 24.453 (x4 - .201 ) - .378 (x5 - 6.434) 

The separation of the three group means is fully explained in the two
dimensional "discriminant space." The group means and the scatter of the in
dividual observations in the discriminant coordinate system are shown in Figure 
1 1 . 12. The separation is quite good. • 

3 0 
0 0 

2 0 D 0 D D 0 0 .. 0 D 
0 D D D D 

D D D B  D 
0 D D D .. D Q]  D D 

• 0 D ef • D D 
- 1  D D • .. 0 D • • • • D D 

D D 
-2  • Wilhelm 

0 Sub-Mulinia D 
D Upper 
.. Mean coordinates 

- 3  

-4 -2 0 2 

A 

Y 1  

Figure 1 1 . 1 2  Crude-o i l  samples i n  d i scri m i nant space. 
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Example 1 1 . 1 5 {Plotti ng sports data i n  two-d imensional  
d iscriminant space) 

Investigators interested in sports psychology administered the Minnesota Mul
tiphasic Personality Inventory (MMPI) to 670 letter winners at the University 
of Wisconsin in Madison. The sports involved and the coefficients in the two dis
criminant functions are given in Table 11 .3 . 

A plot of the group means using the first two discriminant scores is shown 
in Figure 11 .13 . Here the separation on the basis of the MMPI scores is not 
good, although a test for the equality of means is significant at the 5% level. 
(This is due to the large sample sizes. ) 

While the discriminant coefficients suggest that the first discriminant is 
most closely related to the L and Pa scales, and the second discriminant is most 
closely associated with the D and Pt scales, we will give the interpretation pro
vided by the investigators. 

The first discriminant, which accounted for 34.4% of the common vari
ance, was highly correlated with the Mf scale (r = - .78 ) . The second discrim
inant, which accounted for an additional 18 .3% of the variance, was most highly 
related to scores on the Sc, F, and D scales (r 's = .66, .54, and .50, respective
ly) . The investigators suggest that the first discriminant best represents an in
terest dimension; the second discriminant reflects psychological adjustment. 

Ideally, the standardized discriminant function coefficients should be ex
amined to assess the importance of a variable in the presence of other vari
ables. (See [25] . ) Correlation coefficients indicate only how each variable by 
itself distinguishes the groups, ignoring the contributions of the other variables. 
Unfortunately, in this case, the standardized discriminant coefficients were 
unavailable. 

TABLE 1 1 .3 

MMPI First Second 
Sport Sample size Scale discriminant discriminant 

QE .055 - .098 
Football 158 L - .194 .046 
Basketball 42 F - .047 - .099 
Baseball 79 K .053 - .017 
Crew 61 Hs .077 - .076 
Fencing 50 D .049 .183 
Golf 28 Hy - .028 .031 
Gymnastics 26 Pd .001 - .069 
Hockey 28 Mf -.074 - .076 
Swimming 51 Pa .189 .088 
Tennis 31 Pt .025 - .188 
Track 52 Sc - .046 .088 
Wrestling 64 Ma - .103 .053 

Si .041 .016 
Source: W. Morgan and R. W. Johnson. 
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• Fencing 
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Second discriminant 

Hockey 
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.4 
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• Swimming 
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First discriminant 
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Track 
• Gymnastics 

• Crew • 
Baseball 

• Golf - .4 
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. 2 
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.4 . .6 
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Figure 1 1 .1 3  The d i scrim i nant means y' = [y1 , y2 ]  for each sport. 

In general, plots should also be made of other pairs of the first few dis
criminants. In addition, scatter plots of the discriminant scores for pairs of dis
criminants can be made for each sport. Under the assumption of multivariate 
normality, the unit ellipse (circle) centered at the discriminant mean vector y 
should contain approximately a proportion 

P[ (Y - p,y) ' (Y - p,y) < 1 ]  = P[x� < 1 ]  = .39 

of the points when two discriminants are plotted. • 

Us ing Fisher's Di scri minants to Classify Objects 

Fisher's discriminants were derived for the purpose of obtaining a low-dimensional 
representation of the data that separates the populations as much as possible. Al
though they were derived from considerations of separation, the discriminants also 
provide the basis for a classification rule. We first explain the connection in terms of 
the population discriminants a; X. 

Setting 

we conclude that 
Yk = akX = kth discriminant, k < s ( 11 -64) 
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Y == 

under population '7Ti and covariance matrix I, for all populations. (See Exercise 11 .21 . )  
Because the components of Y have unit variances and zero co variances, the ap

propriate measure of squared distance from Y == y to ILi Y is 
s 

(y - ILiY ) '  (y - ILiY ) == � ( y] - JLiY)2 
j= l 

A reasonable classification rule is one that assigns y to population '7Tk if the square of the distance from y to ILkY is smaller than the square of the distance from y to J.t1 y for i # k .  
If only r of the discriminants are used for allocation, the rule is 

Allocate x to '7T k if 
r r 

� (yj - i-Lk Y)2 == � [ aj (x - 1Lk) ]2 j= l j= l 
r 

< � [ aj (x - ILJ ]2 
j= l 

for all i # k (11-65) 

Before relating this classification procedure to those of Section 1 1 .6 ,  we look 
more closely at the restriction on the number of discriminants. From Exercise 1 1 .21 , 

s == number of discriminants == number of nonzero eigenvalues of I-1 BJ.t 
or of I-1;2B I-1;2 J.t 

Now, I-1BJ.t is p X p, so s < p. Further, the g vectors 
- - -IL1 - J.t , IL2 - J.t , · · · , ILg - J.t (11 -66) 

satisfy ( IL 1 - ji ) + ( J.L2 - ji ) + · . . + ( ILg - ji ) == gji - gji == 0. That is, the first difference ILl - ji can be written as a linear combination of the last g - 1 differ
ences. Linear combinations of the g vectors in ( 11 -66) determine a hyperplane of 
dimension q < g - 1 .  Taking any vector e perpendicular to every ILi - ji , and 
hence the hyperplane, gives 

so 

g g 
B�-te == � ( ILi - ji ) ( ILi - ji ) ' e == � ( ILi - ji )O == 0 i= l i= l 

There are p - q orthogonal eigenvectors corresponding to the zero eigenvalue. This 
implies that there are q or fewer nonzero eigenvalues. Since it is always true that 
q < g - 1 ,  the number of nonzero eigenvalues s must satisfy s < min (p, g - 1 ) . 
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Thus, there is no loss of information for discrimination by plotting in two di
mensions if the following conditions hold. 

Number of Number of Maximum number 
variables populations of discriminants 
Any p g = 2  1 
Any p g = 3  2 
p = 2  Any g 2 

We now present an important relation between the classification rule ( 11 -65) 
and the "normal theory" discriminant scores [see ( 11 -49) ] , 

or, equivalently, 
d ( ) - ��-1 1 ,�-1 + 1 i x - ILi..,. x - 2 11-i..,. ILi n Pi 

di (x) - � x' I-1x = - � (x - p.J ' I-1 (x - p.J + ln pi 
obtained by adding the same constant - �x' I-1x to each di (x) . 

Result 11.6. Let yj = aj x, where aj = I-112ej and ej is an eigenvector of 
I-1;2BI-1;2 . Then 

p p 
:L (yj - JLi Y)2 = :L [ aj (x - P.i ) ]2 = (x - P.i) ' I-1 (x - p.J j= 1 j= 1 

= -2di (x) + x' I-1x + 2 ln Pi 
p 

If A1 > · · · > As > 0 = A5+ 1 = · · · = A.P , :L ( yj - JLiy)2 is constant for all popu
j=S+ 1 

s lations i = 1 , 2, . . .  , g so only the first s discriminants yj , or :L ( yj - JLiY )2 , con-j= 1 J 

tribute to the classification. 
Also, if the prior probabilities are such that p1 = p2 = · · · = Pg = 1/ g, the rule 

( 1 1 -65) with r = s is equivalent to the population version of the minimum TPM 
rule ( 11 -52) . 

Proof. The squared distance (x - p.J ' I-1 (x - ILi )  = 
(x - P.i) ' I-112I-112 (x - ILi) = (x - �LJ 'I-112EE' I-112 (x - p.z) , where 
E = [ e1 , e2 , . . . , ep ] is the orthogonal matrix whose columns are eigenvectors of 
I-112BJ.ti-112 . (See Exercise 11 .21 . )  

Since �-1/2e · = a ·  or a� = e ��-112 ..,. l l l l ..,.  ' 

a1 (x - �LJ 
a2 (x - �LJ 
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and 
p ( x - Itt ) 1 I -1/2 EE 1 I -112 ( x - Itt ) = L [a j ( x - Itt) ] 2 j= 1 

Next, each aj = I-112ej , j > s, is an (unsealed) eigenvector of I-1 BJ.t with eigen
value zero. As shown in the discussion following (11 -66), aj is perpendicular to every 
lti - ji and hence to ( Ilk - ji)  - (lti - ji )  = Ilk - lti for i, k = 1 ,  2, . . .  , g . The 
condition 0 = a} ( ltk - �-tJ = JLkY - JLiY implies that yj - JLkY = yj - JLiY so 

p 1 1 1 1 

. L ( yj - f.Lz y)2 is constant for all i = 1 ,  2, . . .  , g .  Therefore, only the first s dis-
1 =s + 1 criminants yj need to be used for classification. • 

We now state the classification rule based on the first r < s sample 
discriminants. 

When the prior probabilities are such that p1 = p2 = · · · = Pg = 1/ g and r = s, 
rule ( 11 -67) is equivalent to rule ( 11 -52) , which is based on the largest linear dis
criminant score. In addition, if r < s discriminants are used for classification, there 

p is a loss of squared distance, or score, of L [aj(x - xi ) ]2 for each population 1Tz j= r+ 1 s 
where L [ a} (x - xJ J 2 is the part useful for classification. j= r+ 1 

Example 1 1 . 1 6  (Class ifyi ng a new observation with Fisher's d iscri minants) 

Let us use the Fisher discriminants 
Y1 = a1 X = .386x1 + . 495x2 
.Y2 = a2 x = .938x1 - .11zx2 

from Example 11 . 13 to classify the new observation x0 = [ 1 3 ]  in accordance 
with ( 11 -67) . 
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Inserting x0 = [ x0 1 , x02 ] = [ 1 3 ] , we have 
)\ = .386x0 1 + .495x02 = . 386 ( 1 ) + .495 ( 3 )  = 1 .87 
y2 = . 938x0 1 - . 112x02 = . 938 ( 1 ) - .112 ( 3 )  = .60 

Moreover, Ykj = a}xk , so that (see Example 1 1 . 13) 

Similarly, 

y1 1  = 3! il = [ . 386 .495 ] [ -� J = 1 . 10 

Y1 2 = a;xl = [ . 938 - .112] [ -� J = -1.27 

Y2 1 = a1 x2 = 2.37 
Y22 = a2 x2 = .49 
Y3 1 = a1 x3 = - .99 
Y3 2 = a2 x3 = .22 

Finally, the smallest value of 
2 2 

2: ( y1 - Yk 1) 2 = 2: [ a} (x  - xk ) ] 2 j= l j= l 
for k = 1 ,  2, 3 ,  must be identified. Using the preceding numbers gives 

2 
2: ( y1 - y1 1 ) 2 = ( 1 .87 - 1 . 10 ) 2 + ( .60 + 1 .27 ) 2 = 4.09 j= l 
2 

2: ( y1 - y21 ) 2 = ( 1 .87 - 2.37 )2 + ( .60 - .49 )2 = .26 j= l 
2 

2: ( y1 - y31 ) 2 = ( 1 . 87 + .99 ) 2 + ( .60 - .22)2 = 8.32 
j= l 

2 Since the minimum of 2: (.y1 - yk1 ) 2 occurs when k = 2, we allocate x0 to pop
J= l ulation 1r2 • The situation, in terms of the classifiers y1 , is illustrated schemati-cally in Figure 1 1 .14 . • 

Comment. When two linear discriminant functions are used for classification, 
observations are assigned to populations based on Euclidean distances in the two-di
mensional discriminant space. 

Up to this point, we have not shown why the first few discriminants are more 
important than the last few. Their relative importance becomes apparent from their 
contribution to a numerical measure of spread of the populations. Consider the sep
aratory measure 

g 
d� = 2: ( ILi - ji ) 'I-1 ( 11-i - ji ) (11-68) i= l 
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Figure 1 1 . 14 The poi nts 
9' = [y, , Y2 J, y; = [y, , ,  Y1 2 J ,  
Y2 = [J12 1 ,  Y2 2 J ,  and Y3 = [y3 , ,  Y3 2 J i n  
the cl assificat ion p lane .  

where 
1 g ji = - L ILi g i= 1 

and (JLi - ji ) 'I-1 ( JLi - ji ) is the squared statistical distance from the ith population 
mean ILi to the centroid ji . It can be shown (see Exercise 11 .22) that d� = A1 + A2 + · · · + AP where the A1 > A2 > · · · > As are the nonzero eigenvalues of I-1 B 
(or I-112BI-112) and "-s+b . . .  , AP are the zero eigenvalues. The separation given by d� can be reproduced in terms of discriminant means. 
The first discriminant, Yi = e1I-112X has means JLiy1 = e1I-1121Li and the squared 

g distance L (JLiy1 - jiyJ2 of the JLiy1 's from the central value jiy1 = e!I-112 ji is A1 . i= 1 (See Exercise 11 .22.) Since d� can also be written as 
d� = A1 + A2 + · · · + AP 

g 
L ( ILiY - jiy ) ' (ILiY - jiy ) i=1 
g 

- 2 g 
- 2 g 

- 2 L (JLi Yl - JLyl ) + L (JLi Y2 - JLyJ + . . . + L (JLi Yp - JLyp) i= 1 i= 1 i= 1 
it follows that the first discriminant makes the largest single contribution, A1 , to the separative measure d� . In general, the rth discriminant, Y, = e�I-112X, contributes 
Ar to d� . If the next s - r eigenvalues (recall that A5+ 1 = A5+2 = · · · = AP = 0) are 
such that "-r+ 1 + "-r+2 + · · · + As is small compared to A1 + A2 + · · · + Ar , then the last discriminants ¥,+1 , ¥,+2 , . . .  , Ys can be neglected without appreciably decreasing 
the amount of separation. 12 

Not much is known about the efficacy of the allocation rule (11-67) . Some insight 
is provided by computer-generated sampling experiments, and Lachenbruch [21] sum
marizes its performance in particular cases. The development of the population result 
in (11-65) required a common covariance matrix I. If this is essentially true and the sam-

12See [17] for further optimal dimension-reducing properties. 
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ples are reasonably large, rule (11 -67) should perform fairly well. In any event, its per
formance can be checked by computing estimated error rates. Specifically, Lachen
bruch's estimate of the expected actual error rate given by (11-57) should be calculated. 

1 1 .8 FI NAL COM M E NTS 

I ncl ud ing Qual itative Var iables 

Our discussion in this chapter assumes that the discriminatory or classificatory vari
ables, X1 , X2, . . . , XP have natural units of measurement. That is, each variable can, in principle, assume any real number, and these numbers can be recorded. Often, a 
qualitative or categorical variable may be a useful discriminator (classifier) . For ex
ample, the presence or absence of a characteristic such as the color red may be a 
worthwhile classifier. This situation is frequently handled by creating a variable X 
whose numerical value is 1 if the object possesses the characteristic and zero if the ob
ject does not possess the characteristic. The variable is then treated like the mea
sured variables in the usual discrimination and classification procedures. 

There is very little theory available to handle the case in which some variables 
are continuous and some qualitative. Computer simulation experiments (see [20] ) in
dicate that Fisher 's linear discriminant function can perform poorly or satisfactorily, 
depending upon the correlations between the qualitative and continuous variables. 
As Krzanowski [20] notes, "A low correlation in one population but a high correla
tion in the other, or a change in the sign of the correlations between the two popu
lations could indicate conditions unfavorable to Fisher's linear discriminant function." 
This is a troublesome area and one that needs further study. 

When a number of variables are of the 0-1 type, it may be better to consider an 
alternative approach, called the logistic regression approach to classification. (See 
[15] .) The probability of membership in the first group, p1 (x) , is modeled directly as 

ea+P'x 
Pl (x) = 

1 + ea+fJ'x 

for the two-population problem. The a needs to be adjusted to accommodate a prior 
distribution, and it may not be easy to include costs. If the populations are nearly nor
mal with equal covariance matrices, the linear classification approach is best. 
Classification Trees 

An approach to classification completely different from the methods discussed in the 
previous sections of this chapter has been developed. (See [5] . ) It is very computer 
intensive and its implementation is only now becoming widespread. The new ap
proach, called classification and regression trees (CART), is closely related to divi
sive clustering techniques. (See Chapter 12.) 

Initially, all objects are considered as a single group. The group is split into two 
subgroups using, say, high values of a variable for one group and low values for the 
other. The two subgroups are then each split using the values of a second variable. 
The splitting process continues until a suitable stopping point is reached. The values 
of the splitting variables can be ordered or unordered categories. It is this feature that 
makes the CART procedure so general. 
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Yes 

Yes 

Exercise 
regularly 
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No 

Over 45 

No 

1t 1 : Heart-attack prone 
1t 2 : Not heart-attack prone 

No 

Figure 1 1 . 1 5  A cl assificat ion tree. 

For example, suppose subjects are to be classified as 
1r1 : heart-attack prone 
1r2 : not heart-attack prone 

on the basis of age, weight, and exercise activity. In this case, the CART procedure 
can be diagrammed as the tree shown in Figure 1 1 .15 .  The branches of the tree ac
tually correspond to divisions in the sample space. The region R1 , defined as being 
over 45, being overweight , and undertaking no regular exercise, could be used to clas
sify a subject as 1r1 : heart-attack prone. The CART procedure would try splitting on 
different ages, as well as first splitting on weight or on the amount of exercise. 

The classification tree that results from using the CART methodology with the 
Iris data (see Table 1 1 .5) ,  and variables X3 = petal length (PetLength) and 
X4 = petal width (Pet Width), is shown in Figure 11 .16 .  The binary splitting rules are 
indicated in the figure. For example, the first split occurs at petal length = 2.45 . 
Flowers with petal lengths < 2.45 form one group (left) , and those with petal 
lengths > 2.45 form the other group (right) . 

The next split occurs with the right-hand side group (petal length > 2.45) at 
petal width = 1 .75. Flowers with petal widths < 1 .75 are put in one group (left) , 
and those with petal widths > 1 .75 form the other group (right). The process con
tinues until there is no gain with additional splitting. In this case, the process stops 
with four terminal nodes (TN). 

The binary splits form terminal node rectangles (regions) in the positive quad
rant of the X3 , X4 sample space as shown in Figure 1 1 .17 .  For example, TN #2 con-
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Figure 1 1 . 1 6  A c lassificat ion tree for the I r i s  data. 
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Figure 1 1 .1 7  C lassificat ion tree term i na l  nodes (reg ions) i n  t he  peta l  width, petal l ength 
sa mp le  space. 

tains those flowers with 2.45 < petal lengths < 4.95 and petal widths < 1 .75-es
sentially the Iris Versicolor group. 

Since the majority of the flowers in, for example, TN #3 are species Virginica, a 
new item in this group would be classified as Virginica. That is, TN #3 and TN #4 are 
both assigned to the Virginica population. We see that CART has correctly classified 
50 of 50 of the Setosa flowers, 47 of 50 of the Versicolor flowers, and 49 of 50 of the 

Virginica flowers. The APER = 
1
�
0 

= .027 . This result is comparable to the result 

obtained for the linear discriminant analysis using variables x3 and x4 discussed in 
Example 11 . 12. 

The CART methodology is not tied to an underlying population probability 
distribution of characteristics. Nor is it tied to a particular optimality criterion. In 
practice, the procedure requires hundreds of objects and, often, many variables. The 
resulting tree is very complicated. Subjective judgments must be used to prune the 
tree so that it ends with groups of several objects rather than all single objects. Each 
terminal group is then assigned to the population holding the majority membership. 
A new object can then be classified according to its ultimate group. 
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Breiman, Friedman, Olshen, and Stone [5] have developed special-purpose soft
ware for implementing a CART analysis. Their program uses several intelligent rules 
for splitting and usually produces a tree that often separates groups well. CART has 
been very successful in data mining applications (see Supplement 12A) . 

Neura l  Networks 

A neural network (NN) is a computer-intensive, algorithmic procedure for trans
forming inputs into desired outputs using highly connected networks of relatively 
simple processing units (neurons or nodes) . Neural networks are modeled after the 
neural activity in the human brain. The three essential features, then, of an NN are 
the basic computing units (neurons or nodes), the network architecture describing the 
connections between the computing units, and the training algorithm used to find 
values of the network parameters (weights) for performing a particular task. 

The computing units are connected to one another in the sense that the output 
from one unit can serve as part of the input to another unit. Each computing unit 
transforms an input to an output using some prespecified function that is typically mo
notone, but otherwise arbitrary. This function depends on constants (parameters) 
whose values must be determined with a training set of inputs and outputs. 

Network architecture is the organization of computing units and the types of 
connections permitted. In statistical applications, the computing units are arranged 
in a series of layers with connections between nodes in different layers, but not be
tween nodes in the same layer. The layer receiving the initial inputs is called the 
input layer. The final layer is called the output layer. Any layers between the input 
and output layers are called hidden layers. A simple schematic representation of a 
multilayer NN is shown in Figure 11 .18 .  

I I I 
Output 

Middle (hidden) 

Input 

t t 
Figure 1 1 . 18  A neura l  network with one  h idden layer. 
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Neural networks can be used for discrimination and classification. When they 
are so used, the input variables are the measured group characteristics X1 , X2 , . • •  , XP , 
and the output variables are categorical variables indicating group membership. Cur
rent practical experience indicates that properly constructed neural networks per
form about as well as logistic regression and the discriminant functions we have 
discussed in this chapter. Reference [26] contains a good discussion of the use of 
neural networks in applied statistics. 

Selection of Var iables 

In some applications of discriminant analysis, data are available on a large number 
of variables. Mucciardi and Gose [23] discuss a discriminant analysis based on 157 
variables. 13 In this case, it would obviously be desirable to select a relatively small 
subset of variables that would contain almost as much information as the original 
collection. This is the objective of stepwise discriminant analysis, and several popu
lar commercial computer programs have such a capability. 

If a stepwise discriminant analysis (or any variable selection method) is em
ployed, the results should be interpreted with caution. (See [24] .) There is no guar
antee that the subset selected is "best," regardless of the criterion used to make the 
selection. For example, subsets selected on the basis of minimizing the apparent error 
rate or maximizing "discriminatory power" may perform poorly in future samples. 
Problems associated with variable-selection procedures are magnified if there are 
large correlations among the variables or between linear combinations of the 
variables. 

Choosing a subset of variables that seems to be optimal for a given data set is 
especially disturbing if classification is the objective. At the very least, the derived clas
sification function should be evaluated with a validation sample. As Murray [24] sug
gests, a better idea might be to split the sample into a number of batches and 
determine the "best" subset for each batch. The number of times a given variable ap
pears in the best subsets provides a measure of the worth of that variable for future 
classification. 

Testi ng for Group Differences 

We have pointed out, in connection with two group classification, that effective allo
cation is probably not possible unless the populations are well separated. The same 
is true for the many group situation. Classification is ordinarily not attempted, un
less the population mean vectors differ significantly from one another. Assuming 
that the data are nearly multivariate normal, with a common covariance matrix, 
MAN OVA can be performed to test for differences in the population mean vectors. 
Although apparent significant differences do not automatically imply effective clas
sification, testing is a necessary first step. If no significant differences are found, con
structing classification rules will probably be a waste of time. 

13 Imagine the problems of verifying the assumption of 157-variate normality and simultaneously 
estimating, for example, the 12,403 parameters of the 157 X 157 presumed common covariance matrix ! 
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Graphics 

Sophisticated computer graphics now allow one visually to examine multivariate data 
in two and three dimensions. Thus, groupings in the variable space for any choice of 
two or three variables can often be discerned by eye. In this way, potentially impor
tant classifying variables are often identified and outlying, or "atypical," observations 
revealed. Visual displays are important aids in discrimination and classification, and 
their use is likely to increase as the hardware and associated computer programs be
come readily available. Frequently, as much can be learned from a visual examina
tion as by a complex numerical analysis. 

Practica l Considerations Regarding Mu ltivariate Normal ity 

The interplay between the choice of tentative assumptions and the form of the re
sulting classifier is important. Consider Figure 11 . 19 , which shows the kidney-shaped 
density contours from two very nonnormal densities. In this case, the normal theo
ry linear (or even quadratic) classification rule will be inadequate compared to an
other choice. That is, linear discrimination here is inappropriate. 

Often discrimination is attempted with a large number of variables, some of 
which are of the presence-absence, or 0-1 , type. In these situations and in others 
with restricted ranges for the variables, multivariate normality may not be a sensible 
assumption. As we have seen, classification based on Fisher's linear discriminants 
can be optimal from a minimum ECM or minimum TPM point of view only when mul
tivariate normality holds. How are we to interpret these quantities when normality 
is clearly not viable? 

In the absence of multivariate normality, Fisher's linear discriminants can be 
viewed as providing an approximation to the total sample information. The values 
of the first few discriminants themselves can be checked for normality and rule (11-67) 
employed. Since the discriminants are linear combinations of a large number of vari
ables, they will often be nearly normal. Of course, one must keep in mind that the first 
few discriminants are an incomplete summary of the original sample information. 
Classification rules based on this restricted set may perform poorly, while optimal 
rules derived from all of the sample information may perform well. 

Contor of 
f2 ( x )  

"Linear classification" boundary j 
\ 

\ 

"Good classification" boundary �X/ X / X 

I 
X \ 

\ 
\ 

Contour of !1 ( x )  

\ �----------------------�------� x i 

Figure 1 1 . 1 9  Two nonnorma l  
popu lat ions for wh ich l i near 
d iscrim i nat ion is i nappropr iate. 
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11.1. Consider the two data sets 

X1 = [ ! ;] and X2 = [! � ] 
for which 

and 

Spooled = D �] 
(a) Calculate the linear discriminant function in (11-19) .  
(b) Classify the observation x0 = [2 7 ]  as population 1r1 or population 7T2 , 

using Rule (11 -18) with equal priors and equal costs. 
11.2. (a) Develop a linear classification function for the data in Example 1 1 . 1  using 

(11 -19) .  
(b) Using the function in (a) and ( 11 -20) , construct the "confusion matrix" by 

classifying the given observations. Compare your classification results with 
those of Figure 1 1 . 1 ,  where the classification regions were determined "by 
eye." (See Example 1 1 .5 . )  

(c) Given the results in (b), calculate the apparent error rate (APER) . 
(d) State any assumptions you make to justify the use of the method in Parts 

a and b. 
11.3. Prove Result 1 1 . 1 .  

Hint: Substituting the integral expressions for P(2 1 1 ) and P( 1 1 2 ) given by 
(11-1) and ( 11 -2) , respectively, into ( 11 -5) yields 

ECM = c (2 1 1 )p1 { f1 (x) dx + c ( 1 l 2 )p2 { f2(x)dx JR2 JR1 
Noting that il = R1 U R2 , so that the total probability 

we can write 

1 = r fl (x) dx = r fl (x) dx + r fl (x) dx ln JR1 JR2 

ECM = c(2 1 1 )p1 [ 1 - 11 f1 (x) dx J + c ( 1 1 2 )p2 1
1 
f2 (x) dx 

By the additive property of integrals (volumes) , 

ECM = { [ c ( 1 1 2 )pd2(x) - c(2 1 1 )pd1(x ) J dx + c (2 1 1 )pl JR1 
Now, p1 , p2 , c ( 1 1 2 ) , and c (2 1 1 ) are nonnegative. In addition, /1 (x) and /2(x) 
are nonnegative for all x and are the only quantities in ECM that depend on x. 
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Thus, ECM is minimized if R1 includes those values x for which the integrand 

[ c ( 1 I 2) P2 !2 (X ) - c ( 2 1 1 ) Pl !I (X ) J < 0 
and excludes those x for which this quantity is positive. 

11.4. A researcher wants to determine a procedure for discriminating between two 
multivariate populations. The researcher has enough data available to esti
mate the density functions /1 ( x) and /2 ( x) associated with populations 1r 1 and 
'7T2 , respectively. Let c (2 1 1 ) = 50 (this is the cost of assigning items as 1r2 , 
given that '7T1 is true) and c ( 1 I 2) = 100. 

In addition, it is known that about 20% of all possible items (for which 
the measurements x can be recorded) belong to '7T2 • 
(a) Give the minimum ECM rule (in general form) for assigning a new item 

to one of the two populations. 
(b) Measurements recorded on a new item yield the density values f1 (x) = . 3 

and f2(x) = .5 . Given the preceding information, assign this item to pop
ulation '7T1 or population '7T2 • 

11.5. Show that 

- � (x - ILI ) ' I-1 (x - 1L1 ) + � (x - IL2) ' I-1 (x - 11-2) 
= ( ILl - IL2) ' I-1x - � ( IL l - IL2) ' I-1 ( 1LI + 11-2) 

[see Equation (11-13) . ]  

11.6. Consider the linear function Y = a' X. Let E(X) = ILl and Cov (X) = I if 
X belongs to population 1r1 . Let E(X) = IL2 and Cov (X) = I if X belongs 
to population '7T2 • Let m = � (JL1 y + JL2 y ) = � ( a' �L1 + a' �L2) .  Given that 
a' = ( IL1 - P-2) ' I-1 , show each of the following. 
(a) E(a'X  I 7T1 ) - m = a' IL1 - m > 0 
(b) E(a 'X I 7T2 ) - m = a' IL2 - m < 0 
Hint: Recall that I is of full rank and is positive definite, so I-1 exists and is 
positive definite. 

11.7. Let /1 (x )  = � ( 1  - l x l ) for l x l  < 1 and /2(x )  = � ( 1  - l x - .5 1 )  for 
- .5 < X < 1 .5 .  
(a) Sketch the two densities. 
(b) Identify the classification regions when p1 = p2 and c ( 1 1 2 ) = c (2 1 1 ) .  
(c) Identify the classification regions when p1 = .2 and c ( 1 1 2 ) = c (2 1 1 ) . 

11.8. Refer to Exercise 1 1 .7 .  Let f1 (x )  be the same as in that exercise, but take 
f2(x )  = � (2 - l x - .5 1 )  for -1 .5 < x < 2.5 . 
(a) Sketch the two densities. 
(b) Determine the classification regions when p1 = p2 and c ( 1 1 2 ) = c (2 1 1 ) . 

11.9. For g = 2 groups, show that the ratio in (11-59) is proportional to the ratio ( Squared distance ) 
between means of Y (JL1 y - JL2y )2 (a ' IL1 - a' IL2)

2 --------- = = ------
(Variance of Y) a-} a' I a 

a '  ( IL 1 - IL2 ) ( IL1 - 1L2) ' a (a '  B )2
 

a ' Ia a ' Ia 
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where B = ( IL1 - IL2) is the difference in mean vectors. This ratio is the pop
ulation counterpart of (11-33) . Show that the ratio is maximized by the linear 
combination 

for any c # 0. 
Hint: Note that ( ILi - ji) ( ILi - ji ) '  = � ( P-1 - 1L2) ( 1L1 - IL2 ) '  for i = 1 ,  2 , 
where ji = � ( 11- 1 + 1L2) .  

11.10. Suppose that n1 = 1 1  and n2 = 12 observations are made on two random vari
ables xl and x2 ' where xl and x2 are assumed to have a bivariate normal 
distribution with a common covariance matrix I, but possibly different mean 
vectors ILl and IL2 • The sample mean vectors and pooled covariance matrix 
are 

xl = [ =�} X2 = [ � J [ 7 .3 -1 . 1 ] 
spooled = 

-1 . 1  4.8 
(a) Test for the difference in population mean vectors using Hotelling's two

sample T2-statistic. Let a = . 10 .  
(b) Construct Fisher's (sample) linear discriminant function. [See (11-19) and 

(11-35) .] 
(c) Assign the observation x0 = [ 0  1 J to either population 1r1 or 1r2 . Assume 

equal costs and equal prior probabilities. 
11.11. Suppose a univariate random variable X has a normal distribution with vari

ance 4. If X is from population 1r1 , its mean is 10; if it is from population 1r2 , 
its mean is 14. Assume equal prior probabilities for the events A1 = X is 
from population 1r1 and A2 = X is from population 1r2 , and assume that the 
misclassification costs c (2 1 1 )  and c ( 1  1 2 ) are equal (for instance, $10). We de
cide that we shall allocate (classify) X to population 1r1 if X < c, for some c 
to be determined, and to population 1r2 if X > c. Let B1 be the event X is clas
sified into population 1r1 and B2 be the event X is classified into population 1r2 . 
Make a table showing the following: P (B1 1 A2) ,  P (B2 1 A1 ) ,  P(A1 and B2) , 
P(A2 and B1 ) ,  P(misclassification) , and expected cost for various values of c. 
For what choice of c is expected cost minimized? The table should take the 
following form: 

Expected 
P(B1 \ A2) P (B2 \ A1 )  P (A1 and B2) P(A2 and B1 ) P( error) cost 

What is the value of the minimum expected cost? 
11.12. Repeat Exercise 11 . 1 1  if the prior probabilities of A1 and A2 are equal, but 

c (2 1 1 ) = $5 and c ( 1 1 2 ) = $15 . 
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11.13. Repeat Exercise 11 . 11  if the prior probabilities of A1 and A2 are P( A1 ) == . 25 
and P (A2 ) == .75 and the misclassification costs are as in Exercise 1 1 .12. 

11.14. Consider the discriminant functions derived in Example 1 1 .3 .  Normalize a 
using ( 11 -21) and (11 -22) . Compute the two midpoints mi and mi corre
sponding to the two choices of normalized vectors, say, ai and ai . Classify 
Xo == [ - .210, - .044] with the function .Y6 == a* 'xo for the two cases. Are the 
results consistent with the classification obtained for the case of equal prior 
probabilities in Example 11 .3? Should they be? 

11.15. Derive the expressions in ( 11 -23) from (11 -6) when /1 (x) and /2 (x) are 
multivariate normal densities with means ILl , IL2 and co variances I1 , I2 , 
respectively. 

11.16. Suppose x comes from one of two populations: 

1r1 : Normal with mean ILl and covariance matrix I1 
1r2 : Normal with mean IL2 and covariance matrix I2 

If the respective density functions are denoted by /1 ( x) and /2 ( x) , find the ex
pression for the quadratic discriminator 

Q = ln [�:�:� J 
If I1 == I2 == I, for instance, verify that Q becomes 

( ILl - 1L2 ) ' I-1X - � ( ILl - IL2 ) ' I-1 ( 1Ll + 1L2) 
11.17. Suppose populations 1r1 and 1r2 are as follows: 

Population 
1Tl 1T2 

Distribution Normal Normal 

Mean IL [ 10, 15 ] '  [ 10, 25 ] '  

Variance-Covariance � [ 18  
12 

12 J 32 
[ 20 

-7 -n 
Assume equal prior probabilities and misclassifications costs of c(2 1 1 )  == $10 
and c ( 1  1 2 ) == $73 .89. Find the posterior probabilities of populations 1r1 and 
1r2 , P( 1r1 I x) and P( 1r2 l x) , the value of the quadratic discriminator Q in Ex
ercise 11 .16 ,  and the classification for each value of x in the following table: 

X 
[ 10, 15 ] '  
[ 12, 17] ' 

[ 30, 35 ] '  

Q Classification 

(Note: Use an increment of 2 in each coordinate-11 points in all .) 
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Show each of the following on a graph of the x1 , x2 plane. 
(a) The mean of each population 
(b) The ellipse of minimal area with probability .95 of containing x for each 

population 
(c) The region R1 (for population 1r1) and the region il-R1 = R2 (for popu

lation 1r2) 
(d) The 1 1  points classified in the table 

11.18. If B is defined as c ( ILl - IL2) ( ILl - IL2) '  for some constant c, verify that 
e = ci-1 ( 1L 1 - IL2 ) is in fact an (unsealed) eigenvector of i-1B, where I is a 
covariance matrix. 

11.19. (a) Using the original data sets X 1 and X2 given in Example 1 1 .6, calculate xi , 
Si , i = 1 ,  2, and Spoolect , verifying the results provided for these quantities 
in the example. 

(b) Using the calculations in Part a, compute Fisher's linear discriminant func
tion, and use it to classify the sample observations according to Rule 
(11 -35) . Verify that the confusion matrix given in Example 11 . 6  is correct . 

(c) Classify the sample observations on the basis of smallest squared distance 
Dr(x) of the observations from the group means x1 and x2 • [See ( 11 -54) . ]  
Compare the results with those in Part b. Comment. 

11.20. The matrix identity (see Bartlett [3] ) 

-1 - n - 3 ( -1 ck 
SH, pooled - n - 2 

Spooled + 
1 - ck (Xy - ik) ' s�;oled (xy - ik) 

. s�;oled (xy - ik ) (xy - ik) ' s�;o!ed) 
where 

( nk - 1 ) ( n - 2) 

allows the calculation of S/{� poolect from s�;olect . Verify this identity using the 
data from Example 1 1 . 6 .  Specifically, set n = n1 + n2 , k = 1 ,  and 
XH = [2, 12] . Calculate Sil, pooled using the full data s�;oled and xl , and compare 
the result with S/{� pooled in Example 1 1 .6 .  

11.21. Let A1 > A2 > · · · > As > 0 denote the s < min(g  - 1, p) nonzero eigenval
ues of I-1 BJ.t and e1 , e2 , . . . , es the corresponding eigenvectors (scaled so that 
e ' Ie = 1 ) .  Show that the vector of coefficients a that maximizes the ratio 

a' B a J.t 
a 'Ia 

a' [� ( P-i - ji ) ( p.i - ji ) ' ] a 
a' Ia 

is given by a1 = e1 . The linear combination a1X is called the first 
discriminant. Show that the value a2 = e2 maximizes the ratio subject to 
Cov ( a1X, a2X) = 0. The linear combination a2X is called the second 
discriminant. Continuing, ak = ek maximizes the ratio subject to 
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0 = Cov ( akX, a; X) , i < k, and akX is called the kth discriminant. Also, 
Var ( ajX) = 1 ,  i = 1, . . .  , s. [See (11 -62) for the sample equivalent .] 
Hint: We first convert the maximization problem to one already solved. By 
the spectral decomposition in (2-20), I = P'  AP where A is a diagonal matrix 
with positive elements Ai . Let A 1/2 denote the diagonal matrix with elements 
YT;. By (2-22) , the symmetric square-root matrix I112 = P' A 112P and its in
verse I-1;2 = P' A -1;2P satisfy I112I112 = I, I112I-112 = I = I-1;2I112 and 
I-112I-112 = I-1 . Next, set 

u = I112a 

so u 'u  = a' I112I112a = a' Ia and u 'I-112B I-112u = a 'I112I-112B I-112I112a � � 
= a' B�a. Consequently, the problem reduces to maximizing 

u 'I-1f2B I-1/2u � 
u' u 

over u. From (2-5 1 ) ,  the maximum of this ratio is A1 , the largest eigen
value of I-112B�I-112 . This maximum occurs when u = e1 , the normalized 
eigenvector associated with A1 . Because e1 = u = I112a1 , or a1 = I-1/2e 1 , 
Var ( a1X) = a!Ia1 = e1I-112II-112e1 = e1I-112I112I112I-112e 1 = e1 e 1 = 1 .  
By (2-52) , u j_ e1 maximizes the preceding ratio when u = e2 , the nor
malized eigenvector corresponding to A2 . For this choice, a2 = I-1/2e2 , and 
Cov (a2X, a1X) = a2Ia1 = e;I-112II-112e1 = e2e1 = 0, since e2 j_ e1 . 
Similarly, Var (a2X) = a2Ia2 = e2e2 = 1 .  Continue in this fashion for 
the remaining discriminants. Note that if A and e are an eigenvalue
eigenvector pair of I-112B�I-112 , then 

I-1;2B I-112e = Ae � 

and multiplication on the left by I-112 gives 

I-1/2I-1f2B�I-1/2e = AI-1f2e or I-1 B�(I-1f2e ) = A(I-1f2e ) 

Thus, I-1 B� has the same eigenvalues as I-112B�I-112 , but the corresponding 
eigenvector is proportional to I-112e = a, as asserted. 

11.22. Show that d� = A1 + A2 + · · · + AP = A1 + A2 + · · · + A5 , where A1 , A2 , . . . , A5 
are the nonzero eigenvalues of I-1B� (or I-112B�I-112) and d� is given by 
(11-68) . Also, show that A1 + A2 + · · · + Ar is the resulting separation when 
only the first r discriminants, Yi , }2, . . .  , Y, are used. 
Hint: Let P be the orthogonal matrix whose ith row ej is the eigenvector of 
I-112B�I-112 corresponding to the ith largest eigenvalue, i = 1 ,  2, . . .  , p. 
Consider 

Yi e1I-112X 

y = 
(pX 1 ) Ys e�I-112X = PI-112X 

yp e' I-1;2X p 
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Now, ILi Y = E(Y l 1rz ) = PI-112p,i and jiy = PI-112 ji , so 

( ILiY - jiy ) ' ( ILi Y - jiy) = ( 11-i - ji ) 'I-112P '  PI-112 ( P.. i - ji )  
= ( IL i  - ji ) 'I-1 ( IL i  - ji )  

g 
Therefore, Ll� = :L (ILiY - jiy ) ' ( ILi Y - jiy ) .  Using Yi , we have 

i = 1  
g g "" ( - )2 - "" ' �-1/2 ( - ) ( - ) '�-1/2 £.J JLi Y 1 - i-LY1 - £.J e1� ILi - 11- ILi - 11- � e1 i= 1  i= 1  

= e} I-1;2BJ.ti-112e1 = "-1 
because e1 has eigenvalue A1 • Similarly, Y2 produces 

g 
:L (JLi Y2 - Jiy2 ) 2 = e2I-112B�-ti-112e2 = A.2 i= 1  

and YP produces 

Thus, 
g d� = :L ( ILiY - jiy ) ' ( ILi Y - jiy) 

i= 1  
g - 2 g - 2 g - 2 :L (JLi Y1 - JLyl ) + :L (JLiY2 - JLy2 ) + . . .  + :L (JLi YP - JLyp ) i= 1  i= 1  i= 1  

= "-1 + "-2 + . . .  + AP = "-1 + "-2 + . . .  + "-s 

since "-s+1 = · · · = AP = 0. If only the first r discriminants are used, their con
tribution to d� is A1 + A2 + · · · + "-r ·  

The following exercises require the use of a computer. 

11.23. Consider the data given in Exercise 1 . 14 .  
(a) Check the marginal distributions of the x/s in both the multiple-sclerosis 

(MS) group and non-multiple-sclerosis (NMS) group for normality by 
graphing the corresponding observations as normal probability plots. Sug
gest appropriate data transformations if the normality assumption is 
suspect. 

(b) Assume that I1 = I2 = I. Construct Fisher's linear discriminant func
tion. Do all the variables in the discriminant function appear to be im
portant? Discuss your answer. Develop a classification rule assuming 
equal prior probabilities and equal costs of misclassification. 

(c) Using the results in (b), calculate the apparent error rate. If computing 
resources allow, calculate an estimate of the expected actual error rate 
using Lachenbruch's holdout procedure. Compare the two error rates. 

11.24. Annual financial data are collected for bankrupt firms approximately 2 years 
prior to their bankruptcy and for financially sound firms at about the same 
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time. The data on four variables, X1 == CF/TD == (cash flow)/(total debt) , 
X2 == NI/TA == (net income)/(total assets) ,  X3 == CA/CL == (current as
sets)/(current liabilities), and X4 == CA/NS == (current assets)/(net sales) , are 
given in Table 1 1 .4. 
(a) Using a different symbol for each group, plot the data for the pairs of ob

servations (x1 , x2 ) ,  (x1 , x3 ) and ( x1 , x4 ) . Does it appear as if the data are 
approximately bivariate normal for any of these pairs of variables? 

(b) Using the n1 == 21 pairs of observations ( x1 , x2 ) for bankrupt firms and 
the n2 == 25 pairs of observations ( x1 , x2 ) for non bankrupt firms, calculate 
the sample mean vectors x1 and x2 and the sample covariance matrices S1 
and S2 • 

(c) Using the results in (b) and assuming that both random samples are from 
bivariate normal populations, construct the classification rule ( 11 -25) with 
p1 == p2 and c ( 1  1 2 ) == c (2 1 1 ) .  

(d) Evaluate the performance of the classification rule developed in (c) by 
computing the apparent error rate (APER) from ( 11 -30) and the estimat
ed expected actual error rate E (AER) from ( 11 -32) . 

(e) Repeat Parts c and d, assuming that p1 == .05, p2 == .95, and c ( 1 1 2 ) 
== c (2 1 1  ) . Is this choice of prior probabilities reasonable? Explain. 

(f) Using the results in (b) , form the pooled covariance matrix Spooled ,  and 
construct Fisher 's sample linear discriminant function in (1 1-19) .  Use this 
function to classify the sample observations and evaluate the APER. Is 
Fisher's linear discriminant function a sensible choice for a classifier in this 
case? Explain. 

(g) Repeat Parts b-e using the observation pairs ( x1 , x3 ) and (x1 , x4 ) . Do 
some variables appear to be better classifiers than others? Explain. 

(h) Repeat Parts b-e using observations on all four variables ( X1 , X2 , X3 , X4) .  
11.25. The annual financial data listed in Table 1 1 .4 have been analyzed by Johnson 

[18] with a view toward detecting influential observations in a discriminant 
analysis. Consider variables X1 == CF/TD and X3 == CA/CL. 
(a) Using the data on variables X1 and X3 , construct Fisher's linear discrimi

nant function. Use this function to classify the sample observations and 
evaluate the APER. [See (11 -35) and (11 -30) . ]  Plot the data and the dis
criminant line in the (x1 , x3 ) coordinate system. 

(b) Johnson [18] has argued that the multivariate observations in rows 16  for 
bankrupt firms and 13 for sound firms are influential. Using the X1 , X3 
data, calculate Fisher's linear discriminant function with only data point 16 
for bankrupt firms deleted. Repeat this procedure with only data point 
13 for sound firms deleted. Plot the respective discriminant lines on the 
scatter in part a, and calculate the APERs, ignoring the deleted point in 
each case. Does deleting either of these multivariate observations make 
a difference? (Note that neither of the potentially influential data points 
is particularly "distant" from the center of its respective scatter. ) 

11.26. Using the data in Table 1 1 .4, define a binary response variable Z that assumes 
the value 0 if a firm is bankrupt and 1 if a firm is not bankrupt . Let 
X == CA/CL, and consider the straight-line regression of Z on X. Although 
a binary response variable does not meet the standard regression assumptions, 
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TABLE 1 1 .4 BAN KRUPTCY DATA 

Row 
CF NI CA CA Population xl = - x2 = - x3 = 

CL 
x4 = -

TD TA NS '7Ti , i = 1 ,  2 

1 - .45 - .41 1 .09 .45 0 
2 - .56 - .31 1 .51 . 16  0 
3 .06 .02 1 .01 .40 0 
4 - .07 - .09 1 .45 .26 0 
5 - .10 - .09 1 .56 .67 0 
6 - .14 - .07 .71 .28 0 
7 .04 .01 1 .50 .71 0 
8 - .06 - .06 1 .37 .40 0 
9 .07 - .01 1 .37 .34 0 

10 - .13 - . 14 1 .42 .44 0 
1 1  - .23 - .30 .33 . 18  0 
12 .07 .02 1 .31 .25 0 
13 .01 .00 2 .15 .70 0 
14 - .28 - .23 1 . 1 9  .66 0 
15 .15 .05 1 .88 .27 0 
16 .37 . 1 1  1 .99 .38 0 
17 - .08 - .08 1 .51 .42 0 
18 .05 .03 1 .68 .95 0 
19 .01 - .00 1 .26 .60 0 
20 . 12 . 1 1  1 . 14 .17 0 
21 - .28 - .27 1 .27 .51 0 
1 .51 .10 2.49 .54 1 
2 .08 .02 2.01 .53 1 
3 .38 . 1 1  3 .27 .35 1 
4 . 19 .05 2.25 .33 1 
5 .32 .07 4.24 .63 1 
6 .31 .05 4.45 .69 1 
7 . 12 .05 2.52 .69 1 
8 - .02 .02 2.05 .35 1 
9 .22 .08 2.35 .40 1 

10 .17 .07 1 . 80 .52 1 
1 1  . 15 .05 2 .17 .55 1 
12 - .10 - .01 2.50 .58 1 
13 .14 - .03 .46 .26 1 
14 .14 .07 2.61 .52 1 
15 . 15 .06 2.23 .56 1 
16 .16 .05 2.31 .20 1 
17 .29 .06 1 .84 .38 1 
18 .54 . 1 1  2.33 .48 1 
1 9  - .33 - .09 3 .01 .47 1 
20 .48 .09 1 .24 . 18  1 
21 .56 . 1 1  4.29 .45 1 
22 .20 .08 1 .99 .30 1 
23 .47 . 14 2.92 .45 1 
24 .17 .04 2.45 . 14 1 
25 .58 .04 5.06 . 13  1 

Legend: 1r1 = 0: bankrupt firms; 1r2 = 1 :  nonbankrupt firms. 
Source : 1968, 1969, 1970, 1971 , 1972 Moody's Industrial Manuals. 
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it is still reasonable to consider predicting the response with a linear function 
of the predictor( s) . 
(a) Use least squares to determine the fitted straight line for the X, Z data. Plot 

the fitted values for bankrupt firms as a dot diagram on the interval [0, 1 ] .  
Repeat this procedure for nonbankrupt firms and overlay the two dot di
agrams. A reasonable discrimination rule is to predict that a firm will go 
bankrupt if its fitted value is closer to 0 than to 1 .  That is, the fitted value 
is less than .5 . Similarly, a firm is predicted to be sound if its fitted value 
is greater than .5. Use this decision rule to classify the sample firms. Cal
culate the APER. 

(b) Repeat the analysis in Part a using all four variables, X1 , . . . , X4 • Is there 
any change in the APER? Do data points 16 for bankrupt firms and 13 for 
nonbankrupt firms stand out as influential? 

11.27. The data in Table 1 1 .5 contain observations on X2 = sepal width and 
X4 = petal width for samples from three species of iris. There are n1 = n2 = 

n3 = 50 observations in each sample. 
(a) Plot the data in the ( x2 , x4 ) variable space. Do the observations for the 

three groups appear to be bivariate normal? 
(b) Assume that the samples are from bivariate normal populations with a 

common covariance matrix. Test the hypothesis H0 : JL 1 = JL2 = JL3 versus 
H1 : at least one 11- i  is different from the others at the a = .05 significance 
level. Is the assumption of a common covariance matrix reasonable in this 
case? Explain. 

(c) Assuming that the populations are bivariate normal, construct the qua
dratic discriminate scores dP(x) given by (11 -47) with p1 = p2 = p3 = � · 
Using Rule (11-48), classify the new observation x0 = [3 .5 1 .75 ] into pop
ulation 1r1 , 1r2 , or 1r3 • 

(d) Assume that the covariance matrices Ii are the same for all thiee bivari
ate normal populations. Construct the linear discriminate score di (x) given 
by (1 1-51) , and use it to assign x0 = [3 .5 1 .75 ] to one of the populations 
7Ti , i  = 1 , 2, 3 according to (11-52) . Take p1 = p2 = p3 = � · Compare the 
results in Parts c and d. Which approach do you prefer? Explain. 

(e) Assuming equal covariance matrices and bivariate normal populations, 
and supposing that p1 = p2 = p3 = � , allocate x0 = [3 .5 1 .75 ] to 1r1 , 1r2 , 
or 1r3 using Rule (11-56) . Co1ppare the r�sult with that in Part d. Delin
eate the classification regions R1 , �2 , and R3 on your graph from Part a de
termined by the linear functions dk i (x0) in (11-56) . 

(f) Using the linear discriminant scores fr9m Part d, classify the sample ob
servations. Calculate the APER and E(AER) . (To calculate the latter, 
you should use Lachenbruch's holdout procedure. [See (11 -57) . ] )  

11.28. Darroch and Mosimann [6] have argued that the three species of iris indicat
ed in Table 11 .5 can be discriminated on the basis of "shape" or scale-free in
formation alone. Let Y1 = X1/ X2 be sepal shape and Y2 = X3j X4 be petal 
shape. 
(a) Plot the data in the ( log Y1 , log Y2) variable space. Do the observations 

for the three groups appear to be bivariate normal? 



TABLE 1 1 .5 DATA ON I R I SES  

1r1 : Iris setosa 

Sepal Sepal Petal Petal 
length width length width 

xl x2 x3 x4 
5 . 1  3.5 1 .4  0.2 
4.9 3.0 1 .4 0.2 
4.7 3.2 1 .3  0.2 
4.6 3 . 1  1 .5 0.2 
5.0 3 .6 1 .4 0.2 
5.4 3.9 1 .7 0.4 
4.6 3.4 1 .4 0.3 
5 .0 3 .4 1 .5 0.2 
4.4 2.9 1 .4 0.2 
4.9 3 . 1  1 .5 0 .1 
5 .4 3.7 1 .5  0.2 
4.8 3.4 1 .6 0.2 
4.8 3 .0 1 .4 0 .1 
4 .3 3 .0 1 .1 0 .1 
5 .8 4 .0 1 .2 0.2 
5.7 4.4 1 .5 0.4 
5.4 3 .9 1 .3 0.4 
5 . 1  3.5 1 .4 0.3 
5.7 3 .8 1 .7 0.3 
5 . 1  3 .8 1 .5 0 .3 
5 .4 3 .4 1 .7 0.2 
5 . 1  3 .7 1 .5 0.4 
4.6 3 .6 1 .0 0.2 
5 . 1  3 .3  1 .7 0.5 
4.8 3.4 1 .9  0.2 
5.0 3 .0 1 . 6  0.2 
5.0 3 .4 1 . 6  0.4 
5.2 3 .5 1 .5 0.2 
5.2 3.4 1 .4 0.2 
4.7 3.2 1 . 6  0.2 
4.8 3 . 1  1 . 6  0.2 
5.4 3.4 1 .5 0.4 
5.2 4.1 1 .5 0 .1 
5 .5 4.2 1 .4 0.2 
4.9 3 . 1  1 . 5  0.2 
5.0 3.2 1 .2 0.2 
5.5 3.5 1 .3 0.2 
4.9 3 .6 1 .4 0 .1 
4 .4 3 .0 1 .3 0 .2 
5 .1 3 .4 1 .5 0.2 

Sepal 
length 

xl 
7.0 
6.4 
6 .9 
5 .5 
6 .5 
5.7 
6.3 
4.9 
6.6 
5.2 
5.0 
5 .9 
6 .0 
6.1 
5 .6 
6 .7 
5 .6 
5 .8 
6 .2 
5 .6 
5 .9 
6 .1 
6 .3 
6 .1 
6 .4 
6 .6 
6 .8 
6 .7 
6.0 
5.7 
5 .5 
5.5 
5 .8 
6.0 
5.4 
6.0 
6.7 
6.3 
5.6 
5.5 

1r2 : Iris versicolor 

Sepal Petal Petal 
width length width 

x2 x3 x4 

3.2 4.7 1 .4 
3 .2 4.5 1 .5 
3 . 1  4 .9  1 .5 
2.3 4.0 1 .3 
2.8 4.6 1 .5 
2 .8 4 .5 1 .3 
3 .3 4.7 1 . 6  
2.4 3.3 1 .0 
2.9 4.6 1 .3 
2.7 3 .9 1 .4 
2.0 3.5 1 .0  
3 .0 4.2 1 .5 
2.2 4.0 1 .0 
2.9 4.7 1 .4 
2 .9 3 .6 1 .3 
3 . 1  4.4 1 .4 
3 .0 4.5 1 .5 
2.7 4 .1 1 .0 
2.2 4.5 1 .5 
2.5 3 .9 1 . 1  
3 .2 4.8 1 . 8  
2.8 4.0 1 .3 
2.5 4.9 1 .5 
2.8 4.7 1 .2 
2.9 4.3 1 .3 
3 .0 4.4 1 .4 
2.8 4.8 1 .4 
3 .0 5 .0 1 .7 
2.9 4.5 1 .5 
2.6 3 .5 1 .0 
2.4 3 .8  1 . 1  
2.4 3.7 1 .0 
2.7 3 .9 1 .2 
2.7 5 . 1  1 . 6  
3 .0 4.5 1 .5 
3 .4 4 .5 1 .6 
3 .1 4 .7 1 .5 
2.3 4.4 1.3 
3 .0 4 .1 1 .3 
2.5 4.0 1 .3 
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1r3 : Iris virginica 

Sepal Sepal Petal Petal 
length width length width 

xl x2 x3 x4 
6.3 3 .3 6.0 2.5 
5 .8 2.7 5 .1 1 .9 
7 . 1  3 .0 5.9 2 .1 
6 .3 2.9 5.6 1 .8 
6 .5 3 .0 5.8 2.2 
7 .6 3 .0 6.6 2 .1 
4 .9 2.5 4.5 1 .7 
7 .3 2 .9 6.3 1 . 8  
6.7 2.5 5 .8 1 . 8  
7.2 3 .6 6 .1 2 .5 
6.5 3 .2 5.1 2.0 
6.4 2.7 5.3 1 . 9  
6 .8 3 .0 5.5 2 .1 
5 .7 2.5 5.0 2.0 
5.8 2.8 5.1 2.4 
6.4 3.2 5.3 2.3 
6 .5 3 .0 5.5 1 .8  
7.7 3.8 6.7 2.2 
7.7 2.6 6.9 2.3 
6.0 2.2 5.0 1 .5 
6 .9 3 .2 5 .7 2.3 
5 .6 2.8 4.9 2.0 
7.7 2.8 6.7 2.0 
6.3 2.7 4.9 1 . 8  
6.7 3.3 5.7 2.1 
7.2 3.2 6.0 1 . 8  
6.2 2.8 4.8 1 . 8  
6 . 1  3 .0 4.9 1 . 8  
6.4 2.8 5.6 2.1 
7.2 3 .0 5.8 1 . 6  
7 .4 2.8 6 .1 1 .9 
7 .9 3 .8 6 .4 2.0 
6.4 2.8 5 .6 2 .2 
6 .3 2.8 5.1 1 .5 
6 .1 2 .6 5 .6 1 .4 
7.7 3 .0 6 .1 2 .3 
6 .3 3 .4 5.6 2.4 
6 .4 3 .1 5.5 1 . 8  
6 .0 3.0 4.8 1 . 8  
6 .9 3 . 1  5.4 2 .1 

(continues on next page) 
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TABLE 1 1 .5 (continued) 
-

1r 1 : Iris setosa 1r2 : Iris versicolor 1r3 : Iris virginica 

Sepal Sepal Petal Petal Sepal Sepal Petal Petal Sepal Sepal Petal Petal 
length width length width length width length width length width length width 

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 
5.0 3 .5 1 . 3  0.3 5 .5 2.6 4.4 1 .2 6.7 3 . 1  5 .6 2.4 
4.5 2.3 1 .3 0.3 6.1 3.0 4.6 1 .4 6 .9 3 .1 5 .1 2.3 
4.4 3.2 1 . 3  0.2 5 .8 2.6 4.0 1 .2 5 .8 2.7 5.1 1 .9  
5 .0 3 .5  1 .6 0.6 5 .0 2.3 3 .3 1 .0 6 .8 3 .2 5 .9 2.3 
5 . 1  3 .8  1 . 9  0.4 5 .6 2.7 4.2 1 . 3  6 .7 3 .3 5 .7 2.5 
4.8 3 .0 1 .4 0.3 5 .7 3 .0 4.2 1 .2 6.7 3 .0 5.2 2.3 
5 . 1  3 .8  1 .6  0.2 5 .7 2.9 4.2 1 . 3  6 .3 2.5 5.0 1 .9  
4.6 3 .2 1 .4 0.2 6.2 2.9 4.3 1 . 3  6 .5 3 .0 5.2 2.0 
5 .3 3 .7 1 .5 0.2 5 .1  2.5 3 .0 1 . 1  6.2 3.4 5 .4 2 .3 
5 .0 3 .3 1 .4 0.2 5 .7 2 .8 4.1 1 . 3  5 .9  3 .0  5.1 1 . 8  

Source: Anderson [1] . 

(b) Assuming equal covariance matrices and bivariate normal populations, 
and suppos�ng that p1 == p2 == p3 == � , construct the linear discrimi
nant scores di(x) given by (11-51) using both variables log Yi ,  log Y2 and 
each variable individually. Calculate the APERs. 

(c) Using the linear discriminant functions from Part b, calculate the holdout 
estimates of the expected AERs, and fill in the following summary table: 

Variable( s) 

log Y1 
log Y2 
log Yi ,  log Y2 

Misclassification rate 

Compare the preceding misclassification rates with those in the summary 
tables in Example 11 . 12. Does it appear as if information on shape alone 
is an effective discriminator for these species of iris? 

(d) Compare the corresponding error rates in Parts b and c. Given the scat
ter plot in Part a, would you expect these rates to differ much? Explain . 

11.29. The GPA and GMAT data alluded to in Example 1 1 . 1 1  are listed in 
Table 1 1 .6 .  
(a) Using these data, calculate x1 , x2 , x3 , x, and Spoolect and thus verify the re

sults for these quantities given in Example 11 . 1 1 .  
(b) Calculate w-1 and B and the eigenvalues and eigenvectors of  w-1 B. Use 

the linear discriminants derived from these eigenvectors to classify the 
new observation x0 == [ 3 .21 497 ] into one of the populations 1r1 : admit; 
1r2 : not admit ; and 1r3 : borderline. Does the classification agree with that 
in Example 1 1 . 1 1 ?  Should it? Explain. 
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TABLE 1 1 .6 ADMISS ION DATA FOR G RADUATE SCHOOL OF  B U S I N ESS 

Applicant 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16  
17  
18  
19  
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

1r1 : Admit 1r2 : Do not admit 1r3 : Borderline 

GPA GMAT Applicant GPA GMAT Applicant GPA GMAT 
(xi ) (x2) no. (xi ) (x2 ) no. ( xi ) (x2 ) 
2.96 596 32 2.54 446 60 2.86 494 
3 .14 473 33 2.43 425 61 2.85 496 
3 .22 482 34 2.20 474 62 3 . 14 419 
3 .29 527 35 2.36 531 63 3 .28 371 
3 .69 505 36 2.57 542 64 2.89 447 
3 .46 693 37 2.35 406 65 3 .15 313 
3 .03 626 38 2 .51 412 66 3 .50 402 
3 . 19  663 39 2.51 458 67 2.89 485 
3 .63 447 40 2.36 399 68 2.80 444 
3.59 588 41 2.36 482 69 3 . 13 416 
3 .30 563 42 2.66 420 70 3 .01 471 
3 .40 553 43 2.68 414 71 2.79 490 
3.50 572 44 2.48 533 72 2.89 431 
3 .78 591 45 2.46 509 73 2 .91 446 
3 .44 692 46 2.63 504 74 2.75 546 
3.48 528 47 2.44 336 75 2.73 467 
3 .47 552 48 2.13 408 76 3 .12 463 
3 .35 520 49 2.41 469 77 3 .08 440 
3 .39 543 50 2.55 538 78 3 .03 419 
3 .28 523 51 2.31 505 79 3 .00 509 
3 .21 530 52 2.41 489 80 3 .03 438 
3.58 564 53 2 .19 411 81 3 .05 399 
3 .33 565 54 2.35 321 82 2 .85 483 
3 .40 431 55 2.60 394 83 3 .01 453 
3 .38 605 56 2.55 528 84 3 .03 414 
3 .26 664 57 2.72 399 85 3 .04 446 
3 .60 609 58 2.85 381 
3 .37 559 59 2.90 384 
3 .80 521 
3.76 646 
3 .24 467 

11.30. Gerrild and Lantz [12] chemically analyzed crude-oil samples from three zones 
of sandstone: 

1r1 : Wilhelm 
1r2 : Sub-Mulinia 
1r3 :  Upper (Mulinia, second subscales, first subscales) 

The values of the trace elements 
X1 = vanadium (in percent ash) 
x2 = iron (in percent ash) 
x3 = beryllium (in percent ash) 
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and two measures of hydrocarbons, 

x4 = saturated hydrocarbons (in percent area) 
X5 = aromatic hydrocarbons (in percent area) 

are presented for 56 cases in Table 11 .7 on pages 661-662. The last two mea
surements are determined from areas under a gas-liquid chromatography curve. 
(a) Obtain the estimated minimum TPM rule, assuming normality. Comment 

on the adequacy of the assumption of normality. 
(b) Determine the estimate of E(AER ) using Lachenbruch's holdout proce

dure. Also, give the confusion matrix. 
(c) Consider various transformations of the data to normality (see Example 

1 1 . 14) , and repeat Parts a and b. 
11.31. Refer to the data on salmon in Table 1 1 .2. 

(a) Plot the bivariate data for the two groups of salmon. Are the sizes and 
orientation of the scatters roughly the same? Do bivariate normal distri
butions with a common covariance matrix appear to be viable population 
models for the Alaskan and Canadian salmon? 

(b) Using a linear discriminant function for two normal populations with equal 
priors and equal costs [see ( 1 1 -19) ] , construct dot diagrams of the dis
criminant scores for the two groups. Does it appear as if the growth ring 
diameters separate for the two groups reasonably well? Explain. 

(c) Repeat the analysis in Example 1 1 .7 for the male and female salmon sep
arately. Is it easier to discriminate Alaskan male salmon from Canadian 
male salmon than it is to discriminate the females in the two groups? Is 
gender (male or female) likely to be a useful discriminatory variable? 

11.32. Data on hemophilia A carriers, similar to those used in Example 1 1 .3 ,  are list
ed in Table 11 . 8  on page 663 . (See [14] . )  Using these data, 
(a) Investigate the assumption of bivariate normality for the two groups. 
(b) Obtain the sample linear discriminant function, assuming equal prior prob

abilities, and estimate the error rate using the holdout procedure. 
(c) Classify the following 10 new cases using the discriminant function in 

Part b. 

N EW CASES REQ U I R I N G  CLASS I F ICATION 

Case 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

log10(AHF activity) 
- . 1 12 
- .059 

.064 
- .043 
- .050 
- .094 
- .123 
- .011 
- .210 
- . 126 

log10(AHF antigen) 
- .279 
- .068 

.012 
- .052 
- .098 
- . 1 13  
- .143 
- .037 
- .090 
- .019 
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TABLE 1 1 . 7 CRU D E-O I L  DATA 

xl x2 x3 x4 Xs 

7Tl 3 .9 51 .0 0.20 7.06 12.19 
2.7 49.0 0.07 7.14 12.23 
2.8 36.0 0.30 7.00 1 1 .30 
3 . 1  45.0 0.08 7.20 13 .01 
3 .5 46.0 0.10 7.81 12.63 
3 .9 43 .0 0.07 6 .25 10.42 
2.7 35.0 0.00 5 . 1 1  9.00 

1T2 5.0 47 .0 0.07 7 .06 6 .10 
3 .4 32.0 0.20 5 .82 4.69 
1 .2 12.0 0.00 5 .54 3 .15 
8 .4 17.0 0.07 6 .31 4.55 
4.2 36.0 0.50 9.25 4.95 
4.2 35 .0 0.50 5.69 2.22 
3 .9 41 .0 0 .10 5 .63 2.94 
3 .9 36.0 0.07 6 .19 2.27 
7.3 32.0 0.30 8.02 12.92 
4.4 46.0 0.07 7.54 5 .76 
3 .0 30.0 0.00 5 .12 10.77 

1T3 6.3 13 .0 0.50 4.24 8.27 
1 .7 5 .6 1 .00 5 .69 4.64 
7.3 24.0 0.00 4.34 2.99 
7.8 18 .0 0.50 3 .92 6.09 
7 .8 25 .0 0.70 5 .39 6.20 
7 .8 26.0 1 .00 5.02 2.50 
9 .5 17.0 0.05 3 .52 5.71 
7.7 14.0 0.30 4.65 8 .63 

1 1 .0 20.0 0.50 4.27 8.40 
8.0 14.0 0.30 4.32 7.87 
8.4 18 .0 0.20 4.38 7.98 

10 .0 18 .0 0 .10 3 .06 7.67 
7 .3 15 .0 0.05 3.76 6 .84 
9.5 22.0 0.30 3 .98 5 .02 
8.4 15.0 0.20 5 .02 10 .12 
8.4 17.0 0.20 4.42 8.25 
9 .5 25 .0 0.50 4.44 5 .95 
7.2 22.0 1 .00 4.70 3 .49 
4.0 12.0 0.50 5.71 6 .32 
6.7 52.0 0.50 4 .80 3 .20 
9.0 27 .0 0.30 3 .69 3 .30 
7.8 29.0 1 .50 6.72 5.75 
4.5 41 .0 0.50 3 .33 2.27 
6.2 34.0 0.70 7.56 6.93 
5.6 20.0 0.50 5 .07 6.70 

(continues on next page) 
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TABLE 1 1 .7 (continued) 

xl x2 x3 x4 Xs 
9.0 17.0 0.20 4.39 8.33 
8.4 20.0 0 .10 3 .74 3 .77 
9.5 19.0 0.50 3 .72 7 .37 
9.0 20.0 0.50 5 .97 1 1 .17 
6.2 16 .0 0.05 4.23 4. 18 
7.3 20.0 0.50 4.39 3.50 
3 .6 15 .0 0.70 7 .00 4.82 
6.2 34.0 0.07 4.84 2.37 
7.3 22.0 0.00 4 .13 2.70 
4 .1 29.0 0.70 5.78 7.76 
5.4 29.0 0.20 4.64 2.65 
5 .0 34.0 0.70 4.21 6.50 
6.2 27.0 0.30 3 .97 2.97 

(d) Repeat Parts a-c, assuming that the prior probability of obligatory carri
ers (group 2) is � and that of noncarriers (group 1 ) is � .  

11.33. Consider the data on bulls in Table 1 . 10 . 
(a) Using the variables YrHgt, FtFrBody, PrctFFB, Frame, BkFat, SaleHt, and 

Sale Wt, calculate Fisher 's linear discriminants, and classify the bulls as 
Angus, Hereford, or Simental. Calculate an estimate of E(AER) using 
the holdout procedure. Classify a bull with characteristics YrHgt = 50, 
FtFrBody = 1000, PrctFFB = 73, Frame = 7, BkFat = . 17 , 
SaleHt = 54, and Sale Wt = 1525 as one of the three breeds. Plot the dis
criminant scores for the bulls in the two-dimensional discriminant space 
using different plotting symbols to identify the three groups. 

(b) Is there a subset of the original seven variables that is almost as good for 
discriminating among the three breeds? Explore this possibility by com
puting the estimated E(AER) for various subsets. 

11.34. Table 1 1 .9 on pages 664-665 contains data on breakfast cereals produced by 
three different American manufacturers: General Mills (G), Kellogg (K) , and 
Quaker (Q) .  Assuming multivariate normal data with a common covariance 
matrix, equal costs, and equal priors, classify the cereal brands according to 
manufacturer. Compute the estimated E(AER) using the holdout procedure. 
Interpret the coefficients of the discriminant functions. Does it appear as if 
some manufacturers are associated with more "nutritional" cereals (high pro
tein, low fat , high fiber, low sugar, and so forth) than others? Plot the cereals 
in the two-dimensional discriminant space, using different plotting symbols to 
identify the three manufacturers. 
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TABLE 1 1 .8 H EMOPH I L IA DATA 

N oncarriers ( '7T 1 ) Obligatory carriers ( 7T2) 
loglo loglo loglo loglo 

Group (AHF activity) (AHF antigen) Group (AHF activity) (AHF antigen) 

1 - .0056 - . 1657 2 - .3478 . 1151 
1 - . 1698 - . 1585 2 - .3618 - .2008 
1 - .3469 - . 1 879 2 - .4986 - .0860 
1 - .0894 .0064 2 - .5015 - .2984 
1 - . 1679 .0713 2 - .1326 .0097 
1 - .0836 .0106 2 - .6911 - .3390 
1 - .1979 - .0005 2 - .3608 . 1237 
1 - .0762 .0392 2 - .4535 - .1682 
1 - . 1913 - .2123 2 - .3479 - . 1721 
1 - . 1092 - . 1190 2 - .3539 .0722 
1 - .5268 - .4773 2 - .4719 - . 1079 
1 - .0842 .0248 2 - .3610 - .0399 
1 - .0225 - .0580 2 - .3226 . 1670 
1 .0084 .0782 2 - .4319 - .0687 
1 - .1827 - . 1 138 2 - .2734 - .0020 
1 . 1237 .2140 2 - .5573 .0548 
1 - .4702 - .3099 2 - .3755 - . 1865 
1 - . 1519 - .0686 2 - .4950 - .0153 
1 .0006 - . 1 153 2 - .5107 - .2483 
1 - .2015 - .0498 2 - . 1652 .2132 
1 - . 1932 - .2293 2 - .2447 - .0407 
1 . 1507 .0933 2 - .4232 - .0998 
1 - . 1259 - .0669 2 - .2375 .2876 
1 - .1551 - . 1232 2 - .2205 .0046 
1 - . 1952 - . 1007 2 - .2154 - .0219 
1 .0291 .0442 2 - .3447 .0097 
1 - .2228 - .1710 2 - .2540 - .0573 
1 - .0997 - .0733 2 - .3778 - .2682 
1 - . 1972 - .0607 2 - .4046 - . 1 162 
1 - .0867 - .0560 2 - .0639 .1569 

2 - .3351 - . 1368 
2 - .0149 . 1539 
2 - .0312 . 1400 
2 - . 1740 - .0776 
2 - .1416 . 1642 
2 - .1508 . 1 137 
2 - .0964 .0531 
2 - .2642 .0867 
2 - .0234 .0804 
2 - .3352 .0875 
2 - . 1878 .2510 
2 - .1744 . 1892 
2 - .4055 - .2418 
2 - .2444 . 1614 
2 - .4784 .0282 

Source: See [14] . 
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TABLE 1 1 .9 DATA ON B RA N DS OF  CEREAL 

Brand Manufacturer 

1 Apple_Cinnamon_Cheerios G 
2 Cheerios G 
3 Cocoa_Puffs G 
4 Count_Chocula G 
5 Golden_ Grahams G 
6 Honey_Nut_Cheerios G 
7 Kix G 
8 Lucky_ Charms G 
9 Multi_Grain_Cheerios G 

10 Oatmeal_Raisin_Crisp G 
1 1  Raisin_Nut_Bran G 
12 Total_ Corn_Flakes G 
13 Total_Raisin_Bran G 
14 Total_ Whole_Grain G 
15 Trix G 
16  Wheaties G 
17 Wheaties_Honey _Gold G 
18 All_Bran K 
1 9  Apple_Jacks K 

Calories Protein Fat 

110 2 2 
1 10  6 2 
1 10  1 1 
110 1 1 
110 1 1 
1 10  3 1 
1 10  2 1 
1 10  2 1 
100 2 1 
130 3 2 
100 3 2 
110 2 1 
140 3 1 
100 3 1 
1 10  1 1 
100 3 1 
1 10  2 1 
70 4 1 

110 2 0 

Sodium Fiber Carbohydrates Sugar Potassium Group 

180 1 .5 10.5 10 70 1 
290 2.0 17.0 1 105 1 
180 0.0 12.0 13 55 1 
180 0.0 12.0 13 65 1 
280 0.0 15 .0 9 45 1 
250 1 .5  1 1 .5 10  90 1 
260 0.0 21 .0 3 40 1 
180 0.0 12.0 12 55 1 
220 2.0 15.0 6 90 1 
170 1 .5 13 .5 10 120 1 
140 2.5 10.5 8 140 1 
200 0.0 21 .0 3 35 1 
1 90 4.0 15.0 14 230 1 
200 3 .0 16.0 3 1 10  1 
140 0.0 13 .0 12 25 1 
200 3 .0 17 .0 3 110 1 
200 1 .0 1 6.0 8 60 1 
260 9.0 7 .0 5 320 2 
125 1 .0  1 1 . 0 14 30 2 
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20 Corn_Flakes 
21 Corn_Pops 
22 Cracklin'_Oat_Bran 
23 Crispix 
24 Froot_Loops 
25 Frosted_Flakes 
26 Frosted_Mini_ Wheats 
27 Fruitful_Bran 
28 Just_Right_ Crunchy _Nuggets 
29 Mueslix_Crispy_Blend 
30 Nut&Honey_Crunch 
31  Nutri-grain_Almond-Raisin 
32 Nutri-grain_ Wheat 
33 Product_19 
34 Raisin Bran 
35 Rice_Krispies 
36 Smacks 
37 Special_K 
38 Cap'n'Crunch 
39 Honey_Graham_Ohs 
40 Life 
41 Puffed_Rice 
42 Puffed_ Wheat 
43 Quaker Oatmeal 

Source: Data courtesy of Chad Dacus. 

K 
K 
K 
K 
K 
K 
K 
K 
K 
K 
K 
K 
K 
K 
K 
K 
K 
K 
Q 
Q 
Q 
Q 
Q 
Q 

100 2 0 
110 1 0 
110 3 3 
110 2 0 
110 2 1 
110 1 0 
100 3 0 
120 3 0 
110 2 1 
160 3 2 
120 2 1 
140 3 2 
90 3 0 

100 3 0 
120 3 1 
1 10  2 0 
110 2 1 
110 6 0 
120 1 2 
120 1 2 
100 4 2 
50 1 0 
50 2 0 

100 5 2 

290 1 .0 21 .0 2 35 2 
90 1 .0 13 .0 12 20 2 

140 4.0 10.0 7 160 2 
220 1 .0 21 .0 3 30 2 
125 1 .0 1 1 .0 13 30 2 
200 1 .0 14.0 1 1  25 2 

0 3 .0 14.0 7 100 2 
240 5 .0 14.0 12 190 2 
170 1 .0 17.0 6 60 2 
150 3.0 17.0 13 160 2 
1 90 0 .0 15 .0 9 40 2 
220 3 .0 21 .0 7 130 2 
170 3 .0 18 .0 2 90 2 
320 1 .0 20.0 3 45 2 
210 5 .0 14.0 12 240 2 
290 0.0 22.0 3 35 2 
70 1 .0 9 .0 15 40 2 

230 1 .0 1 6.0 3 55 2 
220 0.0 12.0 12 35 3 
220 1 .0  12.0 1 1  45 3 
150 2.0 12.0 6 95 3 

0 0.0 13.0 0 15 3 
0 1 .0 10.0 0 50 3 
0 2.7 1 .0  1 110 3 
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CHAPTER 

1 2  
Clustering, Distance Methods, 

and Ordination 

1 2. 1  I NTRODUCTION 

668 

Rudimentary, exploratory procedures are often quite helpful in understanding 
the complex nature of multivariate relationships. For example, throughout this 
book, we have emphasized the value of data plots. In this chapter, we shall dis
cuss some additional displays based on certain measures of distance and sug
gested step-by-step rules (algorithms) for grouping objects (variables or items) . 
Searching the data for a structure of "natural" groupings is an important ex
ploratory technique. Groupings can provide an informal means for assessing 
dimensionality, identifying outliers, and suggesting interesting hypotheses con
cerning relationships. 

Grouping, or clustering, is distinct from the classification methods discussed in 
the previous chapter. Classification pertains to a known number of groups, and the 
operational objective is to assign new observations to one of these groups. Cluster 
analysis is a more primitive technique in that no assumptions are made concerning 
the number of groups or the group structure. Grouping is done on the basis of sim
ilarities or distances (dissimilarities) . The inputs required are similarity measures or 
data from which similarities can be computed. 

To illustrate the nature of the difficulty in defining a natural grouping, consid
er sorting the 16 face cards in an ordinary deck of playing cards into clusters of sim
ilar objects. Some groupings are illustrated in Figure 12. 1 .  It is immediately clear 
that meaningful partitions depend on the definition of similar. 

In most practical applications of cluster analysis, the investigator knows 
enough about the problem to distinguish "good" groupings from "bad" groupings. 
Why not enumerate all possible groupings and select the "best" ones for further 
study? 

For the playing-card example, there is one way to form a single group of 16 face 
cards, there are 32,767 ways to partition the face cards into two groups (of varying 



• • • •  
A D O D D  
K D D D D  
Q D D D D  
1 D D D D  

A 

K 

Q 
J 

(a) Individual cards 

• • • •  

(c) Black and red suits 

• • • •  
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A 

K 

Q 
J 

A 

K 

Q 
J 

• • • •  

(b) Individual suits 

• • • •  

(d) Major and minor suits (bridge) 

• • • •  
A A 

�------------� 

(e) Hearts plus queen of spades (f) Like face cards 
and other suits (hearts) 

Figure 1 2 . 1  G rou p ing face cards. 

sizes) , there are 7,141 ,686 ways to sort the face cards in to three groups (of vary
ing sizes) , and so on. 1 Obviously, time constraints make it impossible to determine 
the best groupings of similar objects from a list of all possible structures. Even 
large computers are easily overwhelmed by the typically large number of cases, so 
one must settle for algorithms that search for good, but not necessarily the best, 
groupings. 

To summarize, the basic objective in cluster analysis is to discover natural group
ings of the items (or variables) .  In turn, we must first develop a quantitative scale on 
which to measure the association (similarity) between objects. Section 12.2 is de
voted to a discussion of similarity measures. After that section, we describe a few of 
the more common algorithms for sorting objects into groups. 

Even without the precise notion of a natural grouping, we are often able to 
group objects in two- or three-dimensional plots by eye. Stars and Chernoff faces, 

1 The number of ways of sorting n objects into k nonempty groups is a Stirling number of the second 

kind given by ( 1/ k ! )  ± ( -1 ) k-; (�)jn. (See [1 ] . )  Adding these numbers for k = 1, 2, . . .  , n groups, we 
; = 0  1 

obtain the total number of possible ways to sort n objects into groups. 
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discussed in Section 1 .4, have been used for this purpose. (See Examples 1 . 1 1  and 
1 . 12 .) Additional procedures for depicting high-dimensional observations in two di
mensions such that similar obj ects are, in some sense, close to one another are con
sidered in Sections 12.5-12.7 . 

1 2 .2 S IM I LARITY M EASURES 

Most efforts to  produce a rather simple group structure from a complex data set re
quire a measure of "closeness," or "similarity." There is often a great deal of subjec
tivity involved in the choice of a similarity measure. Important considerations include 
the nature of the variables (discrete, continuous, binary) , scales of measurement (nom
inal, ordinal, interval, ratio) , and subject matter knowledge. 

When items (units or cases) are clustered, proximity is usually indicated by some 
sort of distance. On the other hand, variables are usually grouped on the basis of 
correlation coefficients or like measures of association. 

Distances and S imi larity Coefficients for Pa i rs of Items 

We discussed the notion of distance in Chapter 1 ,  Section 1 .5. Recall that the Eu
clidean (straight-line) distance between two p-dimensional observations (items) 
x' = [ x1 , x2 , . . .  , xp ] and y' = [y1 , y2 , . . . , Yp ] is, from (1 -12), 

d(x, y) = V(x1 - Y1 )2 + ( x2 - Y2)2 + · · · + ( xp - Yp)2 

= V(x - y) ' (x - y) (12-1) 

The statistical distance between the same two observations is of the form [see (1 -23 ) ] 
d(x, y) = V(x - y) ' A(x - y) (12-2) 

Ordinarily, A = s-1 , where S contains the sample variances and co variances. How
ever, without prior knowledge of the distinct groups, these sample quantities can
not be computed. For this reason, Euclidean distance is often preferred for 
clustering. 

Another distance measure is the Minkowski metric [ p ] 1/m 
d(x, y) = � l x; - Y; Im (12-3) 

For m = 1 ,  d(x, y) measures the "city-block" distance between two points in p di
mensions. For m = 2, d(x, y) becomes the Euclidean distance. In general, varying 
m changes the weight given to larger and smaller differences. 

Two additional popular measures of "distance" or dissimilarity are given by the 
Canberra metric and the Czekanowski coefficient. Both of these measures are de
fined for nonnegative variables only. We have 



Canberra metric: 

Czekanowski coefficient: 
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p 
2 :L min ( xi , Yi ) 

d(x, y) = 1 -
_i�-1----

:L ( xi + Yi ) 
i= l 

(12-4) 

(12-5) 

Whenever possible, it is advisable to use "true" distances-that is, distances satisfy
ing the distance properties of (1 -25)-for clustering objects. On the other hand, most 
clustering algorithms will accept subj ectively assigned distance numbers that may 
not satisfy, for example, the triangle inequality. 

The following example illustrates how rudimentary groupings can be formed by 
simply reorganizing the elements of the distance matrix. 

Example 1 2 . 1  (Cluster ing by shad ing a d istance matrix) 

Table 12 .1 gives the Euclidean distances between pairs of 22 U.S. public util
ity companies, based on the data listed in Table 12.5 after they have been 
standardized. 

Because the distance matrix is large, it is difficult to visually select firms 
that are close together (similar) . However, the graphical method of shading al
lows us to pick out clusters of similar firms quite easily. 

First, distances are arranged into several classes (for instance, 15 or fewer) , 
based on their magnitudes. Next, all distances within a given class are replaced 
by a common symbol with a certain shade of gray. Darker symbols correspond 
to smaller distances. Finally, the distance matrix is reorganized so that items 
with common symbols appear in contiguous locations along the main diagonal. 
Groups of similar items correspond to patches of dark shadings. 

From Figure 12.2 on page 673 , we see that firms 1 ,  18 ,  19 , and 14 form a 
group, firms 22, 10, 13 , 20, and 4 form a group, firms 9 and 3 form a group, firms 
3 and 6 form a group, and so forth. The groups (9 ,  3 ) and ( 3 ,  6 ) overlap, as do 
other groups in the diagram. Firms 11 ,  5 , and 17 appear to stand alone. • 

When items cannot be represented by meaningful p-dimensional measurements, 
pairs of items are often compared on the basis of the presence or absence of certain 
characteristics. Similar items have more characteristics in common than do dissimi
lar items. The presence or absence of a characteristic can be described mathemati
cally by introducing a binary variable, which assumes the value 1 if the characteristic 
is present and the value 0 if the characteristic is absent. For p = 5 binary variables, 
for instance, the "scores" for two items i and k might be arranged as follows: 

Item i 
Item k 

1 

1 
1 

Variables 
2 3 

0 
1 

0 
0 

4 

1 
1 

5 

1 
0 
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TABLE 1 2 . 1  DISTANCES B ETWE E N  2 2  UTI LITI ES  

Firm 
no. 1 2 3 4 5 6 7 8 9 10  1 1  12  13 14 15 1 6  17 18 1 9  20 21 22 

1 .00 
2 3 . 10 .00 
3 3 .68 4 .92 .00 
4 2.46 2 .16 4 . 1 1  .00 
5 4 .12 3 .85 4 .47 4 .13 .00 
6 3 .61 4 .22 2.99 3 .20 4 .60 .00 

7 3 .90 3 .45 4 .22 3 .97 4 .60 3 .35 .00 
8 2.74 3 .89 4 .99 3 .69 5 . 16  4.91 4 .36 .00 
9 3 .25 3 .96 2.75 3 .75 4.49 3 .73 2.80 3 .59 .00 

10 3 . 10 2.71 3 .93 1 .49 4.05 3 .83 4 .51 3 .67 3 .57 .00 
1 1  3 .49 4.79 5 .90 4.86 6.46 6.00 6 .00 3 .46 5 . 18 5 .08 .00 
12 3 .22 2.43 4.03 3 .50 3 .60 3 .74 1 .66 4.06 2.74 3 .94 5.21 .00 
13 3 .96 3 .43 4 .39 2.58 4.76 4.55 5 .01 4 .14 3 .66 1 .41 5 .31 4.50 .00 
14 2.11 4 .32 2.74 3 .23 4.82 3 .47 4 .91 4 .34 3 .82 3 .61 4.32 4.34 4 .39 .00 
15 2.59 2.50 5 . 16  3 . 19  4.26 4.07 2.93 3 .85 4 . 1 1  4.26 4.74 2.33 5 . 10 4.24 .00 

1 6  4.03 4 .84 5 .26 4 .97 5 .82 5 .84 5 .04 2.20 3 .63 4.53 3 .43 4 .62 4.41 5 .17 5 . 18 .00 
17 4 .40 3 .62 6 .36 4.89 5 .63 6 .10 4.58 5 .43 4.90 5 .48 4.75 3.50 5 .61 5.56 3 .40 5 .56 .00 
18 1 .88 2.90 2.72 2 .65 4.34 2.85 2.95 3 .24 2.43 3 .07 3 .95 2.45 3 .78 2.30 3 .00 3 . 97 4 .43 .00 
19  2.41 4 .63 3 . 18 3 .46 5 . 1 3  2.58 4.52 4 . 11  4 . 1 1  4 . 1 3  4.52 4.41 5 .01 1 .88 4.03 5 .23 6.09 2.47 .00 
20 3 .17 3 .00 3 .73 1 .82 4 .39 2.91 3 .54 4.09 2.95 2.05 5 .35 3 .43 2.23 3.74 3 .78 4.82 4 .87 2 .92 3 .90 .00 
21 3 .45 2.32 5 .09 3 .88 3 .64 4 .63 2.68 3 .98 3 .74 4.36 4.88 1.38 4.94 4.93 2 .10 4.57 3 . 10 3 . 19  4 .97 4 .15 .00 
22 2.51 2.42 4 . 1 1  2.58 3 .77 4.03 4.00 3 .24 3 .21 2.56 3 .44 3 .00 2.74 3 .51 3 .35 3 .46 3 .63 2.55 3 . 97 2.62 3 .01 .00 
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Firm 
no. 
1 

1 8  
1 9  
1 4  
9 
3 
6 

22 
10 

M 
a from 
X from 
X from 
+ from 

from 
• from 

M 
M M  
M M M  
M M M M  
U - +� 
+ M X M M M 
X M M X +  M M 
M M - X X - - M 
M M - X X + + M M 

1 3  + + e X  e M M M 
20 M a + + M + M M M M M 
4 M a X X + - a M M  M M  M 
7 + M a e X - X - M 

1 2  a M e e a - + a + X X M M 
21  X M + a e e + M M M 

2.563 
2.994 
3 .424 
3 .66 1  
3 .963 
4. 1 35 

1 5  a M - e - - a e + a M M M M 
a M  • + 
X +  • 

e a a x M a X M M M M  
X M 

less than 
to 
to 
to 
to 
to 
to 

greater than 

2 
1 1  
16 
8 
5 

17 

X 
a M - e X  
- ·  

• •  

: + : - + e - - + + �\M M 

+ - e - X X e + M 
X X M M X M 

Figure 1 2 .2 Shaded d i stance matrix fo r 22  ut i l it ies. 

2.563 
2.994 
3.424 
3.661 
3.963 
4. 135  
4.458 
4.458 

In this case, there are two 1-1 matches, one 0-0 match, and two mismatches. 
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Let xij be the score (1 or 0) of the jth binary variable on the ith item and xkj be the 
score (again, 1 or 0) of the jth variable on the kth item, j = 1 ,  2, . . . , p. Consequently, 

( _ )2 _ { 0 if xi j = xkj = 1 
Xij Xk j - . 1 If X · ·  # Xk · l 1 1 

p 

or X · · = Xk ·  = 0 l 1 1 (12-6) 

and the squared Euclidean distance, � (xi j - xkj ) 2, provides a count of the number j= l 
of mismatches. A large distance corresponds to many mismatches-that is, dissimi-
lar items. From the preceding display, the square of the distance between items i 
and k would be 

5 
� (xij - xkj )2 = ( 1  - 1 )2 + ( 0 - 1 )2 + ( 0 - 0)2 + ( 1  - 1 )2 + ( 1  - 0)2 j= l  

= 2  

Although a distance based on (12-6) might be used to measure similarity, it suf
fers from weighting the 1-1 and 0-0 matches equally. In some cases, a 1-1 match is 
a stronger indication of similarity than a 0-0 match. For instance, in grouping peo
ple, the evidence that two persons both read ancient Greek is stronger evidence of 
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similarity than the absence of this ability. Thus, it might be reasonable to discount the 
0-0 matches or even disregard them completely. To allow for differential treatment 
of the 1-1 matches and the 0-0 matches, several schemes for defining similarity co
efficients have been suggested. 

To introduce these schemes, let us arrange the frequencies of matches and mis
matches for items i and k in the form of a contingency table : 

Item k 
1 0 Totals 

Item i 1 a b a +  b (12-7) 0 c d c + d  

Totals a +  c b + d  p = a + b + c + d  

In this table, a represents the frequency of 1-1 matches, b is the frequency of 1-0 
matches, and so forth. Given the foregoing five pairs of binary outcomes, a = 2 and 
b = c = d = 1 .  

Table 12.2 lists common similarity coefficients defined in terms of the frequen
cies in (12-7) . A short rationale follows each definition. 

TABLE 1 2.2 S I M I LAR ITY COE FF IC I E NTS FOR CLUSTE R I N G  ITE MS* 

Coefficient 

a + d  
1 . --

p 
2 (a  + d) 

2. -------
2 (a  + d) + b + c 

a + d  
3 .  

) a + d + 2 (b + c  

4. 
a 
p 

a 
5 . ----

a + b + c  

2a 
6. ----

2a + b + c 

7 
a 

· a + 2 (b + c) 

a 
8 . --

b + c 

Rationale 

Equal weights for 1-1 matches and 0-0 matches. 

Double weight for 1-1 matches and 0-0 matches. 

Double weight for unmatched pairs. 

No 0-0 matches in numerator. 

No 0-0 matches in numerator or denominator. 
(The 0-0 matches are treated as irrelevant. ) 
No 0-0 matches in numerator or denominator. 
Double weight for 1-1 matches. 

No 0-0 matches in numerator or denominator. 
Double weight for unmatched pairs. 

Ratio of matches to mismatches with 0-0 matches 
excluded. 

* [p binary variables; see (12-7) . ]  
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Coefficients 1, 2, and 3 in the table are monotonically related . Suppose 
coefficient 1 is calculated for two contingency tables, Table I and Table II .  Then 
if ( a1 + d1 )/ p > (au + dn )/ p, we also have 2( a1 + d1 )/ [2 ( a1 + d1 ) + b1 + cJ ] 
> 2 ( au + dn )/ [2 (an + dn) + bn + en ] ,  and coefficient 3 will be at least as large 
for Table I as it is for Table II. (See Exercise 12.4 . ) Coefficients 5, 6, and 7 also 
retain their relative orders. 

Monotonicity is important, because some clustering procedures are not affected 
if the definition of similarity is changed in a manner that leaves the relative orderings 
of similarities unchanged . The single linkage and complete linkage hierarchical 
procedures discussed in Section 12.3 are not affected. For these methods, any choice 
of the coefficients 1 ,  2, and 3 in Table 12.2 will produce the same groupings. Similarly, 
any choice of the coefficients 5 , 6, and 7 will yield identical groupings. 

Example 1 2 .2 (Ca lcu lati ng the va lues of a s im i larity coefficient) 

Suppose five individuals possess the following characteristics: 

Hair 
Height Weight 

Eye 
color color Handedness Gender 

Individual 1 68 in 
Individual 2 73 in 
Individual 3 67 in 
Individual 4 64 in 
Individual S 76 in 

140 lb 
185 lb 
165 lb 
120 lb 
210 lb 

green 
brown 
blue 
brown 
brown 

blond 
brown 
blond 
brown 
brown 

Define six binary variables X1 , X2 , X3 , X4 , X5 , X6 as { 1 height > 72 in. { 1 
xl == o x4 == o height < 72 in. { 1 weight > 150 lb { 1 
X2 == 

0 
Xs == 

0 weight < 150 lb { 1 brown eyes { 1 
x3 == o x6 == o otherwise 

right 
right 
right 
right 
left 

blond hair 
not blond hair 

right handed 
left handed 

female 
male 

The scores for individuals 1 and 2 on the p == 6 binary variables are 

Individual 1 
2 

0 
1 

0 
1 

0 
1 

1 
0 

1 
1 

female 
male 
male 
female 
male 

1 
0 

and the number of matches and mismatches are indicated in the two-way array 

Individual 2 
1 0 Total 

Individual 1 1 1 2 3 
0 3 0 3 

Totals 4 2 6 
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Employing similarity coefficient 1 , which gives equal weight to match
es, we compute 

a + d 1 + 0 1 
p 6 6 

Continuing with similarity coefficient 1 ,  we calculate the remaining similari
ty numbers for pairs of individuals. These are displayed in the 5 X 5 sym
metric matrix 

1 

1 1 

2 1 
Individual 6 

3 4 
6 

4 4 
6 

5 0 

Individual 
2 3 4 5 

1 
3 1 6 
3 2 1 6 6 

CD 2 2 1 6 6 
Based on the magnitudes of the similarity coefficient , we should conclude 

that individuals 2 and 5 are most similar and individuals 1 and 5 are least simi
lar. Other pairs fall between these extremes. If we were to divide the individ
uals into two relatively homogeneous subgroups on the basis of the similarity 
numbers, we might form the subgroups ( 1 3 4 ) and (2 5 ) .  

Note that X3 = 0 implies an absence of brown eyes, so that two people, 
one with blue eyes and one with green eyes, will yield a 0-0 match. Conse
quently, it may be inappropriate to use similarity coefficient 1, 2, or 3 because 
these coefficients give the same weights to 1-1 and 0-0 matches. • 

We have described the construction of distances and similarities. It is always 
possible to construct similarities from distances. For example, we might set 

1 
S ; k  = 

1 + d;k 
(12-8) 

where 0 < si k  < 1 is the similarity between items i and k and dik is the correspond
ing distance. 

However, distances that must satisfy (1 -25) cannot always be constructed from 
similarities. As Gower [9, 10] has shown, this can be done only if the matrix of simi
larities is nonnegative definite. With the nonnegative definite condition, and with 
the maximum similarity scaled so that si i  = 1 ,  

di k = V,-
2(

-
1
-
-
-

s
-
ik
-
) (12-9) 

has the properties of a distance. 

S imi la rities and Association  Measures 
for Pai rs of Var iables 

Thus far, we have discussed similarity measures for items. In some applications, it is 
the variables, rather than the items, that must be grouped. Similarity measures for 
variables often take the form of sample correlation coefficients. Moreover, in some 
clustering applications, negative correlations are replaced by their absolute values. 
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When the variables are binary, the data can again be arranged in the form of a 
contingency table. This time, however, the variables, rather than the items, delineate 
the categories. For each pair of variables, there are n items categorized in the table. 
With the usual 0 and 1 coding, the table becomes as follows: 

Variable i 1 
0 

Totals 

Variable k 
1 0 Totals 

a 
c 

a +  c 

b 
d 

b + d  

a + b 
c + d  

n == a + b + c + d  

For instance, variable i equals 1 and variable k equals 0 for b of the n items. 

(12-10) 

The usual product moment correlation formula applied to the binary variables 
in the contingency table of (12-10) gives (see Exercise 12.3) 

ad - be 
r == ----------------------------

[ ( a  + b) ( c + d) ( a  + c )  ( b + d) J 112 
(12-11) 

This number can be taken as a measure of the similarity between the two variables. 
The correlation coefficient in (12- 1 1 )  is related to the chi-square statistic 

( r2 == x2 / n) for testing the independence of two categorical variables. For n fixed, a 
large similarity (or correlation) is consistent with the absence of independence. 

Given the table in (12-10), measures of association (or similarity) exactly anal
ogous to the ones listed in Table 12.2 can be developed. The only change required is 
the substitution of n (the number of items) for p (the number of variables) .  

Concl ud ing Comments on S im i larity 

To summarize this section, we note that there are many ways to measure the similarity 
between pairs of objects. It appears that most practitioners use distances [see (12-1) 
through (12-5)] or the coefficients in Table 12.2 to cluster items and correlations to 
cluster variables. However, at times, inputs to clustering algorithms may be simple 
frequencies. 

Example 1 2 .3  (Measuring the s im i larities of 1 1  languages) 

The meanings of words change with the course of history. However, the mean
ing of the numbers 1 ,  2, 3, . . .  represents one conspicuous exception. Thus, a 
first comparison of languages might be based on the numerals alone. Table 12.3 
gives the first 10 numbers in English, Polish, Hungarian, and eight other mod
ern European languages. (Only languages that use the Roman alphabet are 
considered, and accent marks, cedillas, diereses, etc. , are omitted.) A cursory ex
amination of the spelling of the numerals in the table suggests that the first five 
languages (English, Norwegian, Danish, Dutch, and German) are very much 
alike. French, Spanish, and Italian are in even closer agreement. Hungarian 
and Finnish seem to stand by themselves, and Polish has some of the charac
teristics of the languages in each of the larger subgroups. 
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TABLE 1 2 .3  

English 
(E) 

one 
two 
three 
four 
five 
SIX 

seven 
eight 
nine 
ten 

N U M E RALS I N  1 1  LANGUAG ES 

Norwegian Danish Dutch German 
(N) (Da) (Du) (G) 

en en een e1ns 
to to twee zwe1 
tre tre drie drei 
fire fire vier vier 
fern fern vijf funf 
seks seks zes sechs 
SJU syv zeven sieben 
atte otte acht acht 
ni ni neg en neun 
ti ti tien zehn 

French Spanish Italian Polish Hungarian Finnish 
(Fr) (Sp) (I) (P) (H) (Fi) 

un uno uno j ed en egy yksi 
deux dos due dwa ketto kaksi 
trois tres tre trzy harom kolme 
quatre cuatro quattro cztery negy neua 
cinq CinCO cinque piec ot VllSI 

SIX seis sei szesc hat kuusi 
sept siete sette siedem het seitseman 
huit ocho otto os1em nyolc kahdeksan 
neuf nueve nove dziewiec kilenc yhdeksan 
dix diez dieci dziesiec tiz kymmenen 
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The words for 1 in French, Spanish, and Italian all begin with u .  For il
lustrative purposes, we might compare languages by looking at the first letters 
of the numbers. We call the words for the same number in two different lan
guages concordant if they have the same first letter and discordant if they do not . 
From Table 12.3, the table of concordances (frequencies of matching first initials) 
for the numbers 1-10 is given in Table 12.4. We see that English and Norwegian 
have the same first letter for 8 of the 10 word pairs. The remaining frequencies 
were calculated in the same manner. 

TABLE 1 2 .4 CO NCO RDANT FI RST LETTERS FOR N U M B E RS 
I N  1 1  LANG UAG ES 

E 
N 
Da 
Du 
G 
Fr 
Sp 
I 
p 
H 
Fi 

E N Da Du G 
10 
8 10 
8 9 10 
3 5 4 10 
4 6 5 5 10 
4 4 4 1 3 
4 4 5 1 3 
4 4 5 1 3 
3 3 4 0 2 
1 2 2 2 1 
1 1 1 1 1 

Fr 

10 
8 
9 
5 
0 
1 

Sp 

10 
9 
7 
0 
1 

I 

10 
6 
0 
1 

p 

10 
0 
1 

H 

10 
2 

Fi 

10 

The results in Table 12.4 confirm our initial visual impression of Table 
12.3 . That is, English, Norwegian, Danish, Dutch, and German seem to form a 
group. French, Spanish, Italian, and Polish might be grouped together, where
as Hungarian and Finnish appear to stand alone. • 

In our examples so far, we have used our visual impression of similarity or dis
tance measures to form groups. We now discuss less subjective schemes for creat
ing clusters. 

1 2.3 H I ERARCHICAL CLUSTERING METHODS 

We can rarely examine all grouping possibilities, even with the largest and fastest 
computers. Because of this problem, a wide variety of clustering algorithms have 
emerged that find "reasonable" clusters without having to look at all configurations. 

Hierarchical clustering techniques proceed by either a series of successive merg
ers or a series of successive divisions. Agglomerative hierarchical methods start with 
the individual objects. Thus, there are initially as many clusters as objects. The most 
similar objects are first grouped, and these initial groups are merged according to 
their similarities. Eventually, as the similarity decreases, all subgroups are fused into 
a single cluster. 
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Divisive hierarchical methods work in the opposite direction. An initial single 
group of objects is divided into two subgroups such that the objects in one subgroup 
are "far from" the objects in the other. These subgroups are then further divided 
into dissimilar subgroups; the process continues until there are as many subgroups as 
objects-that is, until each object forms a group. 

The results of both agglomerative and divisive methods may be displayed in 
the form of a two-dimensional diagram known as a dendrogram. As we shall see, 
the dendrogram illustrates the mergers or divisions that have been made at succes
sive levels. 

In this section we shall concentrate on agglomerative hierarchical procedures 
and, in particular, linkage methods. Excellent elementary discussions of divisive 
hierarchical procedures and other agglomerative techniques are available in [3] 
and [8] . 

Linkage methods are suitable for clustering items, as well as variables. This 
is not true for all hierarchical agglomerative procedures. We shall discuss, in turn, 
single linkage (minimum distance or nearest neighbor) , complete linkage (maxi
mum distance or farthest neighbor) , and average linkage (average distance) . The 
merging of clusters under the three linkage criteria is illustrated schematically in 
Figure 12 .3 .  

From the figure, we see that single linkage results when groups are fused ac
cording to the distance between their nearest members. Complete linkage occurs 
when groups are fused according to the distance between their farthest members. 
For average linkage, groups are fused according to the average distance between 
pairs of members in the respective sets. 

(a) 

(b) 

(c) 

- �  

• 3"'- \ 

.s; "-... / ....__ _ 

J 

Cluster distance 

d1 3  + di 4  + dt s  + d23 + d24 + d2s 
6 

Figure 1 2 .3 l nterc luster d istance (dissim i l a rity) for (a) s i ng le  l i n kage, (b) comp lete l i n kage, 
a n d  (c) average l i n kage.  
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The following are the steps in the agglomerative hierarchical clustering algo
rithm for grouping N objects (items or variables) : 

1. Start with N clusters, each containing a single entity and an N X N symmetric 
matrix of distances (or similarities) D = { di k } . 

2. Search the distance matrix for the nearest (most similar) pair of clusters. Let 
the distance between "most similar" clusters U and V be duv . 

3. Merge clusters U and V. Label the newly formed cluster ( VV) . Update the 
entries in the distance matrix by (a) deleting the rows and columns corre
sponding to clusters U and V and (b) adding a row and column giving the dis
tances between cluster ( UV) and the remaining clusters. 

4. Repeat Steps 2 and 3 a total of N - 1 times. (All objects will be in a single clus
ter after the algorithm terminates. ) Record the identity of clusters that are 
merged and the levels (distances or similarities) at which the mergers take 
place. (12-12) 
The ideas behind any clustering procedure are probably best conveyed through 

examples, which we shall present after brief discussions of the input and algorithmic 
components of the linkage methods. 

S ing le  Li nkage 

The inputs to a single linkage algorithm can be distances or similarities between 
pairs of objects. Groups are formed from the individual entities by merging nearest 
neighbors, where the term nearest neighbor connotes the smallest distance or largest 
similarity. 

Initially, we must find the smallest distance in D = { di k} and merge the corre
sponding objects, say, U and V, to get the cluster ( UV). For Step 3 of the general algo
rithm of (12-12), the distances between ( UV) and any other cluster W are computed by 

d(u v )w = min {duw , dvw} (12-13) 

Here the quantities duw  and dvw  are the distances between the nearest neighbors of 
clusters U and W and clusters V and W, respectively. 

The results of single linkage clustering can be graphically displayed in the form 
of a dendrogram, or tree diagram. The branches in the tree represent clusters. The 
branches come together (merge) at nodes whose positions along a distance (or sim
ilarity) axis indicate the level at which the fusions occur. Dendrograms for some spe
cific cases are considered in the following examples. 

Example 1 2 .4 (Cl uster ing us ing s ing le  l i nkage) 

To illustrate the single linkage algorithm, we consider the hypothetical distances 
between pairs of five objects as follows: 

1 

4 
5 

1 2 3 4 5 
0 
9 0 
3 7 0 
6 5 9 0 
1 1  10 @ 8 0 
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Treating each object as a cluster, we commence clustering by merging the two 
closest items. Since 

�Ik·n ( di k ) == d5 3 == 2 
l ,  

objects 5 and 3 are merged to form the cluster (35) . To implement the next 
level of clustering, we need the distances between the cluster (35) and the re
maining objects, 1, 2, and 4. The nearest neighbor distances are 

d(3S ) l == min { d31 , d5 1 } == min {3 ,  1 1 } == 3 
d(3s )2 == min { d32 , d52 } == min {7, 10 } == 7 
d(3s )4 == min { d34 , d54 } == min { 9, 8} == 8 

Deleting the rows and columns of D corresponding to objects 3 and 5, and adding 
a row and column for the cluster (35), we obtain the new distance matrix 

( 35 ) 1 2 4 
(35)  0 

1 ® 0 
2 7 9 0 
4 8 6 5 0 

The smallest distance between pairs of clusters is now d(3s ) 1 == 3 , and we 
merge cluster (1 ) with cluster (35) to get the next cluster, (135) . Calculating 

d( l3S )2 == min { d(3s )2 , d1 2 } == min {7, 9 }  == 7 
d( 135 )4 == min { d(3s )4 , d1 4 }  == min {8, 6 } == 6 

we find that the distance matrix for the next level of clustering is 

( 135) 
2 
4 

( 135 ) 2 4 [ � & 0 ] 
The minimum nearest neighbor distance between pairs of clusters is d42 == 5, and 
we merge obj ects 4 and 2 to get the cluster (24) . 

At this point we have two distinct clusters, (135) and (24) . Their nearest 
neighbor distance is 

d( 135 ) (24) == min { d( 135 )2 , d( 135 )4} == min {7 , 6} == 6 

The final distance matrix becomes 

( 1 35 ) 
(24) 

( 135 ) 

[ �  
(24) 

0 J 
Consequently, clusters (135) and (24) are merged to form a single cluster of all 
five objects, (12345) , when the nearest neighbor distance reaches 6. 

The dendrogram picturing the hierarchical clustering just concluded is 
shown in Figure 12.4. The groupings and the distance levels at which they occur 
are clearly illustrated by the dendrogram. • 
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3 5 2 4 Figure 1 2 .4 S i ng l e  l i n kage 
dendrogram for d i sta nces between 
five objects . Objects 

In typical applications of hierarchical clustering, the intermediate results-where 
the objects are sorted into a moderate number of clusters-are of chief interest. 

Example 1 2 . 5  (Si ng le l i nkage c luster ing of 1 1  languages) 

Consider the array of concordances in Table 12.4 representing the closeness be
tween the numbers 1-10 in 11 languages. To develop a matrix of distances, we 
subtract the concordances from the perfect agreement figure of 10 that each 
language has with itself. The subsequent assignments of distances are 

E N Da Du G Fr Sp I P H Fi 
E 0 
N 2 0 
Da 2 CD 0 
Du 7 5 6 
G 6 4 5 
Fr 
Sp 
I 
p 
H 
Fi 

6 6 6 
6 6 5 
6 6 5 
7 7 6 
9 8 8 
9 9 9 

0 
5 0 
9 7 0 
9 7 2 0 
9 1 CD CD o 
10 8 5 3 4 0 
8 9 10 10 10 10 0 
9 9 9 9 9 9 8 0  

We first search for the minimum distance between pairs of languages ( clus
ters) . The minimum distance, 1 ,  occurs between Danish and Norwegian, Italian 
and French, and Italian and Spanish. Numbering the languages in the order in 
which they appear across the top of the array, we have 

d86 = 1 ;  and d87 = 1 

Since d76 = 2, we can merge only clusters 8 and 6 or clusters 8 and 7. We can
not merge clusters 6, 7, and 8 at level 1 .  We choose first to merge 6 and 8, and 
then to update the distance matrix and merge 2 and 3 to obtain the clusters 
(68) and (23) . Subsequent computer calculations produce the dendrogram in 
Figure 12.5 . 
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1 0  

8 

8 6 § 
CZl 
0 4 

2 

0 
E N Da Fr I Sp P Du G H 

Languages 

Fi Figure 1 2 . 5  S i ng le  l i n kage 
dendrograms for d i stances between 
n u m bers in 1 1  l anguages. 

From the dendrogram, we see that Norwegian and Danish, and also French 
and Italian, cluster at the minimum distance (maximum similarity) level. When 
the allowable distance is increased, English is added to the Norwegian-Danish 
group, and Spanish merges with the French-Italian group. Notice that 
Hungarian and Finnish are more similar to each other than to the other clusters 
of languages. However, these two clusters (languages) do not merge until the 
distance between nearest neighbors has increased substantially. Finally, all 
the clusters of languages are merged into a single cluster at the largest nearest 
neighbor distance, 9. • 

Since single linkage joins clusters by the shortest link between them, the tech
nique cannot discern poorly separated clusters. [See Figure 12.6 (a) .] On the other 
hand, single linkage is one of the few clustering methods that can delineate nonel
lipsoidal clusters. The tendency of single linkage to pick out long stringlike clusters 
is known as chaining. [See Figure 12.6(b ) . ] Chaining can be misleading if items at op
posite ends of the chain are, in fact, quite dissimilar. 

The clusters formed by the single linkage method will be unchanged by any as
signment of distance (similarity) that gives the same relative orderings as the initial 
distances (similarities) . In particular, any one of a set of similarity coefficients from 
Table 12.2 that are monotonic to one another will produce the same clustering. 

Variable 2 

• • :• Elliptical 
:•! \• 

• configurations 
• •  •£ 
.... . ... . . •••• • 

.... . . •• • • • 
···: . •••• 

'-------------variable 1 

(a) Single linkage confused by near overlap 

Variable 2 

'-------------variable 1 

(b) Chaining effect 

Figure 12 .6  S i ng le  l i n kage c lu sters. 
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Complete Li nkage 

Complete linkage clustering proceeds in much the same manner as single linkage 
clusterings, with one important exception: At each stage, the distance (similarity) be
tween clusters is determined by the distance (similarity) between the two elements, 
one from each cluster, that are most distant. Thus, complete linkage ensures that all 
items in a cluster are within some maximum distance (or minimum similarity) of 
each other. 

The general agglomerative algorithm again starts by finding the minimum entry 
in D = { dik} and merging the corresponding objects, such as U and V, to get cluster 
( UV) . For Step 3 of the general algorithm in (12-12) , the distances between ( UV) and 
any other cluster W are computed by 

d(u v)w = max { duw , dvw} (12-14) 
Here duw  and dvw are the distances between the most distant members of clusters 
U and W and clusters V and W, respectively. 

Example 1 2 .6 {Cl uster ing us ing complete l i nkage) 

Let us return to the distance matrix introduced in Example 12.4: 

1 2 3 4 5 

1 0 

D = {di k } = 
2 9 0 
3 3 7 0 
4 6 5 9 0 
5 1 1  10 (l) 8 0 

At the first stage, obj ects 3 and 5 are merged, since they are most similar. This 
gives the cluster (35) .  At stage 2, we compute 

d(35 ) 1 = max {d31 , d51 } = max {3 ,  1 1 } = 1 1  
d(3s )2 = max {d32 , d52 } = 10 

d(3s )4 = max { d34 , d54 } = 9 
and the modified distance matrix becomes 

(35)  1 2 4 
(35 )  0 

1 11  0 
2 10 9 0 
4 9 6 � 0 

The next merger occurs between the most similar groups, 2 and 4, to give the 
cluster (24) . At stage 3, we have 

d(24) (35 ) = max { d2(35 ) , d4(3s ) } = max { 10, 9 } = 10 

d(24) 1 = max { d21 , d41 } = 9 
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and the distance matrix 

(35)  
(24)  

1 

The next merger produces the cluster (124). At the final stage, the groups (35) 
and (124) are merged as the single cluster (12345) at level 

d( 124) (3s ) == max { d1 (3s ) , d(24 ) (3s ) } == max { 11 ,  10} == 11  

The dendrogram is given in  Figure 12.7. 

2 4 3 

Objects 

5 Figure 1 2 .7 Com plete l i n kage 
dendrogram for d istances between 
five objects. 

• 

Comparing Figures 12.4 and 12.7, we see that the dendrograms for single link
age and complete linkage differ in the allocation of object 1 to previous groups. 

Example 1 2 .7 (Complete l i nkage c lustering of 1 1  languages) 

E 

In Example 12.5, we presented a distance matrix for numbers in 11 languages. 
The complete linkage clustering algorithm applied to this distance matrix pro
duces the dendrogram shown in Figure 12.8. 

Comparing Figures 12.8 and 12.5, we see that both hierarchical methods yield 
the English-Norwegian-Danish and the French-Italian-Spanish language groups. 
Polish is merged with French-Italian-Spanish at an intermediate level. In addi
tion, both methods merge Hungarian and Finnish only at the penultimate stage. 

N Da G Fr I Sp P Du H 

Languages 

Fi Figure 1 2 .8 Comp lete l i n kage 
dendrogram for d i stances between 
n u m bers in 1 1  l anguages. 
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However, the two methods handle German and Dutch differently. Single 
linkage merges German and Dutch at an intermediate distance, and these two 
languages remain a cluster until the final merger. Complete linkage merges 
German with the English-Norwegian-Danish group at an intermediate level. 
Dutch remains a cluster by itself until it is merged with the English-N orwe
gian-Danish-German and French-Italian-Spanish-Polish groups at a higher 
distance level. The final complete linkage merger involves two clusters. The 
final merger in single linkage involves three clusters. • 

Example 1 2 .8 (Cl uster ing variables us ing complete l i nkage) 

Data collected on 22 U.S. public utility companies for the year 1975 are listed 
in Table 12.5. Although it is more interesting to group companies, we shall see 

TABLE 1 2 .5  PUBL IC UTI LITY DATA (1 975) 

Variables 

Company xl x2 x3 x4 Xs x6 x7 Xs 

1 .  Arizona Public Service 1 .06 9.2 151 54.4 1 . 6  9077 0. .628 
2. Boston Edison Co. .89 10.3 202 57.9 2.2 5088 25 .3 1 .555 
3.  Central Louisiana Electric Co. 1 .43 15 .4 113 53.0 3.4 9212 0. 1 .058 
4. Commonwealth Edison Co. 1 .02 11 .2 168 56.0 .3 6423 34.3 .700 
5. Consolidated Edison Co. (N.Y.) 1 .49 8 .8 192 51 .2 1 .0 3300 15 .6 2.044 
6. Florida Power & Light Co. 1 .32 13 .5 1 1 1  60.0 -2.2 11 127 22.5 1 .241 
7. Hawaiian Electric Co. 1 .22 12.2 175 67.6 2.2 7642 0. 1 .652 
8. Idaho Power Co. 1 . 10  9.2 245 57.0 3.3 13082 0. .309 
9. Kentucky Utilities Co. 1 .34 13 .0 168 60.4 7.2 8406 0. .862 

10. Madison Gas & Electric Co. 1 . 12  12.4 197 53.0 2.7 6455 39.2 .623 
11 .  Nevada Power Co. .75 7.5 173 51 .5  6 .5  17441 0. .768 
12. New England Electric Co. 1 . 13  10.9 178 62.0 3.7 6154 0. 1 .897 
13 .  Northern States Power Co. 1 . 15  12.7 199 53 .7 6.4 7179 50.2 .527 
14. Oklahoma Gas & Electric Co. 1 .09 12.0 96 49 .8 1 .4  9673 0. .588 
15 .  Pacific Gas & Electric Co. .96 7.6 164 62.2 -0.1 6468 .9  1 .400 
16.  Puget Sound Power & Light Co. 1 . 16  9 . 9  252 56.0 9.2 15991 0. .620 
17. San Diego Gas & Electric Co. .76 6.4 136 61 .9 9.0 5714 8.3 1 .920 
18. The Southern Co. 1 .05 12.6 150 56.7 2.7 10140 0. 1 . 108 
19. Texas Utilities Co. 1 . 16  1 1 .7 104 54.0 -2.1 13507 0. .636 
20. Wisconsin Electric Power Co. 1 .20 11 .8  148 59.9 3 .5 7287 41 .1  .702 
21.  United Illuminating Co. 1 .04 8 .6 204 61 .0 3 .5 6650 0. 2 .116 
22. Virginia Electric & Power Co. 1 .07 9 .3 174 54.3 5 .9  10093 26.6 1 .306 

KEY: X1 : Fixed-charge coverage ratio (income/debt) . 

X2 : Rate of return on capital. 

X3 : Cost per KW capacity in place. 

X4 : Annual load factor. 

X5 : Peak kWh demand growth from 1974 to 1975. 
X6: Sales (kWh use per year) . 

X7 : Percent nuclear. 

X8 : Total fuel costs (cents per kWh) . 

Source: Data courtesy of H. E. Thompson. 
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here how the complete linkage algorithm can be used to cluster variables. We 
measure the similarity between pairs of variables by the product-moment cor
relation coefficient. The correlation matrix is given in Table 12.6. 

TABLE 1 2.6 CO RRELATIONS B ETWE E N  PAI RS OF VARIABLES  
(PU B LIC  UTI LITY DATA) 
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When the sample correlations are used as similarity measures, variables 
with large negative correlations are regarded as very dissimilar ; variables with 
large positive correlations are regarded as very similar. In this case, the "dis
tance" between clusters is measured as the smallest similarity between members 
of the corresponding clusters. The complete linkage algorithm, applied to the 
foregoing similarity matrix, yields the dendrogram in Figure 12.9 .  
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5 6 Figure 12 .9 Comp lete l i n kage 
dendrogram for s im i l a rities among 
eight ut i l ity company va r iab les .  

We see that variables 1 and 2 (fixed-charge coverage ratio and rate of re
turn on capital) , variables 4 and 8 (annual load factor and total fuel costs) ,  and 
variables 3 and 5 (cost per kilowatt capacity in place and peak kilowatthour de
mand growth) cluster at intermediate "similarity" levels. Variables 7 (percent 
nuclear) and 6 (sales) remain by themselves until the final stages. The final 
merger brings together the (12478) group and the (356) group. • 
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As in single linkage, a "new" assignment of distances (similarities) that have 
the same relative orderings as the initial distances will not change the configuration 
of the complete linkage clusters. 

Average Li nkage 

Average linkage treats the distance between two clusters as the average distance be
tween all pairs of items where one member of a pair belongs to each cluster. 

Again, the input to the average linkage algorithm may be distances or similar
ities, and the method can be used to group objects or variables. The average linkage 
algorithm proceeds in the manner of the general algorithm of (12-12) . We begin by 
searching the distance matrix D == { di k} to find the nearest (most similar) objects
for example, U and V. These objects are merged to form the cluster ( UV) . For Step 
3 of the general agglomerative algorithm, the distances between ( UV) and the other 
cluster W are determined by 

(12-15) 

where dik is the distance between object i in the cluster ( UV) and object k in the clus
ter W, and N(uv ) and Nw are the number of items in clusters ( UV) and W, respectively. 

Example 1 2 .9 (Average l i nkage c luster ing of 1 1  languages) 

10 

8 

The average linkage algorithm was applied to the "distances" between 1 1  
languages given in Example 12.5 .  The resulting dendrogram is displayed in 
Figure 12.10. 
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Figure 1 2 . 1 0  Average l i n kage 
dendrogram for d istances between 
n u m bers i n  1 1  l anguages. 

A comparison of the dendrogram in Figure 12.10 with the corresponding 
single linkage dendrogram (Figure 12.5) and complete linkage dendrogram 
(Figure 12.8) indicates that average linkage yields a configuration very much 
like the complete linkage configuration. However, because distance is defined 
differently for each case, it is not surprising that mergers take place at differ
ent levels. • 
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Example 1 2 . 1 0  (Average l i nkage c luster ing of pub l i c  uti l ities) 

An average linkage algorithm applied to the Euclidean distances between 
22 public utilities (see Table 12.1 )  produced the dendrogram in Figure 12 . 11 . 
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Figure 1 2 . 1 1  Average l i n kage dendrogram for d i stances between 2 2  pub l ic ut i l ity com pa n ies. 

Concentrating on the intermediate clusters, we see that the utility com
panies tend to group according to geographical location. For example, one in
termediate cluster contains the firms 1 (Arizona Public Service) ,  18  (The 
Southern Company-primarily Georgia and Alabama) , 19 (Texas Utilities Com
pany), and 14 (Oklahoma Gas and Electric Company). There are some excep
tions. The cluster (7, 12, 21, 15 ,  2) contains firms on the eastern seaboard and 
in the far west. On the other hand, all these firms are located near the coasts. 
Notice that Consolidated Edison Company of New York and San Diego Gas and 
Electric Company stand by themselves until the final amalgamation stages. 

It is, perhaps, not surprising that utility firms with similar locations (or 
types of locations) cluster. One would expect regulated firms in the same area 
to use, basically, the same type of fuel(s) for power plants and face common 
markets. Consequently, types of generation, costs, growth rates, and so forth 
should be relatively homogeneous among these firms. This is apparently re
flected in the hierarchical clustering. • 

For average linkage clustering, changes in the assignment of distances (simi
larities) can affect the arrangement of the final configuration of clusters, even though 
the changes preserve relative orderings. 

Ward's H iera rch ica l  C lustering Method 

Ward [29] considered hierarchical clustering procedures based on minimizing the 'loss 
of information' from joining two groups. This method is usually implemented with 
loss of information taken to be an increase in an error sum of squares criterion, ESS. 
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First, for a given cluster k, let ESSk be the sum of the squared deviations of every 
item in the cluster from the cluster mean (centroid) . If there are currently K clus
ters, define ESS as the sum of the ESSk or ESS = ESS1 + ESS2 + . . . + ESS K .  At 
each step in the analysis, the union of every possible pair of clusters is considered, 
and the two clusters whose combination results in the smallest increase in ESS 
(minimum loss of  information) are joined. Initially, each cluster consists of  a sin
gle item, and, if there are N items, ESSk = 0, k = 1, 2, . . . , N, so ESS = 0. At the 
other extreme, when all the clusters are combined in a single group of N items, the 
value of ESS is given by 

N 
ESS = 2: (x1 - x) ' (xj - x) 

j = l  

where xj is the multivariate measurement associated with the jth item and x is the 
mean of all the items. 

The results of Ward's method can be displayed as a dendrogram. The vertical 
axis gives the values of ESS at which the mergers occur. 

Ward 's method is based on the notion that the clusters of multivariate obser
vations are expected to be roughly elliptically shaped. It is a hierarchical precursor 
to nonhierarchical clustering methods that optimize some criterion for dividing data 
into a given number of elliptical groups. We discuss nonhierarchical clustering pro
cedures in the next section. Additional discussion of optimization methods of clus
ter analysis is contained in [8] . 

Example 1 2 . 1 1 (Cl uster ing pure malt scotch whiskies) 

Virtually all the world's pure malt Scotch whiskies are produced in Scotland . In 
one study (see [20] ) ,  68 binary variables were created measuring characteristics 
of Scotch whiskey that can be broadly classified as color, nose, body, palate, and 
finish. For example, there were 14 color characteristics (descriptions) ,  includ
ing white wine, yellow, very pale, pale, bronze, full amber, red, and so forth. La
Pointe and Legendre clustered 109 pure malt Scotch whiskies, each from a 
different distillery. The investigators were interested in determining the major 
types of single-malt whiskies, their chief characteristics, and the best represen
tative. In addition, they wanted to know whether the groups produced by the 
hierarchical clustering procedure corresponded to different geographical re
gions, since it is known that whiskies are affected by local soil, temperature, and 
water conditions. 

Weighted similarity coefficients { si k } were created from binary variables 
representing the presence or absence of characteristics. The resulting "dis
tances," defined as {dik = 1 - sik } , were used with Ward's method to group 
the 109 pure (single-) malt Scotch whiskies. The resulting dendrogram is shown 
in Figure 12.12. (An average linkage procedure applied to a similarity matrix 
produced almost exactly the same classification.) 

The groups labelled A-L in the figure are the 12 groups of similar Scotch
es identified by the investigators. A follow-up analysis suggested that these 12 
groups have a large geographic component in the sense that Scotches with sim
ilar characteristics tend to be produced by distilleries that are located reasonably 
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Figure 1 2 . 1 2  A dendrogram for s im i l a r ities between 1 09 pu re malt Scotch wh iskies .  

close to one another. Consequently, the investigators concluded, "The rela
tionship with geographic features was demonstrated, supporting the hypothe
sis that whiskies are affected not only by distillery secrets and traditions but 
also by factors dependent on region such as water, soil, microclimate, temper
ature and even air quality." • 
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F ina l  Comments-H iera rchical Procedures 

There are many agglomerative hierarchical clustering procedures besides single link
age, complete linkage, and average linkage. However, all the agglomerative proce
dures follow the basic algorithm of (12-12) . 

As with most clustering methods, sources of error and variation are not for
mally considered in hierarchical procedures. This means that a clustering method 
will be sensitive to outliers, or "noise points." 

In hierarchical clustering, there is no provision for a reallocation of objects that 
may have been "incorrectly" grouped at an early stage. Consequently, the final con
figuration of clusters should always be carefully examined to see whether it is sensible. 

For a particular problem, it is a good idea to try several clustering methods and, 
within a given method, a couple different ways of assigning distances (similarities) . 
If the outcomes from the several methods are (roughly) consistent with one anoth
er, perhaps a case for "natural" groupings can be advanced. 

The stability of a hierarchical solution can sometimes be checked by applying 
the clustering algorithm before and after small errors (perturbations) have been 
added to the data units. If the groups are fairly well distinguished, the clusterings 
before perturbation and after perturbation should agree. 

Common values (ties) in the similarity or distance matrix can produce multi
ple solutions to a hierarchical clustering problem. That is, the dendrograms corre
sponding to different treatments of the tied similarities (distances) can be different, 
particularly at the lower levels. This is not an inherent problem of any method; 
rather, multiple solutions occur for certain kinds of data. Multiple solutions are 
not necessarily bad, but the user needs to know of their existence so that the group
ings (dendrograms) can be properly interpreted and different groupings ( dendro
grams) compared to assess their overlap. A further discussion of this issue appears 
in [24] . 

Some data sets and hierarchical clustering methods can produce inversions. 
(See [24] .) An inversion occurs when an object joins an existing cluster at a smaller 
distance (greater similarity) than that of a previous consolidation. An inversion is rep
resented two different ways in the following diagram: 

32 30 
30 l I 32 

20 20 n 0 0 
A B c D A B c D 

(i) (ii) 
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In this example, the clustering method joins A and B at distance 20. At the next 
step, C is added to the group (AB) at distance 32. Because of the nature of the clus
tering algorithm, D is added to group (ABC) at distance 30, a smaller distance than 
the distance at which C joined (AB).  In (i) the inversion is indicated by a dendrogram 
with crossover. In (ii) , the inversion is indicated by a dendrogram with a nonmo
notonic scale. 

Inversions can occur when there is no clear cluster structure and are generally 
associated with two hierarchical clustering algorithms known as the centroid method 
and the median method. The hierarchical procedures discussed in this book are not 
prone to inversions. 

1 2 .4 NONH IERARCHICAL CLUSTER ING METHODS 

Nonhierarchical clustering techniques are designed to group items, rather than vari
ables, into a collection of K clusters. The number of clusters, K, may either be spec
ified in advance or determined as part of the clustering procedure. Because a matrix 
of distances (similarities) does not have to be determined, and the basic data do not 
have to be stored during the computer run, nonhierarchical methods can be applied 
to much larger data sets than can hierarchical techniques. 

Nonhierarchical methods start from either (1)  an initial partition of items into 
groups or (2) an initial set of seed points, which will form the nuclei of clusters. Good 
choices for starting configurations should be free of overt biases. One way to start is 
to randomly select seed points from among the items or to randomly partition the 
items into initial groups. 

In this section, we discuss one of the more popular nonhierarchical procedures, 
the K-means method. 

K-means Method 

MacQueen [22] suggests the term K-means for describing an algorithm of his that 
assigns each item to the cluster having the nearest centroid (mean) . In its simplest 
version, the process is composed of these three steps: 

1. Partition the items into K initial clusters. 

2. Proceed through the list of items, assigning an item to the cluster whose centroid 
(mean) is nearest. (Distance is usually computed using Euclidean distance with 
either standardized or unstandardized observations. ) Recalculate the centroid 
for the cluster receiving the new item and for the cluster losing the item. 

3. Repeat Step 2 until no more reassignments take place. (12-16) 

Rather than starting with a partition of all items into K preliminary groups in 
Step 1 ,  we could specify K initial centroids (seed points) and then proceed to Step 2. 

The final assignment of items to clusters will be, to some extent, dependent 
upon the initial partition or the initial selection of seed points. Experience suggests 
that most major changes in assignment occur with the first reallocation step. 
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Example 1 2 . 1 2  (Cl usteri ng us ing the K-means method) 

Suppose we measure two variables X1 and X2 for each of four items A, B, C, and 
D .  The data are given in the following table: 

Observations 

Item xl x2 

A 5 3 
B -1  1 
c 1 -2 
D -3 -2 

The obj ective is to divide these items into K = 2 clusters such that the 
items within a cluster are closer to one another than they are to the items 
in different clusters. To implement the K = 2-means method , we arbi
trarily partition the items into two clusters, such as (AB ) and ( CD ) ,  and 
compute the coordinates ( x1 , x2 ) of the cluster centroid (mean) . Thus, at 
Step 1 ,  we have 

Coordinates of centroid 

Cluster xl x2 

(AB ) 
5 + ( - 1 ) 

= 2 
3 + 1 

= 2 
2 2 

( CD )  
1 + ( -3)  

2 
= -1 

-2 + ( -2 ) 
2 

= -2 

At Step 2, we compute the Euclidean distance of each item from the group 
centroids and reassign each item to the nearest group. If an item is moved from 
the initial configuration, the cluster centroids (means) must be updated before 
proceeding. We compute the squared distances 

d2(A, (AB ) )  = (5 - 2 ) 2 + ( 3 - 2 ) 2 = 10 

d2 (A, ( CD ) ) = (5 + 1 )2 + (3 + 2)2 = 61 

Since A is closer to cluster ( AB ) than to cluster ( CD ) , it is not reassigned. Con
tinuing, we get 

d2 (B, (AB) )  = ( - 1 - 2 ) 2 + ( 1 - 2 ) 2 = 10 

d2 (B, ( CD ) ) = ( - 1 + 1 )2 + (1 + 2 ) 2 = 9 
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and, consequently, B is reassigned to cluster ( CD ) ,  giving cluster (BCD )  and the 
following updated coordinates of the centroid: 

Cluster 

A 
(BCD)  

Coordinates of centroid 

5 
-1 

3 
-1  

Again, each item is checked for reassignment . Computing the squared 
distances gives the following: 

Squared distances to 
group centroids 

Item 

Cluster A B c D 

A 0 40 41 89 
(BCD)  52 4 5 5 

We see that each item is currently assigned to the cluster with the nearest centroid 
(mean) , and the process stops. The final K = 2 clusters are A and (BCD) .  • 

To check the stability of the clustering, it is desirable to rerun the algorithm 
with a new initial partition. Once clusters are determined, intuitions concerning their 
interpretations are aided by rearranging the list of items so that those in the first clus
ter appear first, those in the second cluster appear next, and so forth. A table of the 
cluster centroids (means) and within-cluster variances also helps to delineate group 
differences. 

Example 1 2. 1 3  (K-means c luster ing of pub l i c  uti l ities) 

Let us return to the problem of clustering public utilities using the data in Table 
12.5 . The K-means algorithm for several choices of K was run. We present a 
summary of the results for K = 4 and K = 5 .  In general, the choice of a par
ticular K is not clear cut and depends upon subject-matter knowledge, as well 
as data-based appraisals. (Data-based appraisals might include choosing K so as 
to maximize the between-cluster variability relative to the within-cluster vari
ability. Relevant measures might include I W I / I B + W I [see (6-38)] and 
tr (W-1 B) . ) The summary is as follows: 



K = 4 

Cluster 

1 

2 

3 

4 

K = 5 

Cluster 

1 

2 

3 

4 

5 

Number of 
firms 

5 

6 

5 

6 

Number of 
firms 

5 

6 

5 

2 

4 
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Firms 

{ Idaho Power Co. (8) ,  Nevada Power Co. ( 11 ) ,  Puget 
Sound Power & Light Co. (16) ,  Virginia Electric & 
Power Co. (22) , Kentucky Utilities Co. (9) . 

{ 
{ 

Central Louisiana Electric Co. (3) , Oklahoma Gas & Electric 
Co. (14), The Southern Co. (18) ,  Texas Utilities Co. (19) ,  
Arizona Public Service (1) ,  Florida Power & Light Co. (6) . 
New England Electric Co. (12), Pacific Gas & Electric 
Co. (15) ,  San Diego Gas & Electric Co. (17), 
United Illuminating Co. (21) ,  Hawaiian Electric Co. (7) . 

Consolidated Edison Co. (N.Y. ) (5), Boston Edison Co. 
(2) , Madison Gas & Electric Co. (10) ,  Northern States 
Power Co. (13) ,  Wisconsin Electric Power Co. 
(20) ,  Commonwealth Edison Co. (4) . 

Distances between Cluster Centers 

1 
1 0 

2 

2 3 .08 0 

3 4 

3 3 .29 3 .56 0 
4 3 .05 2.84 3 . 18  0 

Firms 

{ Nevada Power Co. (11) ,  Puget Sound Power & Light 
Co. (16) ,  Idaho Power Co. (8), Virginia Electric & Power Co. 
(22) , Kentucky Utilities Co. (9) .  

{ 
{ 
{ 
{ 

Central Louisiana Electric Co. (3) , Texas Utilities Co. (19) ,  
Oklahoma Gas & Electric Co. (14) ,  The Southern Co. 
(18) ,  Arizona Public Service (1 ), Florida Power & Light Co. ( 6) .  

New England Electric Co. (12) ,  Pacific Gas & Electric 
Co. (15) ,  San Diego Gas & Electric Co. (17), United 
Illuminating Co. (21 ) ,  Hawaiian Electric Co. (7) .  

Consolidated Edison Co. (N.Y. ) (5), Boston 
Edison Co. (2) . 

Commonwealth Edison Co. ( 4) , Madison Gas & Electric Co. (10) ,  
Northern States Power Co. (13) ,  Wisconsin Electric Power Co. (20) .  
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Distances between Cluster Centers 

1 2 3 4 5 

1 0 
2 3.08 0 
3 3.29 3.56 0 
4 3 .63 3 .46 2.63 0 

5 3 . 18  2.99 3 .81 2.89 0 

The cluster profiles (K == 5 )  shown in Figure 12. 13 order the eight vari
ables according to the ratios of their between-cluster variability to their within
cluster variability. [For univariate F-ratios, see Section 6.4.] We have 

mean square percent nuclear between clusters 3.335 
Fnuc == . . == -- == 13 .1  

mean square percent nuclear within clusters .255 

so firms within different clusters are widely separated with respect to percent 
nuclear, but firms within the same cluster show little percent nuclear variation. 
Fuel costs (FUELC) and annual sales (SALES) also seem to be of some im
portance in distinguishing the clusters. 

Reviewing the firms in the five clusters, it is apparent that the K-means 
method gives results generally consistent with the average linkage hierarchical 
method. (See Example 12.10.) Firms with common or compatible geographi
cal locations cluster. Also, the firms in a given cluster seem to be roughly the 
same in terms of percent nuclear. • 

We must caution, as we have throughout the book, that the importance of 
individual variables in clustering must be judged from a multivariate perspective. All 
of the variables (multivariate observations) determine the cluster means and the re
assignment of items. In addition, the values of the descriptive statistics measuring 
the importance of individual variables are functions of the number of clusters and the 
final configuration of the clusters. On the other hand, descriptive measures can be 
helpful, after the fact, in assessing the "success" of the clustering procedure. 

F ina l  Comments-Nonhierarchical Procedures 

There are strong arguments for not fixing the number of clusters, K, in advance, in
cluding the following: 

1. If two or more seed points inadvertently lie within a single cluster, their result
ing clusters will be poorly differentiated. 

2. The existence of an outlier might produce at least one group with very dis
perse items. 

3. Even if the population is known to consist of K groups, the sampling method 
may be such that data from the rarest group do not appear in the sample. Forc
ing the data into K groups would lead to nonsensical clusters. 
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Cluster profiles-variables are ordered by F-ratio size 
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Total fuel costs 
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Cost per KW capacity in place 
Annual load factor 
Peak kWh demand growth 
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Fixed-charge coverage ratio 
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Figure 1 2 . 1 3  C lu ster p rofi l es ( K = 5 )  for p u b l i c  uti l i ty data. 
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In cases where a single run of the algorithm requires the user to specify K, it  is  
always a good idea to rerun the algorithm for several choices. 

Discussions of other nonhierarchical clustering procedures are available in [3] , 
[8] , and [15] . 

1 2 . 5  MULTID IMENSIONAL SCALI NG 

This section begins a discussion of methods for displaying (transformed) multivari
ate data in low-dimensional space. We have already considered this issue when we 
discussed plotting scores on, say, the first two principal components or the scores on 
the first two linear discriminants. The methods we are about to discuss differ from 
these procedures in the sense that their primary objective is to "fit" the original data 
into a low-dimensional coordinate system such that any distortion caused by a re
duction in dimensionality is minimized. Distortion generally refers to the similarities 
or dissimilarities (distances) among the original data points. Although Euclidean 
distance may be used to measure the closeness of points in the final low-dimensional 
configuration, the notion of similarity or dissimilarity depends upon the underlying 
technique for its definition. A low-dimensional plot of the kind we are alluding to is 
called an ordination of the data. 

Multidimensional scaling techniques deal with the following problem: For a set 
of observed similarities (or distances) between every pair of N items, find a repre
sentation of the items in few dimensions such that the interitem proximities "nearly 
match" the original similarities (or distances) . 

It may not be possible to match exactly the ordering of the original similarities 
(distances) . Consequently, scaling techniques attempt to find configurations in 
q < N - 1 dimensions such that the match is as close as possible. The numerical 
measure of closeness is called the stress. 

It is possible to arrange the N items in a low-dimensional coordinate system 
using only the rank orders of the N(N - 1 )/2 original similarities (distances) , and 
not their magnitudes. When only this ordinal information is used to obtain a geo
metric representation, the process is called nonmetric multidimensional scaling. If 
the actual magnitudes of the original similarities (distances) are used to obtain a 
geometric representation in q dimensions, the process is called metric multidimen
sional scaling. Metric multidimensional scaling is also known as principal coordinate 
analysis . 

Scaling techniques were developed by Shepard (see [26] for a review of early 
work),  Kruskal [17, 18 ,  19] ,  and others. A good summary of the history, theory, and 
applications of multidimensional scaling is contained in [32] . Multidimensional scal
ing invariably requires the use of a computer, and several good computer programs 
are now available for the purpose. 

The Basic Algorithm 

For N items, there are M == N ( N - 1 )  /2 similarities (distances) between pairs of 
different items. These similarities constitute the basic data. (In cases where the sim
ilarities cannot be easily quantified as, for example, the similarity between two col
ors, the rank orders of the similarities are the basic data. )  
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Assuming no ties, the similarities can be arranged in a strictly ascending order as 

(12-17) 

Here si1 k1 is the smallest of the M similarities. The subscript i1 k1 indicates the pair of 
items that are least similar-that is, the items with rank 1 in the similarity ordering. 
Other subscripts are interpreted in the same manner. We want to find a q-dimensional 
configuration of the N items such that the distances, d}j} , between pairs of items 
match the ordering in (12-17) . If the distances are laid out in a manner correspond
ing to that ordering, a perfect match occurs when 

d �q ) > d �q) > 0 0 0 > d(q) l l kl l2k2 lMkM (12-18) 
That is, the descending ordering of the distances in q dimensions is exactly analogous 
to the ascending ordering of the initial similarities. As long as the order in (12-18) is 
preserved, the magnitudes of the distances are unimportant . 

For a given value of q, it may not be possible to find a configuration of points 
whose pairwise distances are monotonically related to the original similarities. 
Kruskal [17] proposed a measure of the extent to which a geometrical representation 
falls short of a perfect match. This measure, the stress, is defined as 

Stress ( q) = (12-19) 

The d�%) 's in the stress formula are numbers kflown to satisfy (12-18) ; that is, they are 
monotonically related to the similarities. The d�Z) 's are not distances in the sense that 
they satisfy the usual distance properties of (1-25) .  They are merely reference num
bers used to judge the nonmonotonicity of the observed d�Z) 's. 

The idea is to find a representation of the items as points in q-dimensions such 
that the stress is as small as possible. Kruskal [17] suggests the stress be informally 
interpreted according to the following guidelines: 

Stress Goodness of fit 

20% Poor 
10% Fair 
5% Good (12-20) 

2.5% Excellent 
0% Perfect 

Goodness of fit refers to the monotonic relationship between the similarities and the 
final distances. 

A second measure of discrepancy, introduced by Takane et al. [28] , is becoming 
the preferred criterion,.: For a given dimension q, this measure, denoted by SStress, 
replaces the di k's and di k's in (12-19) by their squares and is given by 

L L  (dfk - drk )
2 1/2 

SStress = i< k 
(12-21) 
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The value of SStress is always between 0 and 1 .  Any value less than . 1  is typically 
taken to mean that there is a good representation of the objects by the points in the 
given configuration. 

Once items are located in q dimensions, their q X 1 vectors of coordinates can 
be treated as multivariate observations. For display purposes, it is convenient to rep
resent this q-dimensional scatter plot in terms of its principal component axes. (See 
Chapter 8.) 

We have written the stress measure as a function of q, the number of dimensions 
for the geometrical representation. For each q, the configuration leading to the min
imum stress can be obtained. As q increases, minimum stress will, within rounding 
error, decrease and will be zero for q == N - 1 .  Beginning with q == 1 ,  a plot of these 
stress(q) numbers versus q can be constructed. The value of q for which this plot be
gins to level off may be selected as the "best" choice of the dimensionality. That is, 
we look for an "elbow" in the stress-dimensionality plot. 

The entire multidimensional scaling algorithm is summarized in these steps: 

1. For N items, obtain the M == N ( N - 1 )  /2 similarities (distances) between dis
tinct pairs of items. Order the similarities as in (12-17) . (Distances are ordered 
from largest to smallest .) If similarities (distances) cannot be computed, the 
rank orders must be specified. 

2. Using a trial configuration in q dimensions, determine the interitem distances 
di%) and numbers JiZ) , where the latter satisfy (12-18) and minimize the stress 
(12-19) or SStress (12-21 ) .  (The JiZ) are frequently determined within scaling 
computer programs using regression methods designed to produce monotonic 
"fitted" distances. ) 

3. Using the JiZ) 's, move the points around to obtain an improved configuration. 
(For q fixed, an improved configuration is determined by a general function 
minimization procedure applied to the stress. In this context, the stress is re
garded as a function of the N x,.. q coordinates of the N items. ) A new config
uration will have new diZ) 's new df/) 's and smaller stress. The process is repeated 
until the best (minimum stress) representation is obtained. 

4. Plot minimum stress(q) versus q and choose the best number of dimensions, 
q* ,  from an examination of this plot . (12-22) 

We have assumed that the initial similarity values are symmetric ( si k == sk z ) , 

that there are no ties, and that there are no missing observations. Kruskal [17 , 18] has 
suggested methods for handling asymmetries, ties, and missing observations. In ad
dition, there are now multidimensional scaling computer programs that will handle 
not only Euclidean distance, but any distance of the Minkowski type. [See (12-3) . ]  

The next three examples illustrate multidimensional scaling with distances as the 
initial (dis )similarity measures. 

Example 1 2 . 1 4  (Mu ltid imensional sca l ing of U .S .  cities) 

Table 12.7 displays the airline distances between pairs of selected U.S. cities. 
Since the cities naturally lie in a two-dimensional space (a nearly level part 

of the curved surface of the earth), it is not surprising that multidimensional scal
ing with q == 2 will locate these items about as they occur on a map. Note that 



._,... 
0 w 

TABLE 1 2.7  AIRLI N E-D I STANCE  DATA 

Atlanta Boston Cincinnati Columbus Dallas Indianapolis Little Rock Los Angeles Memphis St. Louis Spokane Tampa 
(1 )  (2) (3) (4) (5) (6) (7) (8) (9) (10) ( 11 )  (12) 

(1)  0 

(2) 1068 0 

(3) 461 867 0 

(4) 549 769 107 0 

(5) 805 1819 943 1050 0 

(6) 508 941 108 172 882 0 

(7) 505 1494 618 725 325 562 0 

(8) 2197 3052 2186 2245 1403 2080 1701 0 

(9) 366 1355 502 586 464 436 137 1831  0 

(10) 558 1178 338 409 645 234 353 1848 294 0 

(11 )  2467 2747 2067 2131 1891 1 959 1988 1227 2042 1820 0 

(12) 467 1379 928 985 1077 975 912 2480 779 1016 2821 0 
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Figure 1 2 . 1 4  A geometrical representat ion of  cit ies prod uced by mu lt id imens iona l  sca l i n g .  

if the distances in the table are ordered from largest to  smallest-that is, from a 
least similar to most similar-the first position is occupied by dBoston, 

L.A. == 3052. 
A multidimensional scaling plot for q == 2 dimensions is shown in Figure 

12.14.  The axes lie along the sample principal components of the scatter plot. 
A plot of stress(q) versus q is shown in Figure 12.15 on page 705 . Since 

stress ( 1 ) X 100% == 12%, a representation of the cities in one dimension (along 
a single axis) is not unreasonable. The "elbow" of the stress function occurs at 
q == 2. Here stress (2 ) X 100% == 0.8%, and the "fit" is almost perfect. 

The plot in Figure 12 .15 indicates that q == 2 is the best choice for the 
dimension of the final configuration. Note that the stress actually increases 
for q == 3. This anomaly can occur for extremely small values of stress be
cause of difficulties with the numerical search procedure used to locate the 
minimum stress. • 

Example 1 2 . 1 5 (Mu lt id imensional sca l i ng  of pub l i c  uti l ities) 

Let us try to represent the 22 public utility firms discussed in Example 12.8 as 
points in a low-dimensional space. The measures of (dis )similarities between 
pairs of firms are the Euclidean distances listed in Table 12. 1 .  Multidimensional 
scaling in q = 1 ,  2, . . .  , 6 dimensions produced the stress function shown in Fig
ure 12. 16 .  

The stress function in Figure 12.16 has no sharp elbow. The plot appears 
to level out at "good" values of stress (less than or equal to 5% ) in the neigh
borhood of q == 4. A good four-dimensional representation of the utilities is 
achievable, but difficult to display. We show a plot of the utility configuration 
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Figure 1 2 . 1 7  A geometr ica l  representat ion o f  ut i l it ies produced by m u lt id imens iona l  sca l i ng .  

obtained in q = 2 dimensions in Figure 12.17. The axes lie along the sample 
principal components of the final scatter. 

Although the stress for two dimensions is rather high (stress 
(2) X 100% = 19%),  the distances between firms in Figure 12.17 are not wild
ly inconsistent with the clustering results presented earlier in this chapter. 
For example, the midwest utilities-Commonwealth Edison, Wisconsin Elec
tric Power (WEPCO) ,  Madison Gas and Electric (MG & E), and Northern 
States Power (NSP)-are close together (similar) . Texas Utilities and Okla
homa Gas and Electric (Ok. G & E) are also very close together (similar) . 
Other utilities tend to group according to geographical locations or similar 
environments. 

The utilities cannot be positioned in two dimensions such that the in
terutility distances d��) are entirely consistent with the original distances in Table 
12. 1 .  More flexibility for positioning the points is required, and this can only be 
obtained by introducing additional dimensions. • 

Example 1 2. 1 6  {Mu ltid i mensional sca l i ng of un iversities) 

Data related to 25 U.S. universities are given in Table 12.9 on page 722. (See 
Example 12. 19 . )  These data give the average SAT score of entering freshmen, 
percent of freshmen in top 10% of high school class, percent of applicants 
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Figure 12 . 18 A two-d imens iona l  representat ion of u n iversit ies produced by metric 
mu lt i d imens iona l  sca l i ng .  

accepted, student-faculty ratio, estimated annual expense, and graduation rate 
(%) .  A metric multidimensional scaling algorithm applied to the standardized 
university data gives the two-dimensional representation shown in Figure 12.18. 
Notice how the private universities cluster on the right of the plot while the 
large public universities are, generally, on the left. A nonmetric multidimen
sional scaling two-dimensional configuration is shown in Figure 12.19 .  For this 
example, the metric and nonmetric scaling representations are very similar, 
with the two dimensional stress value being approximately 10% for both 
scalings. • 

Classical metric scaling, or principal coordinate analysis, is equivalent to plot
ing the principal components. Different software programs choose the signs of the 
appropriate eigenvectors differently, so at first sight, two solutions may appear to be 
different. However, the solutions will coincide with a reflection of one or more of the 
axes. (See [23] . )  
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Figure 12 . 19  A two-d imens iona l  representat ion of u n ive rsities produced by non metric 
m u lt id imens iona l  sca l i ng .  

To summarize, the key objective of  multidimensional scaling procedures i s  a 
low-dimensional picture. Whenever multivariate data can be presented graphically 
in two or three dimensions, visual inspection can greatly aid interpretations. 

When the multivariate observations are naturally numerical, and Euclidean dis
tances in p-dimensions, d�f) , can be computed, we can seek a q < p-dimensional rep
resentation by minimizing 

(12-23) 

In this alternative approach, the Euclidean distances in p and q dimensions are com
pared directly. Techniques for obtaining low-dimensional representations by mini
mizing E are called nonlinear mappings. 

The final goodness of fit of any low-dimensional representation can be de
picted graphically by minimal spanning trees . (See [15] for a further discussion of 
these topics. ) 
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Developed by the French, correspondence analysis is a graphical procedure for rep
resenting associations in a table of frequencies or counts. We will concentrate on a 
two-way table of frequencies or contingency table. If the contingency table has I rows 
and I columns, the plot produced by correspondence analysis contains two sets of 
points: A set of I points corresponding to the rows and a set of I points correspond
ing to the columns. The positions of the points reflect associations. 

Row points that are close together indicate rows that have similar profiles (con
ditional distributions) across the columns. Column points that are close together in
dicate columns with similar profiles (conditional distributions) down the rows. Finally, 
row points that are close to column points represent combinations that occur more 
frequently than would be expected from an independence model-that is, a model in 
which the row categories are unrelated to the column categories. 

The usual output from a correspondence analysis includes the "best" two
dimensional representation of the data, along with the coordinates of the plotted 
points, and a measure (called the inertia) of the amount of information retained in 
each dimension. 

Before briefly discussing the algebraic development of contingency analysis, it 
is helpful to illustrate the ideas we have introduced with an example. 

Example 1 2 . 1 7  (Correspondence ana lys is of archaeo logica l  data) 

Table 12.8 contains the frequencies (counts) of I = 4 different types of pot
tery (called potsherds) found at I = 7 archaeological sites in an area of the 
American Southwest. If we divide the frequencies in each row (archaeolog
ical site) by the corresponding row total, we obtain a profile of types of pot
tery. The profiles for the different sites (rows) are shown in a bar graph in 
Figure 12.20 (a) . The widths of the bars are proportional to the total row fre
quencies. In general, the profiles are different; however, the profiles for sites 
P1 and P2 are similar, as are the profiles for sites P4 and P5 . 

TABLE 1 2.8 FREQ U E NC IES  OF TYPES OF POTTERY 

Type 

Site A B c D Total 

PO 30 10 10 39 89 
P1 53 4 16 2 75 
P2 73 1 41 1 116  
P3 20 6 1 4 31 
P4 46 36 37 13 132 
P5 45 6 59 10 120 
P6 16 28 169 5 218 

Total 283 91 333 74 781 

Source: Data courtesy of M. J. Tretter. 
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Figure 1 2 .20 Site and pottery type profi les fo r the data i n  Tab le  1 2 .8. 
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The archaeological site profiles for different types of pott�ry (columns) are 
shown in a bar graph in Figure 12.20(b ) .  The site profiles are �onstructed using 
the column totals. The bars in the figure appear to be quite different from one 
another. This suggests that the various types of pottery are not distributed over 
the archaeological sites in the same way. 

The two-dimensional plot from a correspondence analysis2 of the pottery 
type-site data is shown in Figure 12.21 . 

The plot in Figure 12.21 indicates, for example, that sites P1 and P2 have 
similar pottery type profiles (the two points are close together), and sites PO 
and P6 have very different profiles (the points are far apart) .  The individual 
points representing the types of pottery are spread out, indicating that their ar
chaeological site profiles are quite different. These findings are consistent with 
the profiles pictured in Figure 12.20. 

Notice that the points PO and D are quite close together and separated 
from the remaining points. This indicates that pottery type D tends to be asso
ciated, almost exclusively, with site PO. Similarly, pottery type A tends to be as
sociated with site P1 and, to lesser degrees, with sites P2 and P3. Pottery type B 
is associated with sites P4 and P5, and pottery type C tends to be associated, 
again, almost exclusively, with site P6. Since the archaeological sites represent 
different periods, these associations are of considerable interest to archaeologists. 

The number AI = .28 at the end of the first coordinate axis in the two
dimensional plot is the inertia associated with the first dimension. This inertia 
is 55% of the total inertia. The inertia associated with the second dimension is 
A� = . 17 ,  and the second dimension accounts for 33% of the total inertia. 
Together, the two dimensions account for 55% + 33% = 88% of the total 

2The JMP software was used for a correspondence analysis of the data in Table 12.8. 
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Figure 1 2 .21 A correspondence ana lysis p lot of the potte ry type-site data. 

inertia. Since, in this case, the data could be exactly represented in three di
mensions, relatively little information (variation) is lost by representing the data 
in the two-dimensional plot of Figure 12.21 . Equivalently, we may regard this 
plot as the best two-dimensional representation of the multidimensional scat
ter of row points and the multidimensional scatter of column points. The com
bined inertia of 88% suggests that the representation "fits" the data well. 

In this example, the graphical output from a correspondence analysis 
shows the nature of the associations in the contingency table quite clearly. • 

Algebraic Development of Correspondence Analysis 

To begin, let X, with elements xij , be an I X J two-way table of unsealed frequencies 
or counts. In our discussion we take I > J and assume that X is of full column rank J .  
The rows and columns of  the contingency table X correspond to  different categories 
of two different characteristics. As an example, the array of frequencies of different 
pottery types at different archaeological sites shown in Table 12.8 is a contingency 
table with I == 7 archaeological sites and J == 4 pottery types. 

If n is the total of the frequencies in the data matrix X, we first construct a ma
trix of proportions P = {Pij} by dividing each element of X by n. Hence 

X · · l 1 Pij = - , 
n 

i == 1 , 2, . . .  , I , j = 1 ,  2, . . .  , J ,  or 

The matrix P is called the correspondence matrix. 

1 p = - X ( ! X I ) n ( ! XI ) (12-24) 
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Next define the vectors of row and column sums r and c respectively, and the 
diagonal matrices Dr and De with the elements of r and c on the diagonals. Thus 

I I X · . 
ri = :L Pij = :L _!_!_ ,  j= 1 j= 1 n 

i = 1 , 2, . . . , I , or r = P 1I 

I I X · . 

( I X 1 ) ( I X I ) (I X 1 ) 

cj = :L Pij = :L _!_!_ ,  i= 1 i= 1 n 
j = 1 , 2, . . . , 1 , or c = P' 1I 

( J X 1 ) (IX J ) ( I X 1 ) 

where 1I is a J X 1 and 1I is a I X 1 vector of 1 's and 

Dr = diag ( r1 , r2 , . . .  , ri ) and De = diag (c1 , c2 , . . .  , ci ) 
We define the square root matrices 

D;;2 = diag ( vr;-, . . .  , VY;) 

D�l2 = diag ( ve;-, . . . , \10) 
for scaling purposes. 

-1/2 -
. (-1 

_
1 ) 

D, - d1ag 
� c , . . . , � c � r1 v ri 
I 

-1/2 - . (/-1 
_

1 ) 
De - dtag ye;- ,  . . .  , \10 

(12-25 ) 

(12-26) 

(12-27) 

Corresp9ndence analysis can be formulated as the weighted least squares prob
lem to select P = {Pij} ,  a matrix of specified reduced rank, to minimize 

(12-28) 

since (Pij - Pij )!vr:c; is the ( i , j) element of D�112 (P - P) D�112 . 
" 

As Result 12.1 demonstrates, the term rc ' is commoll to the approximation P 
whatever the I X J correspondence matrix P. The matrix P = rc ' can be shown to 
be the best rank 1 approximation to P. 

" 

Result 12.1. The term rc' is common to the approximation P whatever the 
I X J correspondence matrix P. 

The reduced rank s approximation to P, which minimizes the sum of squares 
(12-28), is given by 

s s 
p . :L Ak(D;I2uk ) (D�I2vk ) ' = rc ' + :L Ak(D;I2uk ) (D�I2vk ) ' k= 1 k=2 

where the Ak are the singular values and the I X 1 vectors uk and the J X 1 vectors 
vk are the corresponding singular vectors of the I X J matrix D�112PD�112 . The 

I 
minimum value of (12-28) is :L Ak .  

k= s + 1 
The reduced rank K > 1 approximation to P - rc' is 

K 
P - rc ' . :L Ak(D;I2uk ) (D�I2vk ) ' k= 1 

(12-29) 
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where the Ak are the singular values and the I X 1 vectors uk and the J X 1 vectors 
vk are the corresE._9nding singular vectors of the I X J matrix D�112 (P - rc ' ) D�112 • 

Here Ak = Ak+ 1 , uk = uk+ 1 , and vk = vk+ 1 for k = 1 ,  . . .  , 1  - 1 . 

Proof. We first consider a scaled version B = D�112PD�112 of the correspon
dence matrix P. According to Result 2A.16 ,  the best low rank = s approximation B 
to D�112PD�112 is given by the first s terms in the the singular-value decomposition 

where 

and 

I 
D-1/2pn-1/2 = " � r-.J r-.J, r c ..L.J llkllkVk 

k= 1 

r-.J, n-1/2pn-1/2 = � r-.J, Uk r C Ilk V k 

1 (D�112PD�112 ) (D�112PD�112 ) ' - A� I 1 = o for k = 1 ,  . . .  , J 

The approximation to P is then given by 

I 
and, by Result 2A.16 ,  the error of approximation is 2: A� .  

k=s+ 1 

(12-30) 

(12-3 1 )  

Whatever the correspondence matrix P, the term rc ' always provides a (the 
best) rank one approximation. This corresponds to the assumption of independence 
of the rows and columns. To see this, let u1 = n;/21/ and vl = DY21I , where 1/ is a 
I X 1 and 1I a J X 1 vector of 1 's. We verify that (12-31 )  holds for these choices. 

and 

That is, 

n! (D�112pn�1;2 ) = (n;1211 ) ' (D�1!2pn�1;2 ) 

= f/pn-1/2 = c ' n-1/2 c c 

(n-1/2pn-1f2 ) v = (n-1/2pn-1f2 ) (D 1121 ) r c 1 r c c J 

( r-.J r-.J ) - (D1f21 D1f21 ) ll1 , V 1 - r I '  c 1 
r-.J 

(12-32) 

are singular vectors associated with singular value A1 = 1. For any correspondence 
matrix, P, the common term in every expansion is 

n;l2u1v1D�I2 = Dr11fiDc = rc ' 
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Therefore, we have established the first approximation and (12-30) can always be ex
pressed as 

I 
p = rc ' + � Ak(n;l2uk ) (DY2vk ) ' 

k=2 

Because of the common term, the problem can be rephrased in terms of P - rc' 
and its scaled version D�112 (P  - rc ' ) D�1/2 • By the orthogonality of the singular vec
tors of n-112PD-112 we have u' (D1121 ) = 0 and v' (D1121 ) = 0 for k > 1 so r c '  k r 1 k c J ' ' 

I 
n-112 (P  - rc' )  n-1;2 = " A u v' r c � k k k 

k=2 

is the singular-value decomposition of D�112(P  - rc' ) D�1/2 in terms of the singular val
ues and vectors obtained from D � 1/2 PD � 1/2 • Converting to singular values and vectors Ak , 
uk , and vk from D�1/2 (P - rc ' ) D�1/2 only amounts to changing k to k - 1 so Ak = Ak+ 1 ,  
uk = uk+ 1 ' and vk = vk+ 1 for k = 1 ,  . . .  ' J - 1 .  -

In terms of the singular value decomposition for �f/2(P - rc' ) D�112 , the ex
pansion for P - rc ' takes the form 

I - 1  
P - rc' = � Ak (n;l2uk ) (DY2vk ) ' (12-33) 

k= 1 
K 

The best rank K approximation to D�112(P  - rc ' ) D�1/2 is given by � Akukvk . Then, 
the best approximation to P - rc ' is k= 1 

K 
P - rc' - � Ak (D;I2uk ) (D�I2vk ) ' 

k= 1 
(12-34) 

• 

Remark. Note that the vectors n;l2uk and D�l2vk in the expansion (12-34) of 
P - rc ' need not have length 1 but satisfy the scaling 

(D112u ) 'D-1 (D112u ) = u' u = 1 r k r r k k k  
(D112v ) 'D-1 (D112v ) = v' v = 1 c k c c k k k  

Because of this scaling, the expansions in Result 12.1 have been called a generalized 
singular-value decomposition. 

Let A, U = [ u1 , . . .  , u1 ] and V = [ v1 , . . .  , vi J be the matricies of singular values 
and vectors obtained from D�112 (P  - rc ' )  D�112 • It is usual in correspondence analy
sis to plot the first two or three columns of F = D�1 (D;I2U) A and 
G = D�1 (D�I2V) A or AkD�112uk and AkD�1/2vk for k = 1, 2, and maybe 3 .  

The joint plot of the coordinates in F and G is called a symmetric map (see 
Greenacre [13]) since the points representing the rows and columns have the same 
normalization, or scaling, along the dimensions of the solution. That is, the geome
try for the row points is identical to the geometry for the column points. 
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Example 1 2 . 1 8  (Ca lcu lations for Correspondence Analysis) 

Consider the 3 X 2 contingency table 

B1 B2 Total 

Al 24 12 36 
A2 16 48 64 
A3 60 40 100 

100 100 200 

The correspondence matrix is [ . 12 .06 ] 
p = .08 .24 

.30 .20 
with marginal totals c ' 

= [ .5, .5 ] and r ' 
= [ .18 , .32, .50 ] . The negative square 

root matrices are 

Then 

D� 112 = diag ( vlj .6 , vlj .8, vl) D�1/2 = diag ( v2 ,  vl) 

[ .12 .06 ] [ .18 ] [ .03 - .03 ] 
P - rc ' 

= .08 .24 - .32 [ . 5 .5] = - .08 .08 
.30 .20 .50 .05 - .05 

The scaled version of this matrix is 

v2 0 0 .6 
A = D�112(P  - rc ' ) D�112 = 0 v2 0 .8 

0 0 v2 [ 0 .1 -0.1 ] 
= -0.2 0.2 

0.1 -0.1 

[ .03 
- .08 

"\ .05 
- .03 ] [ v2 .08 0 - .05 

�] 

Since I > J, the square of the singular values and the vi are determined from 

A'A = - .2 .2 = 
[ . 1 - .2 . 1 ] [ ·1 - ·1 ] [ .06 - .06] 
- .1 .2 - .1 .1 - .1 - .06 .06 
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It is easily checked that AI = . 12, A� = 0, since J - 1 = 1 ,  and that 

Further, 

AA' = - .2 .2 _ .l [ . 1  -
.

1 ] [ . 1  - . 1  
• 1 

1 

V2 
-1  

V2 

- .2 . 1 ] -
[
-
·02 - .04 _ .02 ] 

- .04 .08 .04 .2 -.1  .02 - .04 .02 
A computer calculation confirms that the single nonzero eigenvalue is 
AI = .12, so that the singular value has absolute value A1 = .2\13 and, as you 
can easily check, 

1 

v'6 
2 

- -
v'6 
1 

v'6 

The expansion of P - rc ' is then the single term 

A (D112u ) (D 112v ) ' 1 r 1 c 1 

.6  -
V2 

= Y.I2 0 

0 

0 
. 8  -

V2 

0 

0 1 -
v'6 

[� �] 0 2 
- -

v'6 
1 1 - -

V2 v'6 

.3 
v'3 
. 8  

- -
\13 
.5  

- - = - .08 .08 [ 1 -1 ] [ .03 - .03 ] 
2 2 .05 - .05 

v'3 

1 - 0 
V2 

1 0 -
V2 

check 
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There is only one vector t o  plot 

.6 
0 0 

1 .3 
- - -

v'2 v'6 vJ 

A1D;12u1 == VI2 .8  2 
== VI2 .8  

0 - 0 - - - -

v'2 v'6 vJ 

0 
1 1 .5 

0 - - -

v'2 v'6 vJ 

and 

1 1 1 
- 0 -

A1D�I2v1 == Y.I2 v'2 v'2 == VI2 2 

1 - 1  1 
0 - -

v'2 v'2 2 • 

There is a second way to define contingency analysis. Following Greenacre 
[13] , we call the preceding approach the matrix approximation method and the ap
proach to follow the profile approximation method. We illustrate the profile 
approximation method using the row profiles; however, an analogous solution re
sults if we were to begin with the column profiles. 

Algebraically, the row profiles are the rows of the matrix D�1P, and contin
gency analysis can be defined as the approximation of the row profiles by points in 
a low-dimensional space. Consider approximating the row profiles by the matrix P* . 
Using the square-root matrices n;/2 and DY2 defined in (12-27) ,  we can write 

(n-1 P _ P* ) n-1;2 == n-1/2(n-1/2p _ D1;2P* ) n-1;2 
r c r r r c 

and the least squares criterion (12-28) can be written, with p1} == pi1 jri ,  as 

== tr [D1f2 (n-1/2p _ D1;2P* ) n-1/2n-1/2 (n-1/2p _ n1/2P* ) 'n-1f2 J r r r c c r r r 

(12-35) 

Minimizing the last expression for the trace in (12-35) is precisely the first min
imization problem treated in the proof of Result 12. 1 .  By (12-30) , D�112PD�1/2 has the 
singular-value decomposition 

I 
D�1;2PD�1;2 == � A'kuk vk k= 1 

(12-36) 
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The best rank K approximation is obtained by using the first K terms of this expan
sion. Since, by (12-35) ,  we have D�112PD�I2 approximated by o;12P*D�1/2 , we left 
multiply by D�112 and right multiply by D�/2 to obtain the generalized singular-value 
decomposition 

I 
n�1 P = L AkD�1;2uk(n�l2vk ) ' (12-37) 

k= 1 
where, from (12-32) , (u1 , v1 ) = (o;/211 , DY211 ) are singular vectors associated with 
singular value A1 = 1 .  Since D�112 (D;;211 ) = 11 and (D�/211 ) 'D�/2 = c' , the leading 
term in the decomposition (12-37) is 11c ' . 

Consequently, in terms of the singular values and vectors from D�112PD�112 , the 
reduced rank K < J approximation to the row profiles D�1 P is 

K 
P* · l1c ' + L AkD�112uk (D�I2vk ) ' (12-38) 

k=2 
In terms of the singular values and vectors Ak , uk and vk obtained from 
o-112 (P - rc ' ) D-112 we can write r c ' 

K-1 
P* - 11 c ' · L AkD�112uk (D�I2vk ) ' 

k= 1 
(Row profiles for the archaeological data in Table 12.8 are shown in Figure 12.20.) 

Inertia 

Total inertia is a measure of the variation in the count data and is defined as the 
weighted sum of squares 

where the Ak are the singular values obtained from the singular-value decomposition 
of D�112 (P  - rc' )  D�1/2 (see the proof of Result 12. 1 ) . 3 

The inertia associated with the best reduced rank K < J approximation to the 
K 

centered matrix P - rc' (the K-dimensional solution) has inertia L A� . The residual 
k= 1 

inertia (variation) not accounted for by the rank K solution is equal to the sum of 
squares of the remaining singular values: Ak+ 1 + Ak+2 + . . . + A}_ 1 . For plots, the 
inertia associated with dimension k, A� , is ordinarily displayed along the kth coordi
nate axis, as in Figure 12.21 for k = 1 ,  2. 

3Total inertia is related to the chi-square measure of association in a two-way contingency table, 
2 (Ot; - Et ; )  

X2 = _L E . Here 01 1 = x1 1 is the observed frequency and E11 is the expected frequency for the 
l , j l J 

ijth cell. In our context, if the row variable is independent of (unrelated to) the column variable, 
E1 1 = nr1 c1 , and 

n 
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I nterpretation  i n  Two Di mensions 

Since the inertia is a measure of the data table 's total variation, how do we interpret 
1 - 1 

a large value for the proportion ( "-I + A� )/ L Ak ? Geometrically, we say that the 
k = l 

associations in the centered data are well represented by points in a plane, and this 
best approximating plane accounts for nearly all the variation in the data beyond 
that accounted for by the rank 1 solution (independence model) . Algebraically, we 
say that the approximation 

is very good or, equivalently, that 

F ina l  Comments 

Correspondence analysis is primarily a graphical technique designed to represent as
sociations in a low-dimensional space. It can be regarded as a scaling method, and 
can be viewed as a complement to other methods such as multidimensional scaling 
(Section 12.5) and biplots (Section 12.7) . Correspondence analysis also has links to 
principal component analysis (Chapter 8) and canonical correlation analysis (Chap
ter 10) .  The book by Greenacre [14] is one choice for learning more about corre
spondence analysis. 

1 2.7  B IPLOTS FOR VI EWI NG SAM PLING U N ITS AND VARIABLES 

A biplot is a graphical representation of the information in an n X p data matrix. 
The bi- refers to the two kinds of information contained in a data matrix. The infor
mation in the rows pertains to samples or sampling units and that in the columns per
tains to variables. 

When there are only two variables, scatter plots can represent the information 
on both the sampling units and the variables in a single diagram. This permits the vi
sual inspection of the position of one sampling unit relative to another and the rela
tive importance of each of the two variables to the position of any unit. 

With several variables, one can construct a matrix array of scatter plots, but 
there is no one single plot of the sampling units. On the other hand, a two-dimensional 
plot of the sampling units can be obtained by graphing the first two principal com
ponents, as in Section 8.4. The idea behind biplots is to add the information about the 
variables to the principal component graph. 

Figure 12.22 gives an example of a biplot for the public utilities data in Table 12.5. 
You can see how the companies group together and which variables contribute 

to their positioning within this representation. For instance, X4 = annual load fac
tor and X8 = total fuel costs are primarily responsible for the grouping of the most
ly coastal companies in the lower right. The two variables X1 = fixed-charge ratio and 
X2 == rate of return on capital put the Florida and Louisiana companies together. 
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3 

2 

Ok. G. & E. 
Tex. Util. 

0 

Cent. Louis .  
X2 

- 1  X1  

Flor. Po. & Lt. 

Nev . Po. 

Pug. Sd. Po. 

X6 
Idaho Po. 

X5 

X3 

Bost. Ed. 

Pac . G&E 

X4 Unit. Ill. Co. 

- 2  

N. En . El. 

Con. Ed. 
Haw. El. 

X8 

- 2  - 1  0 2 

Figure 1 2 .22 A b ip lot of the data on pub l i c  ut i l it ies . 

Constructi ng B ip lots 

San Dieg. G&E 

3 

The construction of a biplot proceeds from the sample principal components. 
According to Result 8A. 1 ,  the best two-dimensional approximation to the data 

matrix X approximates the jth observation xj in terms of the sample values of the first 
two principal components. In particular, 

(12-40) 

where el and e2 are the first two eigenvectors of s or, equivalently, of 
X� XC = (n - 1 )  S. Here XC denotes the mean corrected data matrix with rows 
(xj - x) ' . The eigenvectors determine a plane, and the coordinates of the jth unit 
(row) are the pair of values of the principal components, ( yj 1 , yj 2) . 

To include the information on the variables in this plot, we consider the pair of 
eigenvectors ( e l ' e2 ) . These eigenvectors are the coefficient vectors for the first two 
sample principal components. Consequently, each row of the matrix E = [ el ' e2 ] po
sitions a variable in the graph, and the magnitudes of the coefficients (the coordi
nates of the variable) show the weightings that variable has in each principal 
component . The positions of the variables in the plot are indicated by a vector. 
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Usually, statistical computer programs include a multiplier so that the lengths of all 
of the vectors can be suitably adjusted and plotted on the same axes as the sampling 
units. Units that are close to a variable likely have high values on that variable. To 
interpret a new point x0 , we plot its principal components E(x0 - x) . 

A direct approach to obtaining a biplot starts from the singular value decompo
sition (see Result 2A.15) ,  which first expresses the n X p mean corrected matrix Xc as 

X == U A V' c 
(n xp) (n xp) (pXp) (pXp) (12-41 ) 

where A == diag ( A1 , A2 , . . . , Ap ) and V is an orthogo11al matrix whose columns are the 
eigenvectors of X� XCA == ( n - 1 )  S. That is, v == E == [ el ' e2 , . . .  ' e p] .  Multiplying 
(12-41) on the right by E, we find 

(12-42) 

where the jth row of the left-hand side, 

is just the value of the principal components for the jth item. That is, U A contains 
all of the values of the principal components, while V == E contains the coefficients 
that define the principal components. 

The best rank 2 approximation to Xc is obtained by replacing A by 
A* == diag ( A1 , A2 , 0, . . .  , 0 ) .  This result, called the Eckart-Young theorem, was es
tablished in Result 8 .A. 1 .  The approximation is then 

Xc _:_ UA *V' = [Yl , Yz J [ �J (12-43) 

where y1 is the n X 1 vector of values of the first principal component and y2 is the 
n X 1 vector of values of the second principal component. 

In the biplot, each row of the data matrix, or item, is represented by the point 
located by the pair of values of the principal components. The ith column of the data 
matrix, or variable, is represented as an arrow from the origin to the point with co
ordinates ( el i '  e2J '  the entries in the ith column of the second matrix [ el ' e2 ] ' in the 
approximation (12-43) .  This scale may not be compatible with that of the principal 
components, so an arbitrary multiplier can be introduced that adjusts all of the vec
tors by the same amount. 

The idea of a biplot, to represent both units and variables in the same plot, ex
tends to canonical correlation analysis, multidimensional scaling, and even more com
plicated nonlinear techniques. (See [11 ] . )  

Example 1 2 . 1 9  {A b ip lot of un iversities and thei r characteri stics) 

Table 12.9 gives the data on some universities for certain variables used to com
pare or rank major universities. These variables include X1 == average SAT 
score of new freshmen, X2 == percentage of new freshmen in top 10% of high 
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TABLE 1 2 .9 DATA ON U N IVERS ITI ES 

University SAT Top10 Accept SFRatio Expenses Grad 

Harvard 14.00 91 14 1 1  39 .525 97 
Princeton 13 .75 91 14 8 30.220 95 
Yale 13 .75 95 19 11  43 .514 96 
Stanford 13 .60 90 20 12 36 .450 93 
MIT 13 .80 94 30 10 34.870 91 
Duke 13 .15 90 30 12 31 .585 95 
Cal Tech 14.15 100 25 6 63.575 81 
Dartmouth 13 .40 89 23 10 32.162 95 
Brown 13 .10 89 22 13 22.704 94 
JohnsHopkins 13 .05 75 44 7 58.691 87 
UChicago 12.90 75 50 13 38.380 87 
UPenn 12.85 80 36 1 1  27 .553 90 
Cornell 12.80 83 33 13 21 .864 90 
Northwestern 12.60 85 39 1 1  28.052 89 
Columbia 13 .10 76 24 12 31 .510 88 
NotreDame 12.55 81 42 13 15 . 122 94 
UVirginia 12.25 77 44 14 13 .349 92 
Georgetown 12.55 74 24 12 20.126 92 
CarnegieMellon 12.60 62 59 9 25 .026 72 
UMichigan 11 . 80 65 68 16 15 .470 85 
UCBerkeley 12 .40 95 40 17 15 . 140 78 
UWisconsin 10.85 40 69 15 1 1 . 857 71 
PennS tate 10.81 38 54 18  10 .185 80 
Purdue 10.05 28 90 1 9  9 .066 69 
TexasA&M 10.75 49 67 25 8.704 67 

Source: U.S. News & World Report, September 18, 1995, p. 126. 

school class, x3 = percentage of applicants accepted, x4 = student-faculty 
ratio, X5 = estimated annual expenses and X6 = graduation rate (%) . 

Because two of the variables, SAT and Expenses, are on a much different 
scale from that of the other variables, we standardize the data and base our hi
plot on the matrix of standardized observations zj . The biplot is given in Fig
ure 12.23 on page 723 . 

Notice how Cal Tech and Johns Hopkins are off by themselves; the vari
able Expense is mostly responsible for this positioning. The large state uni
versities in our sample are to the left in the biplot, and most of the private 
schools are on the right . Large values for the variables SAT, ToplO, and Grad 
are associated with the private school group. Northwestern lies in the middle 
of the biplot . • 
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Figure 1 2 .23 A b ip lot of the data on u n iversit ies. 

1 2.8 PROCRUSTES ANALYS IS :  A M ETHOD 
FOR COMPARING CONF IGURATIONS 

Starting with a given n X n matrix of distances D,  or similarities S ,  that relate n ob
jects, two or more configurations can be obtained using different techniques. The 
possible methods include both metric and nonmetric multidimensional scaling. 
The question naturally arises as to how well the solutions coincide. Figures 12.18 and 
12. 19 in Example 12. 16 respectively give the metric multidimensional scaling (prin
cipal coordinate analysis) and nonmetric multidimensional scaling solutions for the 
data on universities. The two configurations appear to be quite similar, but a quan
titative measure would be useful. A numerical comparison of two configurations, 
obtained by moving one configuration so that it aligns best with the other, is called 
Procrustes analysis , after the innkeeper Procrustes, in Greek mythology, who would 
either stretch or lop off customers' limbs so they would fit his bed. 
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Constructi ng the Procrustes Measure of Agreement 

Suppose the n X p matrix X* contains the coordinates of the n points obtained for 
plotting with technique 1 and the n X q matrix Y* contains the coordinates from 
technique 2, where q < p. By adding columns of zeros to Y*, if necessary, we can as
sume that X* and Y* both have the same dimension n X p. To determine how com
patible the two configurations are, we move, say, the second configuration to match 
the first by shifting each point by the same amount and rotating or reflecting the con
figuration about the coordinate axes.4 

Mathematically, we translate by a vector b and multiply by an orthogonal ma
trix Q so that the coordinates of the jth point yj are transformed to 

Qyj + b 

The vector b and orthogonal matrix Q are then varied to order to minimize the sum, 
over all n points, of squared distances 

(12-44) 

between xj and the transformed coordinates Qyj + b obtained for the second tech
nique. We take, as a measure of fit, or agreement, between the two configurations, the 
residual sum of squares 

n 

PR2 = min " (x · - Qy. - b) ' (x · - Qy· - b)  
Q b � 1 1 1 1 
' 1 = 1 

(12-45) 

The next result shows how to evaluate this Procrustes residual sum of squares mea
sure of agreement and determines the Procrustes rotation of Y* relative to X*. 

Result 12.2 Let the n X p configurations X* and Y* both be centered so that 
all rows have mean zero. Then 

n n p 
P R2 

= � xjxj + � y;·y1 - 2 � Ai 
j= l j= l  i= l  

= tr [X*X* ' J  + tr [Y*Y* ' ] - 2 tr [ A J  

where A = diag ( A1 , A.2 , . . .  , Ap) and the minimizing transformation is 

" p 
Q = � viui = VU' 

i = l  

" 
b = O  

(12-46) 

(12-47) 

4 Sib son [27] has proposed a numerical measure of the agreement between two configurations, given 
by the coefficient 

[tr (Y* ' X*X* ' Y* ) 112 ]2 

'Y = l - tr (X* 'X* ) tr (Y* ' Y* ) 

For identical configurations, y = 0. If necessary, y can be computed after a Procrustes analysis has been 
completed. 
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Here A, U, and V are obtained from the singular-value decomposition 

n 
L yjxj = Y*' X* = U A V' 
j = l (px n) (n xp) (pXp) (pxp) (pxp) 

Proof. Because the configurations are centered to have zero means ( � xi = 0 and � Yi = 0) . we have 

n n 
L (xj - Qyj - b ) ' (xj - Qyj - b) 
j= l 

L (xj - Qyj) '  (xj - Qyj) + nb 'b  
j= l 

" 

The last term is nonnegative, so the best fit occurs for b = 0. Consequently, we need 
only consider 

n n n n 
PR2 = min L (xj - Qyj ) '  (xj - Qyj) = L xjxj + L yjyj - 2 max L xjQyj 

Q j= l j= l j= l Q j= l 

Using xjQyj = tr [ Qyjxj ] ,  we find that the expression being maximized becomes 

By the singular-value decomposition, 

n p 
L yjxj = Y* ' X* = UA V' = L Aiuivi 
j= l j= l 

where U = [ u1 , u2 , . . . , up ] and V = [ v1 , v2 , . . .  , v p ] are p X p orthogonal matrices. 
Consequently, 

± xjQyi = tr [Q (± A;u;v;) ] = ± A; tr [Qu;vi ] 
1 = l z = l  z = l 

The variable quantity in the ith term 

has an upper bound of 1 as can be seen by applying the Cauchy-Schwarz inequality 
(2-48) with b = Qvi and d = ui . That is, since Q is orthogonal, 

v� Qu · < Vv� QQ ' v· � = � X 1 = 1 l l - l l l l l l 
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Each of these p terms can be maximized by the same choice Q = VU' . With this choice, 

0 

Therefore, 

0 

vi Qui = viVU' ui = [0 ,  . . . , 0, 1 ,  0, . . .  , O J 1 = 1 

0 

0 

n 

-2 max � xjQyj = -2 (A1 + A2 + · · · + Ap) 
Q j= l 

Finally, we verify that QQ ' = VU' UV' = VIP V' = IP , so Q is a p X p orthogonal 
matrix, as required. • 

Example 1 2 .20 (Procrustes analysis of the data on un iversities) 

Two configurations, produced by metric and non metric multidimensional scal
ing, of data on universities are given Example 12.16. The two configurations ap
pear to be quite close. There is a two-dimensional array of coordinates for each 
of the two scaling methods. Initially, the sum of squared distances is 

25 
� (xj - yj) '  (xj - yj ) = 3.862 
j= l  

A computer calculation gives 

u = [-.9990 .0448] 
.0448 .9990 

A = [ 114.9439 0.000] 
0.000 21 .3673 

- [ -1 .0000 .0076] v -
.0076 1 .0000 

According to Result 12.2, to better align these two solutions, we multiply the 
nonmetric scaling solution by the orthogonal matrix 

Q = ± V;U; = VU' = [ .9993 - .0372] 
i = l .0372 .9993 

This corresponds to clockwise rotation of the nonmetric solution by about 2 
degrees. After rotation, the sum of squared distances, 3 .862, is reduced to the 
Procrustes measure of fit 

25 25 2 
PR2 = " x'·X · + " y'·y · - 2 " A · = 3 673 L..J ] ]  L..J ] ]  L..J l • 

j= l  j= l  j= l 
• 
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Example 1 2 .21  (Procrustes ana lysis and additional  ord inations 
of data on forests) 

Data were collected on the populations of eight species of trees growing on ten 
upland sites in southern Wisconsin. These data are shown in Table 12.10. 

The metric, or principal coordinate, solution and nonmetric multidimen
sional scaling solution are shown in Figures 12.24 and 12.25. 

TABLE 1 2 . 1 0  WISCO N S I N  FOREST DATA 

Tree 

BurOak 
Black Oak 
WhiteOak 
Red Oak 
AmericanElm 
Basswood 
Ironwood 
Sugar Maple 

Source: See [21 ] .  
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Figure 1 2 .25 Non metric mu lt id imens iona l  sca l i n g  of the data on forests. 

Using the coordinates of the points in Figures 12.24 and 12.25 , we obtain 
the initial sum of squared distances for fit: 

10 
L (xj - yj ) ' (xj - yj ) = 8.547 
j= l 

A computer calculation gives 

-
[- .9833 u - - .1821 

A = 
[43.3748 

0.0000 

- .1821] 
.9833 

0.0000] 
14.9103 

= 
[-1 .0000 - .0001 ] v 

-.0001 1 .0000 

According to Result 12.2, to better align these two solutions, we multiply the 
nonmetric scaling solution by the orthogonal matrix 

Q" - � ' - v ' - [ . 9833 . 1821 ] - .£.,; V · U ·  - U -i= l 1 l -.1821 .9833 
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This corresponds to clockwise rotation of the nonmetric solution by about 10 
degrees. After rotation, the sum of squared distances, 8.547, is reduced to the 
Procrustes measure of fit 

10 10 2 
PR2 == " x'·X · + " y'·Y · - 2 " A· == 6 599 .£.,; J J .£.,; J J .£.,; l • 

j = 1  j= 1  t = 1  

We note that the sampling sites seem to fall along a curve in both pictures. This 
could lead to a one-dimensional nonlinear ordination of the data. A quadratic 
or other curve could be fit to the points. By adding a scale to the curve, we 
would obtain a one-dimensional ordination. 

It is informative to view the Wisconsin forest data when both sampling 
units and variables are shown. A correspondence analysis applied to the data 
produces the plot in Figure 12.26. The biplot is shown in Figure 12.27. 

All of the plots tell similar stories. Sites 1-5 tend to be associated with 
species of oak trees, while sites 7-10 tend to be associated with basswood, iron
wood, and sugar maples. American elm trees are distributed over most sites, but 
are more closely associated with the lower numbered sites. There is almost a 
continuum of sites distinguished by the different species of trees. • 
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S U PPLE M E NT 1 2A 

Data Mining 

I NTRODUCTION 

A very large sample in applications of traditional statistical methodology may mean 
10,000 observations on, perhaps, 50 variables. Today, computer-based repositories 
known as data warehouses may contain many terabytes of data. For some organi
zations, corporate data have grown by a factor of 100,000 or more over the last few 
decades. The telecommunications, banking, pharmaceutical, and (package) shipping 
industries provide several examples of companies with huge databases. Consider the 
following illustration. If each of the approximately 17 million books in the Library 
of Congress contained a megabyte of text (roughly 450 pages) in MS Word format, 
then typing this collection of printed material into a computer database would con
sume about 17 terabytes of disk space. United Parcel Service (UPS) has a package
level detail database of about 17 terabytes to track its shipments. 

For our purposes, data mining refers to the process associated with discovering 
patterns and relationships in extremely large data sets. That is, data mining is con
cerned with extracting a few nuggets of knowledge from a relative mountain of nu
merical information. From a business perspective, the nuggets of knowledge represent 
actionable information that can be exploited for a competitive advantage. 

Data mining is not possible without appropriate software and fast computers. 
Not surprisingly, many of the techniques discussed in this book, along with algorithms 
developed in the machine learning and artificial intelligence fields, play important 
roles in data mining. Companies with well-known statistical software packages now 
offer comprehensive data mining programs.5 In addition, special purpose programs 
such as CART have been used successfully in data mining applications. 

Data mining has helped to identify new chemical compounds for prescription 
drugs, detect fraudulent claims and purchases, create and maintain individual cus
tomer relationships, design better engines and build appropriate inventories, create 
better medical procedures, improve process control, and develop effective credit 
scoring rules. 

In traditional statistical applications, sample sizes are relatively small, data are 
carefully collected, sample results provide a basis for inference, anomalies are treat
ed but are often not of immediate interest, and models are frequently highly 

5SAS Institute's data mining program is currently called Enterprise Miner. SPSS's data mining 
program is Clementine. 

731 
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structured. In data mining, sample sizes can be huge; data are scattered and histori
cal (routinely recorded) , samples are used for training, validation, and testing (no 
formal inference) ;  anomalies are of interest; and models are often unstructured. 
Moreover, data preparation-including data collection, assessment and cleaning, and 
variable definition and selection-is typically an arduous task and represents 60 to 
80% of the data mining effort . 

Data mining problems can be roughly classified into the following categories: 

• Classification (discrete outcomes): 
Who is likely to move to another cellular phone service? 

• Prediction (continuous outcomes) : 
What is the appropriate appraised value for this house? 

• Association/market basket analysis: 
Is skim milk typically purchased with low-fat cottage cheese? 

• Clustering: 
Are there groups with similar buying habits? 

• Description: 

On Thursdays, grocery store consumers often purchase corn chips and soft 
drinks together. 

Given the nature of data mining problems, it should not be surprising that many of 
the statistical methods discussed in this book are part of comprehensive data mining 
software packages. Specifically, regression, discrimination and classification proce
dures (linear rules, logistic regression, decision trees such as those produced by 
CART) , and clustering algorithms are important data mining tools. Other tools, 
whose discussion is beyond the scope of this book, include association rules, multi
variate adaptive regression splines (MARS) ,  K-nearest neighbor algorithm, neural 
networks, genetic algorithms, and visualization.6 

The Data Min ing Process 

Data mining is a process requiring a sequence of steps. The steps form a strategy 
that is not unlike the strategy associated with any model building effort. Specifical
ly, data miners must 

1. Define the problem and identify objectives. 

2. Gather and prepare the appropriate data. 

3. Explore the data for suspected associations, unanticipated characteristics, and 
obvious anomalies to gain understanding. 

4. Clean the data and perform any variable transformation that seems appropriate. 

5. Divide the data into training, validation, and, perhaps, test data sets. 

6. Build the model on the training set. 

6For more information on data mining in general and data mining tools in particular, see the ref
erences at the end of this chapter. 
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7. Modify the model (if necessary) based on its performance with the validation data. 

8. Assess the model by checking its performance on validation or test data. 
Compare the model outcomes with the initial obj ectives. Is the model likely 
to be useful? 

9. Use the model. 

10. Monitor the model performance. Are the results reliable, cost effective? 

In practice, it is typically necessary to repeat one of more of these steps sever
al times until a satisfactory solution is achieved. Data mining software suites such as 
Enterprise Miner and Clementine are typically organized so that the user can work 
sequentially through the steps listed and, in fact , can picture them on the screen as a 
process flow diagram. 

Data mining requires a rich collection of tools and algorithms used by a skilled 
analyst with sound subject matter knowledge (or working with someone with sound 
subject matter knowledge) to produce acceptable results. Once established, any suc
cessful data mining effort is an ongoing exercise. New data must be collected and 
processed, the model must be updated or a new model developed, and, in general, ad
justments made in light of new experience. The cost of a poor data mining effort is 
high, so careful model construction and evaluation is imperative. 

Model Assessment 

In the model development stage of data mining, several models may be examined si
multaneously. In the example to follow, we briefly discuss the results of applying lo
gistic regression, decision tree methodology, and a neural network to the problem of 
credit scoring (determining good credit risks) using a publicly available data set known 
as the German Credit data. Although the data miner can control the model inputs 
and certain parameters that govern the development of individual models, in most 
data mining applications there is little formal statistical inference. Models are ordi
narily assessed (and compared) by domain experts using descriptive devices such as 
confusion matrices, summary profit or loss numbers, lift charts, threshold charts, and 
other, mostly graphical, procedures. 

The split of the very large initial data set into training, validation, and testing sub
sets allows potential models to be assessed with data that were not involved in model 
development . Thus, the training set is used to build models that are assessed on the 
validation (holdout) data set. If a model does not perform satisfactorily in the vali
dation phase, it is retrained. Iteration between training and validation continues until 
satisfactory performance with validation data is achieved. At this point, a trained 
and validated model is assessed with test data. The test data set is ordinarily used once 
at the end of the modeling process to ensure an unbiased assessment of model per
formance. On occasion, the test data step is omitted and the final assessment is done 
with the validation sample, or by cross-validation. 

An important assessment tool is the lift chart. Lift charts may be formatted in 
various ways, but all indicate improvement of the selected procedures (models) over 
what can be achieved by a baseline activity. The baseline activity often represents a 
prior conviction or a random assignment . Lift charts are particularly useful for com
paring the performance of different models. 
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Lift is defined as 

. P(result I condition) 
L1ft == --------

P(result ) 

If the result is independent of the condition, then Lift == 1 .  A value of Lift > 1 im
plies the condition (generally a model or algorithm) leads to a greater probability of 
the desired result and, hence, the condition is useful and potentially profitable. Dif
ferent conditions can be compared by comparing their lift charts. 

Example 1 2 .21  (A sma l l -sca le data m in ing exerci se) 

A publicly available data set known as the German Credit data7 contains ob
servations on 20 variables for 1000 past applicants for credit . In addition, the 
resulting credit rating ("Good" or "Bad") for each applicant was recorded. The 
objective is to develop a credit scoring rule that can be used to determine if a 
new applicant is a good credit risk or a bad credit risk based on values for one 
or more of the 20 explanatory variables. The 20 explanatory variables include 
CHECKING (checking account status) ,  DURATION (duration of credit in 
months) , HISTORY (credit history) , AMOUNT (credit amount) ,  EMPLOYED 
(present employment since) , RESIDENT (present resident since) ,  AGE (age in 
years), OTHER (other installment debts) ,  INSTALLP (installment rate as % of 
disposable income) ,  and so forth. Essentially, then, we must develop a function 
of several variables that allows us to classify a new applicant into one of two cat
egories: Good or Bad.  

We will develop a classification procedure using three approaches dis
cussed in Section 11 .8; logistic regression, classification trees, and neural net
works. An abbreviated assessment of the three approaches will allow us 
compare the performance of the three approaches on a validation data set. This 
data mining exercise is implemented using the general data mining process de
scribed earlier and SAS Enterprise Miner software. 

In the full credit data set, 70% of the applicants were Good credit risks and 
30% of the applicants were Bad credit risks. The initial data were divided into 
two sets for our purposes, a training set and a validation set. About 60% of the 
data (581 cases) were allocated to the training set and about 40% of the data ( 419 
cases) were allocated to the validation set. The random sampling scheme em
ployed ensured that each of the training and validation sets contained about 
70% Good applicants and about 30% Bad applicants. The applicant credit risk 
profiles for the data sets follow. 

Good: 
Bad: 
Total: 

Credit Data 

700 
300 

1000 

Training Data 

401 
180 
581 

Validation Data 

299 
120 
419 

7 At the time this supplement was written, the German Credit data were available in a sample data 
file accompanying SAS Enterprise Miner. Many other publicly available data sets can be downloaded 
from the following Web site: www.kdnuggets.com. 
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SAMPS l O .  
DMAGESCR 

Figure 12.28 shows the process flow diagram from the Enterprise Miner 
screen. The icons in the figure represent various activities in the data mining 
process. As examples, SAMPS10.DMAGECR contains the data; Data Parti
tion allows the data to be split into training, validation, and testing subsets; 
Transform Variables, as the name implies, allows one to make variable trans
formations; the Regression, Tree, and Neural Network icons can each be opened 
to develop the individual models; and Assessment allows an evaluation of each 
predictive model in terms of predictive power, lift, profit or loss, and so on, and 
a comparison of all models. 

The best model (with the training set parameters) can be used to score a 
new selection of applicants without a credit designation (SMAPS10.DMAGE
SCR) . The results of this scoring can be displayed, in various ways, with Dis
tribution Explorer. 

For this example, the prior probabilities were set proportional to the data; 
consequently, P( Good) = .7 and P(Bad ) = .3 .  The cost matrix was initially 
specified as follows: 

Actual 
Good 
Bad 

Predicted (Decision) 

Good (Accept) 

0 
$5 

Bad (Reject) 

$1 
0 

so that it is 5 times as costly to classify a Bad applicant as Good (Accept) as it 
is to classify a Good applicant as Bad (Reject) . In practice, accepting a Good 
credit risk should result in a profit or, equivalently, a negative cost . To match 
this formulation more closely, we subtract $1 from the entries in the first row of 
the cost matrix to obtain the "realistic" cost matrix: 
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Actual 
Good 
Bad 

Predicted (Decision) 

Good (Accept) 

-$1 
$5 

Bad (Reject) 

0 
0 

This matrix yields the same decisions as the original cost matrix, but the results 
are easier to interpret relative to the expected cost obj ective function. For ex
ample, after further adjustments, a negative expected cost score may indicate a 
potential profit so the applicant would be a Good credit risk. 

Next, input variables need to be processed (perhaps transformed) , mod
els (or algorithms) must be specified, and required parameters must be set in all 
of the icons in the process flow diagram. Then the process can be executed up 
to any point in the diagram by clicking on an icon. All previous connected icons 
are run. For example, clicking on Score executes the process up to and includ
ing the Score icon. Results associated with individual icons can then be exam
ined by clicking on the appropriate icon. 

We illustrate model assessment using lift charts. These lift charts, available 
in the Assessment icon, result from one execution of the process flow diagram 
in Figure 12.28. 

Consider the logistic regression classifier. Using the logistic regression 
function determined with the training data, an expected cost can be computed 
for each case in the validation set. These expected cost "scores" can then or
dered from smallest to largest and partitioned into groups by the lOth, 20th, . . .  , 
and 90th percentiles. The first percentile group then contains the 42 (10% of 419) 
of the applicants with the smallest negative expected costs (largest potential 
profits) , the second percentile group contains the next 42 applicants (next 10%), 
and so on. (From a classification viewpoint, those applicants with negative ex
pected costs might be classified as Good risks and those with nonnegative 
expected costs as Bad risks. ) 

If the model has no predictive power, we would expect, approximately, a 
uniform distribution of, say, Good credit risks over the percentile groups. That 
is, we would expect 10% or .10(299) = 30 Good credit risks among the 42 ap
plicants in each of the percentile groups. 

Once the validation data have been scored, we can count the number of 
Good credit risks (of the 42 applicants) actually falling in each percentile group. 
For example, of the 42 applicants in the first percentile group, 40 were actually 
Good risks for a "captured response rate" of 40/299 = . 133 or 13 .3%. In this 
case, lift for the first percentile group can be calculated as the ratio of the num
ber of Good predicted by the model to the number of Good from a random as
signment or 

Lift = �� = 1 .33 

The lift value indicates the model assigns 10/299 = .033 or 3.3% more Good 
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Figure 1 2.29 Cumu lative l i ft chart 
for the log ist ic reg ress ion c lass if ier. 

risks to the first percentile group (largest negative expected cost) than would 
be assigned by chance. 8 

Lift statistics can be displayed as individual (noncumulative) values or as 
cumulative values. For example, 40 Good risks also occur in the second per
centile group for the logistic regression classifier, and the cumulative risk for the 
first two percentile groups is 

Lift = 
40 + 40 

= 1 33 
30 + 30 

. 

The cumulative lift chart for the logistic regression model is displayed in Figure 12.29. 
Lift and cumulative lift statistics can be determined for the classification 

tree tool and for the neural network tool. For each classifier, the entire data set 
is scored (expected costs computed), applicants ordered from smallest score to 
largest score and percentile groups created. At this point, the lift calculations 
follow those outlined for the logistic regression method. The cumulative charts 
for all three classifiers are shown in Figure 12.30. 

We see from Figure 12.30 that the neural network and the logistic re
gression have very similar predictive powers and they both do better, in this 
case, than the classification tree. The classification tree, in turn, outperforms a 
random assignment. If this represented the end of the model building and as
sessment effort, one model would be picked (say, the neural network) to score 
a new set of applicants (without a credit risk designation) as Good (accept) or 
Bad (reject) . 

8The lift numbers calculated here differ a bit from the numbers displayed in the lift diagrams to fol
low because of rounding. 
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Figure 1 2 .30 Cumu lative l i ft charts 
for neu ra l  network, cl assification tree, 
and log ist ic regress ion tools .  

In the decision flow diagram in Figure 12.28, the SAMPS10.DMAGESCR 
file contains 75 new applicants. Expected cost scores for these applicants were 
created using the neural network model. Of the 75 applicants, 33 were classi
fied as Good credit risks (with negative expected costs) . • 

Data mining procedures and software continue to evolve, and it is difficult to 
predict what the future might bring. Database packages with embedded data min
ing capabilities, such as SQL Server 2000, represent one evolutionary direction. 

EXERCISES 

12.1. Certain characteristics associated with a few recent U.S. presidents are listed in 
Table 12. 1 1 .  

TABLE 1 2 . 1 1 
Birthplace Elected Prior U.S. 
(region of first congressional Served as 

President United States) term? Party experience? vice president? 

1 .  R. Reagan Midwest Yes Republican No No 
2. J. Carter South Yes Democrat No No 
3. G. Ford Midwest No Republican Yes Yes 
4. R. Nixon West Yes Republican Yes Yes 
5 .  L. Johnson South No Democrat Yes Yes 
6 .  J. Kennedy East Yes Democrat Yes No 
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(a) Introducing appropriate binary variables, calculate similarity coefficient 1 in 
Table 12.2 for pairs of presidents. 
Hint: You may use birthplace as South, non-South. 

(b) Proceeding as in Part a, calculate similarity coefficients 2 and 3 in Table 12.2 
Verify the monotonicity relation of coefficients 1 ,  2, and 3 by displaying the 
order of the 15 similarities for each coefficient. 

12.2. Repeat Exercise 12 .1 using similarity coefficients 5, 6, and 7 in Table 12.2. 
12.3. Show that the sample correlation coefficient [see (12-1 1) ]  can be written as 

ad - be r = -------------

[ ( a  + b) ( a + c) ( b + d ) ( c + d) J 112 

for two 0-1 binary variables with the following frequencies: 

Variable 1 0 
1 

Variable 2 

0 1 

a 
c 

b 
d 

12.4. Show that the monotonicity property holds for the similarity coefficients 1 ,  2, 
and 3 in Table 12.2. 

12.5. 

Hint: ( b  + c ) = p - ( a + d ) .  So, for instance, 

a + d  1 
a +  d + 2 (b + c ) 1 + 2 [pj (a  + d ) - 1 ]  

This equation relates coefficients 3 and 1 .  Find analogous representations for 
the other pairs. 

Consider the matrix of distances 

1 2 3 4 
1 0 
2 1 0 
3 1 1  2 0 
4 5 3 4 0 

Cluster the four items using each of the following procedures. 
(a) Single linkage hierarchical procedure. 
(b) Complete linkage hierarchical procedure. 
(c) Average linkage hierarchical procedure. 
Draw the dendrograms and compare the results in (a), (b) , and (c) . 

12.6. The distances between pairs of five items are as follows: 

1 2 3 4 5 
1 0 
2 4 0 
3 6 9 0 
4 1 7 10 0 
5 6 3 5 8 0 
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Cluster the five items using the single linkage, complete linkage, and average 
linkage hierarchical methods. Draw the dendrograms and compare the results. 

12.7. Sample correlations for five stocks were given in Example 8 .5 .  These correla
tions, rounded to two decimal places, are reproduced as follows: 

Allied Union 
Chemical Du Pont Carbide Exxon Texaco 

Allied Chemical 1 

Du Pont .58 1 

Union Carbide .51 .60 1 

Exxon .39 .39 .44 1 

Texaco .46 .32 .43 .52 1 

Treating the sample correlations as similarity measures, cluster the stocks using 
the single linkage and complete linkage hierarchical procedures. Draw the den
drograms and compare the results. 

12.8. Using the distances in Example 12.4, cluster the items using the average link
age hierarchical procedure. Draw the dendrogram. Compare the results with 
those in Examples 12.4 and 12.6. 

12.9. The vocabulary "richness" of a text can be quantitatively described by counting 
the words used once, the words used twice, and so forth. Based on these counts, 
a linguist proposed the following distances between chapters of the Old Testa
ment book Lamentations (data courtesy ofY. T. Radday and M. A. Pollatschek) : 

Lamentations 
chapter 

1 2 3 4 5 
1 0 

Lamentations 2 .76 0 
chapter 3 2.97 . 80 0 

4 4.88 4.17 .21 0 
5 3 .86 1 . 92 1 .51 .51 0 

Cluster the chapters of Lamentations using the three linkage hierarchical meth
ods we have discussed. Draw the dendrograms and compare the results. 

12.10. Use Ward's method to cluster the 4 items whose measurements on a single vari
able X are given in the following table. 

Item 

1 
2 
3 
4 

Measurements 

X 

2 
1 
5 
8 
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(a) Initially, each item is a cluster and we have the clusters 

{ 1 }  {2} { 3 }  {4} 

Show that ESS = 0 ,  as  i t  must. 
(b) If we join clusters { 1 }  and {2} ,  the new cluster { 12} has 

ESS1 = � ( xj - x)2 = (2 - 1 .5 ) 2 + ( 1  - 1 .5 ) 2 = .5 

and the ESS associated with the grouping { 12 } ,  { 3 } ,  {4}  is ESS = 

.5 + 0 + 0 = . 5 .  The increase in ESS (loss of information) from the first 
step to the current step in .5 - 0 = . 5 .  Complete the following table by 
determining the increase in ESS for all the possibilities at step 2. 

Increase 
Clusters in ESS 

{ 12} { 3 }  { 4 }  .5 
{ 1 3 }  {2} {4} 
{14}  {2} { 3 }  

{ 1 }  {23 }  {4 }  
{ 1 }  {24} { 3 }  
{ 1 }  {2} {34} 

(c) Complete the last two steps, and construct the dendrogram showing the val
ues of ESS at which the mergers take place. 

12.11. Suppose we measure two variables X1 and X2 for four items A, B, C, and D. The 
data are as follows: 

0 bserva ti ons 

Item xl x2 

A 5 4 
B 1 -2 
c -1 1 
D 3 1 

Use the K-means clustering technique to divide the items into K = 2 clusters. 
Start with the initial groups (AB) and ( CD ) . 

12.12. Repeat Example 12.12, starting with the initial groups (AC) and (BD) . Com
pare your solution with the solution in the example. Are they the same? Graph 
the items in terms of their ( x1 , x2 ) coordinates, and comment on the solutions. 

12.13. Repeat Example 12.12, but start at the bottom of the list of items, and proceed 
up in the order D, C, B, A. Begin with the initial groups (AB ) and ( CD ) . [The 
first potential reassignment will be based on the distances d2(D, (AB ) ) and 
d2(D, ( CD) ) . ] Compare your solution with the solution in the example. Are 
they the same? Should they be the same? 
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The following exercises require the use of a computer. 

12.14. Table 1 1 .9 lists measurements on 8 variables for 43 breakfast cereals. 
(a) Using the data in the table, calculate the Euclidean distances between pairs 

of cereal brands. 
(b) Treating the distances calculated in (a) as measures of (dis )similarity, clus

ter the cereals using the single linkage and complete linkage hierarchical 
procedures. Construct dendrograms and compare the results. 

12.15. Input the data in Table 11 . 9  into a K-means clustering program. Cluster the 
cereals into K == 2, 3, and 4 groups. Compare the results with those in Exer
cise 12 . 14. 

12.16. The national track records data for women are given in Table 1 .9 .  
(a) Using the data in Table 1 .9 ,  calculate the Euclidean distances between pairs 

of countries. 
(b) Treating the distances in (a) as measures of (dis)similarity, cluster the coun

tries using the single linkage and complete linkage hierarchical procedures. 
Construct dendrograms and compare the results. 

(c) Input the data in Table 1 .9  into a K-means clustering program. Cluster the 
countries into groups using several values of K. Compare the results with 
those in Part b. 

12.17. Repeat Exercise 12.16 using the national track records data for men given in Table 
8.6. Compare the results with those of Exercise 12.16. Explain any differences. 

12.18. Table 12.12 gives the road distances between 12 Wisconsin cities and cities in 
neighboring states. Locate the cities in q == 1, 2, and 3 dimensions using mul
tidimensional scaling. Plot the minimum stress(q) versus q and interpret the 
graph. Compare the two-dimensional multidimensional scaling configuration 
with the locations of the cities on a map from an atlas . 

12.19. Table 12. 13  on page 744 gives the "distances" between certain archaeological 
sites from different periods, based upon the frequencies of different types of pot
sherds found at the sites. Given these distances, determine the coordinates of 
the sites in q == 3 ,  4, and 5 dimensions using multidimensional scaling. Plot the 
minimum stress( q) versus q and interpret the graph. If possible, locate the sites 
in two dimensions (the first two principal components) using the coordinates 
for the q == 5-dimensional solution. (Treat the sites as variables. ) Noting the 
periods associated with the sites, interpret the two-dimensional configuration. 

12.20. A sample of n == 1660 people is cross-classified according to mental health sta
tus and socioeconomic status in Table 12.14 on page 745 . 

Perform a correspondence analysis of these data. Interpret the results. 
Can the associations in the data be well represented in one dimension? 

12.21. A sample of 901 individuals was cross-classified according to three categories 
of income and four categories of job satisfaction. The results are given in Table 
12. 15 on page 745. 

Perform a correspondence analysis of these data. Interpret the results. 

12.22. Perform a correspondence analysis of the data on forests listed in Table 12.10, 
and verify Figure 12.26 given in Example 12.21 . 
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TABLE 1 2. 1 2  D I STANCES  B ETWE E N  C ITI ES  I N  WISCO N S I N  A N D  CITI ES  I N  N E I G H B O R I N G  STATES 

Fort 
Appleton Beloit Atkinson Madison Marshfield Milwaukee Monroe Superior Wausau Dubuque St. Paul Chicago 

(1 )  (2) (3) (4) (5) (6) (7) (8) (9) (10) (11 )  (12) 

(1 )  0 

(2) 130 0 

(3) 98 33 0 

(4) 102 50 36 0 

(5) 103 185 164 138 0 

(6) 100 73 54 77 184 0 

(7) 149 33 58 47 170 107 0 

(8) 3 15 377 359 330 219 394 362 0 

(9) 91 186 166 139 45 181 186 223 0 

(10) 1 96 94 1 19  95 186 168 61 351 215 0 

(1 1 )  257 304 287 258 161 322 289 162 175 274 0 

(12) 186 97 113 146 276 93 130 467 275 184 395 0 
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TABLE 1 2 . 1 3 D ISTANCES  B ETWEEN ARCHAEO LOG ICAL S ITES 

P1980918 P1931 131 P1550960 P1530987 P1361024 P1351005 P1340945 
(1 )  (2) (3) (4) (5) (6) (7) 

(1 )  0 

(2) 2.202 0 

(3) 1 .004 2.025 0 

(4) 1 . 108 1 . 943 0 .233 0 

(5)  1 . 122 1 .870 0.719 0.541 0 

(6) 0.914 2.070 0.719 0 .679 0.539 0 

(7) 0.914 2.186 0.452 0.681 1 .102 0 .916 0 

(8) 2.056 2.055 1 . 986 1 .990 1 . 963 2.056 2.027 

(9) 1 . 608 1 .722 1 .358 1 . 1 68 0.681 1 .005 1 .719  

KEY: P1980918 refers to  site P198 dated A.D. 0918, P1931131 refers to  site P193 dated A.D. 1131 ,  and so  forth. 
Source: Data Courtesy of M. J. Tretter. 

P1311137 P1301062 
(8) (9) 

0 

1 .991 0 
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TABLE 1 2 . 14  M ENTAL H EALTH STATUS AND SOCI O ECO N O M I C  STATUS DATA 

Mental Health Status 

Well 

Mild symptom formation 

Moderate symptom formation 

Impaired 

Parental Socioeconomic Status 

A (High) B c 
121 57 72 

188 105 141 

112 65 77 

86 60 94 

D 

36 

97 

54 

78 

E (Low) 

21 

71 

54 

71 

Source: Adapted from data in Srole, L. , T. S .  Langner, S .  T. Michael, P. Kirkpatrick, 
M. K. Opler, and T. A. C. Rennie, Mental Health in the Metropolis: The Midtown Manhatten 
Study, rev. ed. (New York: NYU Press, 1978) .  

TABLE 1 2 . 1 5  I NCOM E  AND JOB SATISFACTI ON DATA 

Job Satisfaction 

Very Somewhat Moderately Very 
Income dissatisfied dissatisfied satisfied satisfied 

< $ 25,000 42 62 184 207 

$25,000-$50,000 13 28 81 1 13 

> $ 50,000 7 18 54 92 

Source: Adapted from data in Table 8.2 in Agresti, A., Categorical Data Analysis (New 
York: John Wiley, 1990) . 

12.23. Construct a biplot of the pottery data in Table 12.8. Interpret the biplot. Is the 
biplot consistent with the correspondence analysis plot in Figure 12.21? Discuss 
your answer. (Use the row proportions as a vector of observations at a site.) 

12.24. Construct a biplot of the mental health and socioeconomic data in Table 12.14. 
Interpret the biplot. Is the biplot consistent with the correspondence analysis 
plot in Exercise 12.20? Discuss your answer. (Use the column proportions as 
the vector of observations for each status. ) 

12.25. Using the archaeological data in Table 12.13 ,  determine the two-dimensional 
metric and nonmetric multidimensional scaling plots. (See Exercise 12 .19 . )  
Given the coordinates of the points in each of these plots, perform a Procrustes 
analysis. Interpret the results. 
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Table 1 Standard Normal Probabilities 

Table 2 Student 's t-Distribution Percentage Points 

Table 3 x2 Distribution Percentage Points 

Table 4 F-Distribution Percentage Points (a = . 10)  

Table 5 F-Distribution Percentage Points (a = .05 ) 

Table 6 F-Distribution Percentage Points (a = .01 ) 
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TABLE 1 STAN DARD NORMAL PROBAB I LITI ES 

P[Z � z] 

0 z 

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 

.7 .7580 .761 1 .7642 .7673 .7703 .7734 .7764 .7794 .7823 .7852 

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 

1 .0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 
1 . 1  .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 
1 .2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 
1 .3  .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 
1 .4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 
1 .5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 
1 .6  .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 
1 .7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 
1 .8  .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 
1 .9  .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 
2.7 .9965 .9966 .9967 .9968 .9969 .9970 . 9971 .9972 .9973 .9974 
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 
3 .1  .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 
3 .2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 
3 .3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 
3 .4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 
3.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 
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TABLE 2 STU D ENT'S t-D I STR I B UT ION PERCE NTAG E POI NTS 

0 t v (  a) 

d.f. a 
v .250 .100 .050 .025 .010 .00833 

1 1 .000 3.078 6 .314 12.706 31 .821 38.190 
2 .816 1 .886 2.920 4.303 6.965 7 .649 
3 .765 1 .638 2.353 3 . 182 4.541 4.857 
4 .741 1 .533 2.132 2.776 3.747 3 .961 
5 .727 1 .476 2.015 2.571 3 .365 3 .534 
6 .718 1 .440 1 . 943 2.447 3 . 143 3 .287 
7 .711 1 .415 1 . 895 2.365 2.998 3 . 128 
8 .706 1 .397 1 .860 2.306 2.896 3 .016 
9 .703 1 .383 1 . 833 2.262 2.821 2.933 

10 .700 1 .372 1 .812 2.228 2.764 2.870 
11  .697 1 .363 1 .796 2.201 2.718 2.820 
12 .695 1 .356 1 .782 2. 179 2.681 2.779 
13 .694 1 .350 1 .771 2.160 2.650 2.746 
14 .692 1 .345 1 .761 2.145 2.624 2.718 
15 .691 1 .341 1 .753 2 .131 2.602 2.694 
16 .690 1 .337 1 .746 2.120 2.583 2.673 
17 .689 1 .333 1 .740 2 .110 2.567 2.655 
18  .688 1 .330 1 .734 2.101 2.552 2.639 
19 .688 1 .328 1 .729 2.093 2.539 2.625 
20 .687 1 .325 1 .725 2.086 2.528 2.613 
21 .686 1 .323 1 .721 2.080 2.518 2.601 
22 .686 1 .321 1 .717 2.074 2.508 2.591 
23 .685 1 .319 1 .714 2.069 2.500 2.582 
24 .685 1 .318 1 .711 2.064 2.492 2.574 
25 .684 1 .316 1 .708 2.060 2.485 2.566 
26 .684 1 .315 1 .706 2.056 2.479 2.559 
27 .684 1 .314 1 .703 2.052 2.473 2.552 
28 .683 1 .313 1 .701 2.048 2.467 2.546 
29 .683 1 .311  1 . 699 2.045 2.462 2.541 
30 .683 1 .310 1 . 697 2.042 2.457 2.536 
40 .681 1 .303 1 . 684 2.021 2.423 2.499 
60 .679 1 .296 1 . 671 2.000 2.390 2.463 

120 .677 1 .289 1 . 658 1 .980 2.358 2.428 
00 .674 1 .282 1 . 645 1 .960 2.326 2.394 

.00625 .005 .0025 

50.923 63 .657 127.321 
8 .860 9 .925 14.089 
5 .392 5 .841 7 .453 
4.315 4.604 5.598 
3.810 4.032 4.773 
3 .521 3 .707 4.317 
3 .335 3 .499 4.029 
3 .206 3 .355 3 .833 
3 . 1 11  3.250 3 .690 
3 .038 3 . 169 3 .581 
2.981 3 . 106 3 .497 
2. 934 3 .055 3 .428 
2.896 3.012 3 .372 
2. 864 2.977 3 .326 
2.837 2.947 3.286 
2.813 2.921 3 .252 
2.793 2.898 3.222 
2.775 2.878 3 . 197 
2.759 2.861 3 . 174 
2.744 2.845 3 .153 
2.732 2.831 3 . 135 
2.720 2.819 3 . 119  
2.710 2.807 3 .104 
2.700 2.797 3.091 
2.692 2.787 3 .078 
2.684 2.779 3 .067 
2.676 2.771 3 .057 
2.669 2.763 3 .047 
2.663 2.756 3 .038 
2. 657 2.750 3 .030 
2.616 2.704 2.971 
2.575 2.660 2.915 
2.536 2.617 2.860 
2.498 2.576 2.813 
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TABLE 3 x2 D I STRI B UT ION PERCE NTAG E POI NTS 

: 
X� (a) x2 

d.f. a 

v .990 .950 .900 .500 . 100 .050 .025 .010 .005 

1 .0002 .004 .02 .45 2.71 3 .84 5 .02 6.63 7.88 
2 .02 .10 .21 1 .39 4.61 5.99 7.38 9 .21 10.60 
3 . 11  .35 .58 2.37 6 .25 7.81 9.35 11 .34 12.84 
4 .30 .71 1 .06 3 .36 7.78 9 .49 11 .14 13 .28 14.86 
5 .55 1 . 15  1 .61 4.35 9 .24 11 .07 12.83 15 .09 16.75 
6 .87 1 .64 2.20 5.35 10.64 12.59 14.45 16.81 18.55 
7 1 .24 2 .17 2.83 6.35 12.02 14.07 16 .01 18 .48 20.28 
8 1 .65 2.73 3 .49 7.34 13 .36 15 .51 17.53 20.09 21.95 
9 2.09 3 .33 4.17 8.34 14.68 16 .92 19 .02 21 .67 23.59 

10 2.56 3 .94 4.87 9 .34 15.99 18.31 20.48 23.21 25.19 
11  3 .05 4.57 5.58 10.34 17 .28 19 .68 21 .92 24.72 26.76 
12 3.57 5 .23 6.30 1 1 .34 18.55 21 .03 23 .34 26.22 28.30 
13 4 .11 5 .89 7.04 12.34 1 9 .81 22.36 24.74 27 .69 29.82 
14 4.66 6.57 7.79 13 .34 21 .06 23 .68 26.12 29 .14 31 .32 
15 5.23 7 .26 8.55 14.34 22.31 25 .00 27.49 30.58 32.80 
16 5 .81 7 .96 9 .31 15.34 23 .54 26.30 28.85 32.00 34.27 
17 6.41 8 .67 10.09 16 .34 24.77 27.59 30. 19  33 .41 35 .72 
18 7.01 9 .39 10.86 17.34 25 .99 28.87 31 .53 34.81 37.16 
19 7 .63 10.12 1 1 .65 18 .34 27.20 30.14 32.85 36 .19 38.58 
20 8.26 10.85 12.44 19 .34 28.41 31 .41 34.17 37.57 40.00 
21 8.90 11 .59 13 .24 20.34 29 .62 32.67 35.48 38.93 41 .40 
22 9.54 12.34 14.04 21.34 30.81 33.92 36.78 40.29 42.80 
23 10.20 13 .09 14.85 22.34 32.01 35.17 38.08 41 .64 44. 18  
24 10.86 13 .85 15 .66 23 .34 33 .20 36.42 39.36 42.98 45.56 
25 11 .52 14.61 16 .47 24.34 34.38 37 .65 40.65 44.31 46.93 
26 12.20 15.38 17 .29 25.34 35.56 38.89 41 .92 45.64 48.29 
27 12.88 16 .15 18 .11 26.34 36.74 40. 11  43 . 19  46.96 49.64 
28 13 .56 16 .93 18 .94 27.34 37.92 41 .34 44.46 48.28 50.99 
29 14.26 17.71 19 .77 28.34 39.09 42.56 45.72 49.59 52.34 
30 14.95 18 .49 20.60 29.34 40.26 43.77 46.98 50.89 53.67 
40 22.16 26 .51 29.05 39.34 51 .81  55.76 59.34 63.69 66.77 
50 29.71 34.76 37.69 49.33 63.17 67 .50 71 .42 76.15 79.49 
60 37.48 43 .19  46.46 59.33 74.40 79.08 83.30 88.38 91 .95 
70 45.44 51 .74 55.33 69.33 85.53 90.53 95.02 100.43 104.21 
80 53.54 60.39 64.28 79.33 96.58 101.88 106.63 112.33 116.32 
90 61 .75 69.13 73 .29 89.33 107.57 113 .15 1 18.14 124.12 128.30 

100 70.06 77 .93 82.36 99.33 1 18.50 124.34 129.56 135.81 140.17 



TABLE 4 F-D I STR I B UT ION PERCE NTAG E PO I NTS ( a  == . 1  0 )  

vl 

v2 1 2 3 4 5 6 7 

. 1 0  

F (. 1 0) 
V i  , V 2 

8 9 10  

F 

12 15 

1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60. 1 9  60.71 61 .22 

2 8.53 9.00 9 .16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 

3 5.54 5.46 5.39 5 .34 5.31 5.28 5.27 5 .25 5.24 5 .23 5.22 5.20 

4 4.54 4.32 4.19 4 .11  4.05 4.01 3.98 3.95 3 .94 3 .92 3.90 3 .87 

5 4.06 3.78 3 .62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 

6 3.78 3 .46 3 .29 3 . 1 8  3 . 1 1  3 .05 3.01 2.98 2.96 2.94 2.90 2.87 

7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.63 

8 3 .46 3 . 1 1  2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 

9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.34 

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 

1 1  3 .23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.21 2.17 

20 25 30 40 

61 .74 62.05 62.26 62.53 

9.44 9.45 9.46 9.47 

5 . 1 8  5 . 1 7  5 . 1 7  5 .16  

3 .84 3.83 3 .82 3 .80 

3.21 3 . 1 9  3 .17 3 . 1 6  

2.84 2.81 2.80 2.78 

2.59 2.57 2.56 2.54 

2.42 2.40 2.38 2.36 

2.30 2.27 2.25 2.23 

2.20 2.17 2.16 2.13 

2.12 2.10 2.08 2.05 

60 

62.79 

9.47 

5 .15 

3.79 

3.14 

2.76 

2.51 

2.34 

2.21 

2 .11  

2.03 

._,... 
U'1 
N 

)> 
"'0 
"'0 
(1) 
:::::l 
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12 

13 

14 

15 

1 6  

1 7  

1 8  

19  

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

40 

60 

120 

00 

3.18 

3 .14 

3.10 

3.07 

3 .05 

3.03 

3 .01 

2.99 

2.97 

2.96 

2.95 

2.94 

2.93 

2.92 

2.91 

2.90 

2.89 

2.89 

2.88 

2.84 

2.79 

2.75 

2.71 

2.81 2.61 2.48 2.39 2.33 2.28 

2.76 2.56 2.43 2.35 2.28 2.23 

2.73 2.52 2.39 2.31 2.24 2. 19  

2.70 2.49 2 .36 2.27 2.21 2 .16  

2.67 2.46 2.33 2.24 2 .18  2 .13  

2.64 2.44 2 .31  2.22 2 .15  2.10 

2.62 2.42 2.29 2.20 2.13 2.08 

2.61 2.40 2.27 2.18 2.11 2.06 

2.59 2.38 2.25 2 .16 2.09 2.04 

2.57 2.36 2.23 2.14 2.08 2.02 

2.56 2.35 2.22 2 .13  2.06 2.01 

2.55 2.34 2.21 2. 1 1  2.05 1 .99 

2.54 2.33 2 .19  2.10 2.04 1 .98 

2.53 2.32 2.18 2.09 2.02 1 .97 

2.52 2.31 2.17 2.08 2.01 1 .96 

2.51 2.30 2.17 2.07 2.00 1 .95 

2.50 2.29 2.16 2.06 2.00 1 .94 

2.50 2.28 2.15 2.06 1 .99 1 .93 

2.49 2.28 2.14 2.05 1 .98 1 . 93 

2.44 2.23 2.09 2.00 1 .93 1 .87 

2.39 2.18 2.04 1 .95 1 .87 1 .82 

2.35 2.13 1 .99 1 .90 1 .82 1 .77 

2.30 2.08 1 .94 1 .85 1 .77 1 .72 

2.24 2.21 

2.20 2.16 

2.15 2. 12 

2.12 2.09 

2.09 2.06 

2.06 2.03 

2.04 2.00 

2.02 1 .98 

2.00 1 .96 

1 .98 1 .95 

1 . 97 1 .93 

1 .95 1 .92 

1 .94 1 .91 

1 .93 1 .89 

1 .92 1 .88 

1 .91 1 . 87 

1 .90 1 .87 

1 .89 1 .86 

1 .88 1 .85 

1 .83 1 .79 

1 .77 1 .74 

1 .72 1 .68 

1 . 67 1 .63 

2.19 2.15 2.10 

2.14 2.10 2.05 

2.10 2.05 2.01 

2.06 2.02 1 .97 

2.03 1 .99 1 .94 

2.00 1 .96 1 .91 

1 .98 1 .93 1 .89 

1 .96 1 .91 1 .86 

1 .94 1 .89 1 .84 

1 .92 1 .87 1 .83 

1 .90 1 .86 1.81 

1 .89 1 .84 1 .80 

1 .88 1 .83 1 .  78 

1 .87 1 .82 1 .77 

1 .86 1 .81  1 .  76 

1 .85 1 .80 1 .75 

1 .84 1 .79 1 .74 

1 .83 1 .78 1 .73 

1 .82 1 .77 1 .72 

1 .76 1 .71 1 .66 

1 .71 1 .66 1 .60 

1 .65 1 .60 1 .55 

1 .60 1 .55 1 .49 

2.06 2.03 2.01 1 .99 

2.01 1 .98 1 .96 1 .93 

1 . 96 1 . 93 1 .91 1 .89 

1 .  92 1 .89 1 .87 1 .85 

1 .89 1 .86 1 .84 1 .81  

1 .86 1 .83 1 .81  1 .78 

1 .84 1 .80 1 .78 1 .75 

1 .81 1 .78 1 .76 1 .73 

1 .79 1 .76 1 .74 1 .71 

1 .78 1 .7 4 1 .72 1 .69 

1 .76 1 .73 1 .70 1 .67 

1 .74 1 .71 1 .69 1 .66 

1 .73 1 .70 1 .67 1 .64 

1 .72 1 .68 1 .66 1 .63 

1 .71 1 .67 1 .65 1 .61 

1 .70 1 .66 1 .64 1 .60 

1 .69 1 .65 1 .63 1 .59 

1 .68 1 .64 1 . 62 1 .58 

1 .67 1 .63 1 .61 1 .57 

1 .61 1 .57 1 .54 1 .51  

1 .54 1 .50 1 .48 1 .44 

1 .48 1 .45 1 .41 1 .37 

1 .42 1 .38 1 .34 1.30 

1 . 96 

1 .90 

1.86 

1 .82 

1 .78 

1 .75 

1 .72 

1 .70 

1 .68 

1 .66 

1 . 64 

1 .62 

1.61 

1 .59 

1 .58 

1 .57 

1 .56 

1 .55 

1 .54 

1 .47 

1 .40 

1 .32 

1 .24 
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TABLE 5 F-D ISTR I B UT ION PE RCENTAG E POI NTS (a  == .05 ) 

.05 

If, v (.05) 
1 '  2 

vl 

v2 1 2 3 4 5 6 7 8 9 10 

F 

12 15 

1 161 .5 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241 .9 243.9 246.0 

2 18.51 19.00 19.16 1 9.25 19.30 19.33 1 9.35 19.37 1 9.38 19.40 1 9.41 19.43 

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5 .86 

5 6.61 5.79 5.41 5 .19  5 .05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3 .94 

7 5.59 4.74 4.35 4.12 3 .97 3.87 3 .79 3 .73 3.68 3 .64 3.57 3.51 

8 5.32 4.46 4.07 3 .84 3.69 3.58 3.50 3.44 3.39 3.35 3 .28 3.22 

9 5 .12 4.26 3.86 3 .63 3 .48 3 .37 3 .29 3 .23 3 . 1 8  3 . 1 4  3.07 3.01 

10 4.96 4.10 3.71 3 .48 3.33 3 .22 3 .14 3.07 3.02 2.98 2.91 2.85 

1 1  4.84 3.98 3.59 3.36 3.20 3 .09 3.01 2.95 2.90 2.85 2.79 2.72 

20 25 30 40 

248.0 249.3 250.1 251 . 1  

19.45 19.46 19.46 19.47 

8.66 8.63 8.62 8.59 

5 .80 5 .77 5.75 5.72 

4.56 4.52 4.50 4.46 

3.87 3.83 3.81 3.77 

3 .44 3.40 3.38 3.34 

3 .15  3 .11  3 .08 3.04 

2.94 2.89 2.86 2.83 

2.77 2.73 2.70 2.66 

2.65 2.60 2.57 2.53 

60 

252.2 

19.48 

8.57 

5 .69 

4.43 

3 .74 

3 .30 

3.01 

2.79 

2.62 

2.49 
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12 

1 3  

14 

15 

1 6  

17 

1 8  

19  

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

40 

60 

120 

4.75 

4.67 

4.60 

4.54 

4.49 

4.45 

4.41 

4.38 

4.35 

4.32 

4.30 

4.28 

4.26 

4.24 

4.23 

4.21 

4.20 

4.18 

4.17 

4.08 

4.00 

3.92 

3.89 3.49 3 .26 3 . 1 1  3.00 2.91 

3.81 3.41 3.18 3 .03 2.92 2.83 

3 .74 3.34 3 . 1 1  2.96 2.85 2.76 

3.68 3.29 3.06 2.90 2.79 2.71 

3 .63 3.24 3.01 2.85 2.74 2.66 

3.59 3.20 2.96 2.81 2.70 2.61 

3.55 3.16 2.93 2.77 2.66 2.58 

3.52 3.13 2.90 2.74 2.63 2.54 

3 .49 3.10 2.87 2.71 2.60 2.51 

3.47 3.07 2.84 2.68 2.57 2.49 

3.44 3 .05 2.82 2.66 2.55 2.46 

3.42 3.03 2.80 2.64 2.53 2.44 

3 .40 3.01 2.78 2.62 2.51 2.42 

3 .39 2.99 2.76 2.60 2.49 2.40 

3.37 2.98 2.74 2.59 2.47 2.39 

3.35 2.96 2.73 2.57 2.46 2.37 

3.34 2.95 2.71 2.56 2.45 2.36 

3.33 2.93 2.70 2.55 2.43 2.35 

3.32 2.92 2.69 2.53 2.42 2.33 

3.23 2.84 2.61 2.45 2.34 2.25 

3 .15 2.76 2.53 2.37 2.25 2.17 

3.07 2.68 2.45 2.29 2.18 2.09 

2.85 2.80 

2.77 2.71 

2.70 2.65 

2.64 2.59 

2.59 2.54 

2.55 2.49 

2.51 2.46 

2.48 2.42 

2.45 2.39 

2.42 2.37 

2.40 2.34 

2.37 2.32 

2.36 2.30 

2.34 2.28 

2.32 2.27 

2.31 2.25 

2.29 2.24 

2.28 2.22 

2.27 2.21 

2.18 2.12 

2.10 2.04 

2.02 1 .96 

2.75 2.69 2.62 

2.67 2.60 2.53 

2.60 2.53 2.46 

2.54 2.48 2.40 

2.49 2.42 2.35 

2.45 2.38 2.31 

2.41 2.34 2.27 

2.38 2.31 2.23 

2.35 2.28 2.20 

2.32 2.25 2 .18 

2.30 2.23 2.15 

2.27 2.20 2.13 

2.25 2.18 2 .11  

2.24 2.16 2.09 

2.22 2.15 2.07 

2.20 2.13 2.06 

2.19 2.12 2.04 

2.18 2.10 2.03 

2.16 2.09 2.01 

2.08 2.00 1 .92 

1 .99 1 .92 1 .84 

1 .91 1 .83 1 .75 

2.54 2.50 2.47 2.43 

2.46 2.41 2.38 2.34 

2.39 2.34 2.31 2.27 

2.33 2.28 2.25 2.20 

2.28 2.23 2.19 2 .15 

2.23 2.18 2 .15 2.10 

2.19 2.14 2.11 2.06 

2.16 2.11 2.07 2.03 

2.12 2.07 2.04 1 .99 

2.10 2.05 2.01 1 .96 

2.07 2.02 1 .98 1 . 94 

2.05 2.00 1 .96 1 .91 

2.03 1 . 97 1 .94 1 .89 

2.01 1 .96 1 .92 1 .87 

1 .99 1 .94 1 .90 1 .85 

1 .97 1 .92 1 .88 1 .84 

1 .96 1 . 91 1 .87 1 .82 

1 .94 1 .89 1 .85 1 .81 

1 .93 1 .88 1 .84 1 .79 

1 .84 1 .78 1 .74 1 .69 

1 .75 1 .69 1 .65 1 .59 

1 . 66 1 .60 1 .55 1 .50 

2.38 

2.30 

2.22 

2.16 

2.11 

2.06 

2.02 

1 .98 

1 .95 

1 .92 

1 .89 

1 .86 

1 .84 

1 .82 

1 .80 

1 .79 

1 .77 

1 .75 

1 .74 

1 .64 

1 .53 

1 .43 

00 I 3.84 3 .00 2.61 2.37 2.21 2.10 2.01 1 .94 1 .88 1 .83 1 .75 1 .67 1 .57 1 . 5 1  1 .46 1 .39 1 .32 
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TABLE 6 F-D ISTR I B UT ION P E RCE NTAG E PO I NTS ( a  == . 0 1 ) 

.0 1 

Fv 1 ' V 2  (.0 1 ) 

vl 

v2 1 2 3 4 5 6 7 8 9 

1 4052. 5000. 5403. 5625 . 5764. 5859. 5928. 5981.  6023 . 

2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 

3 34. 12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 

4 21 .20 18.00 16.69 15.98 15.52 15.21 14.98 1 4.80 14.66 

5 16.26 13.27 12.06 1 1 .39 10.97 1 0.67 10.46 10.29 10.16 

6 13.75 10.92 9.78 9 .15 8.75 8.47 8.26 8.10 7.98 

7 12.25 9.55 8.45 7.85 7.46 7 .19 6 .99 6.84 6.72 

8 1 1 .26 8.65 7.59 7.01 6.63 6.37 6 .18 6.03 5.91 

9 10.56 8.02 6.99 6.42 6.06 5 .80 5.61 5 .47 5.35 

10 10.04 7.56 6.55 5.99 5.64 5.39 5 .20 5.06 4.94 

1 1  9.65 7.21 6.22 5 .67 5.32 5.07 4.89 4.74 4.63 

F 

10 12 15 20 

6056. 6106. 6157. 6209. 

99.40 99.42 99 .43 99.45 

27 .23 27.05 26.87 26.69 

14.55 14.37 14.20 14.02 

10.05 9.89 9.72 9.55 

7.87 7.72 7.56 7.40 

6.62 6.47 6.31 6 .16  

5.81 5 .67 5 .52 5.36 

5 .26 5 . 1 1  4.96 4.81 

4.85 4.71 4.56 4.41 

4.54 4.40 4.25 4.10 

25 30 

6240. 6261 .  

99.46 99.47 

26.58 26.50 

13.91 13.84 

9.45 9.38 

7.30 7.23 

6.06 5.99 

5.26 5 .20 

4.71 4.65 

4.31 4.25 

4.01 3 .94 

40 

6287. 

99.47 

26.41 

13.75 

9.29 

7 .14 

5 .91  

5 .12 

4.57 

4.17 

3.86 

60 

6313. 

99.48 

26.32 

13.65 

9.20 

7.06 

5.82 

5.03 

4.48 

4.08 

3.78 
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12 

1 3  

1 4  

1 5  

16 

17 

1 8  

1 9  

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

40 

60 

120 

00 

9.33 

9.07 

8.86 

8.68 

8.53 

8.40 

8.29 

8.18 

8.10 

8.02 

7.95 

7 .88 

7.82 

7.77 

7.72 

7.68 

7.64 

7.60 

7.56 

7.31 

7.08 

6.85 

6.63 

6.93 

6.70 

6.51 

6.36 

6.23 

6 .11  

6.01 

5.93 

5.85 

5 .78 

5.72 

5.66 

5.61 

5.57 

5.53 

5.49 

5.45 

5.42 

5.39 

5 .18  

4.98 

4.79 

4.61 

5 .95 

5.74 

5.56 

5 .42 

5.29 

5 .19  

5 .09 

5.01 

4.94 

4.87 

4.82 

4.76 

4.72 

4.68 

4.64 

4.60 

4.57 

4.54 

4.51 

4.31 

4.13 

3.95 

3.78 

5.41 

5.21 

5.04 

4.89 

4.77 

4.67 

4.58 

4.50 

4.43 

4.37 

4.31 

4.26 

4.22 

4.18 

4.14 

4.1 1 

4.07 

4.04 

4.02 

3.83 

3.65 

3.48 

3.32 

5 .06 4.82 

4.86 4.62 

4.69 4.46 

4.56 4.32 

4.44 4.20 

4.34 4.10 

4.25 4.01 

4.17 3.94 

4.10 3.87 

4.04 3.81 

3.99 3.76 

3.94 3.71 

3.90 3.67 

3.85 3.63 

3.82 3.59 

3 .78 3.56 

3.75 3.53 

3.73 3.50 

3.70 3.47 

3.51 3.29 

3 .34 3.12 

3.17 2.96 

3.02 2.80 

4.64 

4.44 

4.28 

4.14 

4.03 

3.93 

3.84 

3.77 

3.70 

3.64 

3.59 

3.54 

3.50 

3.46 

3.42 

3.39 

3.36 

3.33 

3.30 

3.12 

2.95 

2.79 

2.64 

4.50 4.39 4.30 

4.30 4.19 4.10 

4.14 4.03 3.94 

4.00 3.89 3.80 

3.89 3.78 3.69 

3.79 3.68 3.59 

3.71 3.60 3.51 

3.63 3.52 3.43 

3.56 3.46 3.37 

3.51 3.40 3.31 

3.45 3.35 3.26 

3.41 3 .30 3.21 

3.36 3.26 3.17 

3.32 3 .22 3.13 

3.29 3 .18  3.09 

3.26 3.15 3.06 

3.23 3.12 3.03 

3.20 3.09 3.00 

3.17 3.07 2.98 

2.99 2.89 2.80 

2.82 2.72 2.63 

2.66 2.56 2.47 

2.51 2.41 2.32 

4. 16 

3.96 

3.80 

3.67 

3.55 

3.46 

3.37 

3.30 

3.23 

3.17 

3.12 

3.07 

3.03 

2.99 

2.96 

2.93 

2.90 

2.87 

2.84 

2.66 

2.50 

2.34 

2.18 

4.01 

3.82 

3.66 

3.52 

3.41 

3.31 

3 .23 

3 .15 

3.09 

3.03 

2.98 

2.93 

2.89 

2.85 

2.81 

2.78 

2.75 

2.73 

2.70 

2.52 

2.35 

2.19 

2.04 

3.86 3.76 

3.66 3.57 

3.51 3.41 

3.37 3.28 

3.26 3 .16 

3 .16 3.07 

3 .08 2.98 

3.00 2.91 

2.94 2.84 

2.88 2.79 

2.83 2.73 

2.78 2.69 

2.74 2.64 

2.70 2.60 

2.66 2.57 

2.63 2.54 

2.60 2.51 

2.57 2.48 

2.55 2.45 

2.37 2.27 

2.20 2.10 

2.03 1 .93 

1 .88 1 .78 

3.70 3.62 3.54 

3.51 3 .43 3.34 

3.35 3 .27 3.18 

3.21 3.13 3.05 

3 .10 3 .02 2.93 

3.00 2.92 2.83 

2.92 2.84 2.75 

2.84 2.76 2.67 

2.78 2.69 2.61 

2. 72 2.64 2.55 

2.67 2.58 2.50 

2.62 2.54 2.45 

2.58 2.49 2.40 

2.54 2.45 2.36 

2.50 2.42 2.33 

2.47 2.38 2.29 

2.44 2.35 2.26 

2.41 2.33 2.23 

2.39 2.30 2.21 

2.20 2 .11  2.02 

2.03 1 .94 1 .84 

1 .86 1 .76 1 .66 

1 .70 1 .5 9  1 .47 
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Data Index 

758 

Admission, 659 
examples, 620, 658 

Airline distances, 703 
examples, 702 

Air pollution, 40 
examples, 39, 208, 421 , 470, 538 

Amitriptyline, 423 
examples, 423 

Archeological site distances, 744 
examples, 743 , 745 

Bankruptcy, 655 
examples, 44, 653, 654 

Battery failure, 422 
examples, 421 

Bird, 268 
examples, 268 

Biting fly, 348 
examples, 347 

Bonds, 342 
examples, 341 

Bones (mineral content) , 44, 349 
examples, 43, 209, 269, 347, 422, 472 

Breakfast cereal, 664 
examples, 46, 662, 742 

Bull, 47 
examples, 47, 209, 422, 423 , 474, 541 , 

662 

Calcium (bones), 323, 324 
examples, 326 

Carapace (painted turtles) , 339, 536 
examples, 338, 441-42, 450, 536 

Census tract, 470 
examples, 439, 470, 540 

College test scores, 228 
examples, 226, 267, 420 

Computer data, 376, 397 
examples, 376, 379, 397, 402, 405, 

407, 409 
Crime, 575 

examples, 575-76 
Crude oil, 661 

examples, 345 , 632, 659 

Diabetic, 578 
examples, 578 

Effiuent, 275 
examples, 275 ,  332-33 

Egyptian skull, 344 
examples, 270, 344 

Electrical consumption, 288 
examples, 288-89, 292, 333 

Electrical time-of-use pricing, 345 
examples, 345 

Examination scores, 502 
examples, 502 

Female bear, 25 
examples, 24, 262 

Financial, 39 
examples, 38-39, 184, 207, 421 , 467 

Forest, 727 
examples, 727, 742 

Fowl, 518 
examples, 517, 535, 558, 565-67 

Grizzly bear, 261-62 
examples, 261 -62, 474-75 



Hair (Peruvian) , 262 
exarnples, 262-63 

Hemophilia, 594, 660, 663 
exarnples, 593, 610, 660 

Hook-billed kite, 341 
examples, 341 

Iris, 657 
exarnples, 344, 626 , 642, 656 

Job satisfaction/characteristics, 561, 745 
exarnples, 559, 569, 571, 742 

Lamentations, 740 
examples, 7 40 

Lizard data-two genera, 330 
examples, 329 

Lizard size, 17 
examples, 17, 18  

Love and marriage, 321 
examples, 320-22 

Lumber, 267 
exarnples, 267-68 

Mental health, 745 
examples, 7 42, 7 45 

Mice, 449, 471 
exarnples, 449 , 454, 471 , 540 

Milk transportation cost, 269, 
340 

exarnples, 46, 269 , 339 
Multiple sclerosis, 42 

exarnples, 42, 209, 653 
Musical aptitude, 236 

examples, 236 

National track records, 45, 473 
examples, 43, 44, 209, 472, 541 , 

742 
Natural gas, 411 

examples, 410-12 
Number parity, 338 

examples, 337 
Numerals, 678 

exarnples, 677, 683, 686, 689 

Data I ndex 759 

Nursing horne, 303 
examples, 303 ,  306 

Olympic decathlon, 495 
exarnples, 495, 508 

Overtime (police) , 240, 475 
examples, 239 , 241 , 243, 248, 270, 

456, 459, 460, 475 
Oxygen consumption, 343 

examples, 46, 342 

Paper quality, 15 
examples, 14, 20, 209 

Peanut, 349 
examples, 347 

Plastic film, 313 
examples, 312-17, 337 

Pottery, 709 
examples, 709, 745 

Profitability, 537 
examples, 536-37, 578 

Public utility, 687 
examples, 27 , 28, 47, 671 , 687, 690, 

696, 704 

Radiation, 181, 200 
examples, 180, 196, 200, 208, 221 -23, 

226, 233, 261 
Radiotherapy, 43 

examples, 43, 209, 471 
Reading/ ari thrnetic test scores, 57 5 

examples, 575 
Real estate, 368 

examples, 368, 420-21 
Road distances, 7 43 

examples, 7 42 

Salmon, 607 
exarnples, 606, 660 

Sleeping dog, 281 
examples, 280 

Smoking, 579 
examples, 578-80 

Spectral reflectance, 351 
examples, 350 



760 Data I ndex 

Spouse, 346 
examples, 345-47 

Stiffness (lumber) , 187 ,  192 
exanaples, 22, 187 , 191 , 337, 540, 578 

Stock price, 469 
examples, 447, 453, 469, 489, 493-95 , 

499-501 , 507, 514, 576, 740 

Sweat, 215 
examples, 214, 261 , 471 

University, 722 
examples, 706, 721 , 726 

Welder, 245 
examples, 244 

Wheat, 577 
examples, 577 



Subject Index 

Analysis of variance, multivariate: 
one-way, 298 
two-way, 309, 335 

Analysis of variance, univariate :  
one-way, 293, 357 
two-way, 307 

ANOVA (see Analysis of variance, 
univariate) 

Autocorrelation, 411-12 
Autoregressive model, 412 
Average linkage (see Cluster analysis) 

Biplot, 719 
Bonferroni intervals: 

comparison with T2 intervals, 234 
definition, 232 
for means, 232, 275 ,  290 
for treatment effects, 305, 312 

Canonical correlation analysis: 
canonical correlations, 543 , 545 , 553 , 

557 
canonical variables, 543 , 545-46, 557 
correlation coefficients in, 552, 558 
definition of, 545 , 556 
errors of approximation, 564 
geometry of, 555 
interpretation of, 551 
population, 545-46 
sample, 556-57 
tests of hypothesis in, 569-70 
variance explained, 567 

CART, 641 
Central-limit theorem, 176 
Characteristic equation, 98 

Characteristic roots (see Eigenvalues) 
Characteristic vectors (see 

Eigenvectors) 
Chernoff faces, 28 
Chi-square plots, 185 
Classification: 

Anderson statistic, 612 
Bayes's rule (ECM) , 587, 589-90, 

614 
confusion matrix, 601 
error rates, 599, 601 , 603 
expected cost, 587, 613 
interpretations in, 617-18, 624-25 
Lachenbruch holdout procedure, 

602, 626 
linear discriminant functions, 591 ,  

592, 610, 611 , 617, 630 
misclassification probabilities, 

585-86, 589 
with normal populations, 590, 596, 

616 
quadratic discriminant function, 597, 

617 
qualitative variables, 641 
selection of variables, 645 
for several groups, 612, 635 
for two groups, 582, 590, 611  

Classification trees, 641 
Cluster analysis : 

algorithm, 681 , 694 
average linkage, 689 
complete linkage, 685 
dendrogram, 680 
hierarchical, 679 
inversions in, 693 

761 



762 Subject I ndex 

Cluster analysis (continued) 
K-means, 694 
similarity and distance, 67 6 
similarity coefficients, 67 4, 677 
single linkage, 681 
Ward's method, 690 

Coefficient of determination, 361 ,  400 
Communality, 480 
Complete linkage (see Cluster 

analysis) 
Confidence intervals: 

mean of normal population, 211 
simultaneous, 225, 232, 235, 265, 275 , 

305, 312 
Confidence regions: 

for contrasts, 280 
definition, 220 
for difference of mean vectors, 285, 

291 
for mean vectors, 221 , 235 
for paired comparisons, 275 

Contingency table, 709 
Contrast matrix, 279 
Contrast vector, 278 
Control chart: 

definition, 239 
ellipse format, 241 ,  250, 456 
for subsample means, 249, 251 
multivariate, 241 , 457-58, 460-61 
T2 chart, 243, 248, 250, 251 , 459 

Control regions: 
definition, 247 
for future observations, 247, 251 ,  

460 
Correlation: 

autocorrelation, 411-12 
coefficient of, 8 ,  72 
geometrical interpretation of 

sample, 1 19  
multiple, 361 ,  400, 554 
partial, 406 
sample, 8, 118  

Correlation matrix: 
population, 73 
sample, 9 
tests of hypotheses for 

equicorrelation, 453-54 

Correspondence analysis: 
algebraic development, 711 
correspondence matrix, 711 
inertia, 710, 718 
matrix approximation method, 717 
profile approximation method, 717 

Correspondence matrix, 711 
Covariance : 

definitions of, 70 
of linear combinations, 76, 77 
sample, 8 

Covariance matrix: 
definitions of, 70 
distribution of, 175 
factor analysis models for, 480 
geometrical interpretation of 
sample, 119 ,  125-27 
large sample behavior, 175 
as matrix operation, 140 
partitioning, 7 4, 78 
population, 72 
sample, 124 

Data mining, 
lift chart, 733 
model assessment, 733 
process, 732 

Dendrogram, 680 
Descriptive statistics: 

correlation coefficient, 8 
covariance, 8 
mean, 7 
variance, 7 

Design matrix, 356, 384,408 
Determinant : 

computation of, 94 
product of eigenvalues, 105 

Discriminant function (see 
Classification) 

Distance: 
Canberra, 671 
Czekanowski, 671 
development of, 30-37, 65 
Euclidean, 30 
Minkowski, 670 
properties, 37 
statistical, 3 1 ,  36 



Distributions: 
chi-square (table) ,  751 
F (table), 752-57 
multinomial, 264 
normal (table) ,  749 
Q-Q plot correlation coefficient 

(table) ,  182 
t (table) , 750 
Wishart , 17 4 

Eigenvalues, 98 
Eigenvectors, 99 
EM algorithm, 252 
Estimation: 

generalized least squares, 417, 
419 

least squares, 358 
maximum likelihood, 168 
minimum variance, 364-65 
unbiased, 122, 124, 364-65 

Estimator (see Estimation) 
Expected value, 67-68 
Experimental unit , 5 

Factor analysis: 
bipolar factor, 503 
common factors, 478, 479 
communalities, 480 
computational details, 530 
of correlation matrix, 486, 490, 

532 
Heywood cases, 532, 534 
least squares (Bartlett) computation 

of factor scores, 511 ,  512 
loadings, 478, 479 
maximum likelihood estimation in, 

492 
nonuniqueness of loadings, 483 
oblique rotation, 503 , 509 
orthogonal factor model, 479 
principal component estimation in, 

484 
principal factor estimation in, 490 
regression computation of factor 

scores, 513 ,  514 
residual matrix, 486 
rotation of factors, 501 
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specific factors, 478, 479 
specific variance, 480 
strategy for, 517 
testing for the number of factors, 

498 
varimax criterion, 504 

Factor loading matrix, 478 
Factor scores, 512, 514 
Fisher 's linear discriminants: 

population, 651-52 
sample, 611 ,  630 
scaling, 595 

Gamma plot, 185 
Gauss (Markov) theorem, 364 
Generalized inverse, 363, 418 
Generalized least squares (see 

Estimation) 
Generalized variance: 

geometric interpretation of sample, 
125, 136-37 

sample, 124, 136 
situations where zero, 130 

General linear model: 
design matrix for, 356, 384 
multivariate, 384 
univariate, 356 

Geometry: 
of classification, 624-25 
generalized variance, 125, 136-37 
of least squares, 361 
of principal components, 462 
of sample, 1 19  

Gram-Schmidt process, 88 
Graphical techniques: 

biplot, 719 
Chernoff faces, 28 
marginal dot diagrams, 12 
n points in p dimensions, 17 
p points in n dimensions, 19 
scatter diagram (plot) ,  11, 20 
stars, 25 

Growth curve, 24, 323 

Hat matrix, 358, 419 
Heywood cases (see Factor analysis) 
Hotelling's T2 (see T2-statistic) 
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Independence: 
definition, 70 
of multivariate normal variables, 

159-60 
of sample mean and covariance 

matrix, 174 
tests of hypotheses for, 468 

Inequalities: 
Canchy-Schwarz, 80 
extended Cauchy-Schwarz, 80 

Inertia, 710, 718 
Influential observations, 380 
lnvariance of maximum 

likelihood estimators, 172 
Item (individual) , 5 

K-means (see Cluster analysis) 
Lawley-Hotelling trace statistic, 331, 

395 
Leverage, 377, 380 
Lift chart, 733 
Likelihood function, 168 
Likelihood ratio tests: 

definition, 219 
limiting distribution, 220 
in regression, 370, 392 
and T2, 218 

Linear combinations of vectors, 85, 
165 

Linear combinations of variables: 
mean of, 77 
normal populations, 156, 157 
sample covariances of, 142, 145 
sample means of, 142, 145 
variances and covariances of, 77 

Linear structural relationships, 
524 

LISREL, 525 
Logistic regression, 641 

MANOVA (see Analysis of variance, 
multivariate) 

Matrices: 
addition of, 90 
characteristic equation of, 98 
correspondence, 711  

definition of, 55 ,  89 
determinant of, 94, 105 
dimension of, 89 
eigenvalues of, 60, 98 
eigenvectors of, 60, 99 
generalized inverses of, 363, 418 
identity, 59, 92 
inverses of, 59,  96 
multiplication of, 92, 110  
orthogonal, 60, 98 
partitioned, 74, 75, 79 
positive definite, 61, 63 
products of, 57, 92, 93 
random, 67 
rank of, 96 
scalar multiplication in, 90 
singular and nonsingular, 96 
singular-value decomposition, 101 ,  

714 ,  721 
spectral decomposition, 61 -62, 

100 
square root, 66 
symmetric, 58, 91 
trace of, 98 
transpose of, 56, 91  

Maxima and minima (with matices) , 
80, 81 

Maximum likelihood estimation: 
development, 170-72 
invariance property of, 172 
in regression, 365, 390, 401 -02 

Mean, 67 
Mean vector: 

definition, 70 
distribution of, 17 4 
large sample behavior, 175 
as matrix operation, 139 
partitioning, 74, 79 
sample, 9 ,  79 

Minimal spanning tree, 708 
Missing observations, 252 
Multicollinearity, 382 
Multidimensional scaling: 

algorithm, 700, 702 
development, 700-08 
sstress, 701 
stress, 701 



Multiple comparisons (see 
Simultaneous confidence 
intervals) 

Multiple correleation coefficient: 
population, 400, 554 
sample, 361 

Multiple regression (see Regression 
and General linear model) 

Multivariate analysis of variance 
(see Analysis of variance, 
multivariate) 

Multivariate control chart (see control 
chart) 

Multivariate normal distribution 
(see Normal distribution, 
multivariate) 

Neural network, 644 
Nonlinear mapping, 708 
Nonlinear ordination, 729 
Normal distribution: 

bivariate, 151 
checking for normality, 177 
conditional, 160-61 
constant density contours, 153, 431 
marginal, 156, 158 
maximum likelihood estimation in, 

171 
multivariate, 149-67 
properties of, 156-67 
transformations to, 194 

Normal equations, 418 
Normal probability plots (see Q-Q 

plots) 
Outliers: 

definition, 189 
detection of, 190 

Paired comparisons, 272-78 
Partial correlation, 406 
Partitioned matrix: 

definition, 74, 75, 79 
determinant of, 204-05 
inverse of, 205 

Path diagram, 525-26 
Pillai 's trace statistic, 331 ,  395 

Plots: 
biplot, 719 

CP , 381 
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factor scores, 515, 517 
gamma (or chi-square) , 185 
principal components, 450-51 
Q-Q, 178, 378 
residual, 378-79 
scree, 441 

Positive definite (see Quadratic 
forms) 

Posterior probabilities, 589-90, 614 
Principal component analysis: 

correlation coefficients in, 429, 438, 
447 

for correlation matrix, 433 ,  447 
definition of, 427-28, 438 
equicorrelation matrix, 435-37, 453-54 
geometry of, 462-66 
interpretation of, 431 -32 
large-sample theory of, 452-55 
monitoring quality with, 455-61 
plots, 450-51 
population, 426-37 
reduction of dimensionality by, 

462-64 
sample, 437-49 
tests of hypotheses in, 453-55, 468 
variance explained, 429 , 433 , 447 

Procustus analysis: 
development, 723-29 
measure of agreement, 724 
rotation, 724 

Profile analysis, 318-23 
Proportions: 

large-sample inferences, 264-65 
multinomial distribution, 264 

Q-Q plots: 
correlation coefficient, 182 
critical values, 182 
description, 178-83 

Quadratic forms: 
definition, 63, 100 
extrema of, 81 
nonnegative definite, 63 
positive definite, 61 , 63 
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Random matrix, 67 
Random sample, 120 
Regression (see also General linear 

model) : 
autoregressive model, 412 
assumptions, 355-56, 365, 384, 390 
coefficient of determination, 361, 400 
confidence regions in, 367, 374, 396, 

418 
cp plot, 381 
decomposition of sum of squares, 

360-61 ,  385, 
extra sum of squares and cross 

products, 370-71 ,  393 
fitted values, 358, 384 
forecast errors in, 375 
Gauss theorem in, 364 
geometric interpretation of, 361 
least squares estimates, 358, 384 
likelihood ratio tests in, 370, 392 
maximum likelihood estimation in, 

365, 390, 401 , 404 
multivariate, 383 -97 
regression coefficients, 358, 403 
regression function, 365, 401 
residual analysis in, 377-79 
residuals, 358, 378, 384 
residual sum of squares and cross 

products, 358, 385 
sampling properties of estimators, 

363-65, 388 
selection of variables, 380-82 
univariate, 354-57 
weighted least squares, 417 
with time-dependent errors, 410-14 

Regression coefficients (see 
Regression) 

Repeated measures designs, 278-82, 
323-27 

Residuals, 358, 378, 384, 451 
Roy's largest root, 331 ,  395 

Sample: 
geometry, 1 12-19  

Sample splitting, 517 ,  529 , 602, 732, 
733 

Scree plot, 441 

Simultaneous confidence ellipses: 
as projections, 259-60 

Simultaneous confidence intervals: 
comparisons of, 229-31 ,  232-34 
for components of mean vectors, 

225, 232, 235 
for contrasts, 280 
development, 223-26 
for differences in mean vectors, 287 , 

290, 291 
for paired comparisons, 275 
as projections, 258 
for regression coefficients, 367 
for treatment effects, 305-06, 312 

Single linkage (see Cluster analysis) 
Singular matrix, 96 
Singular-value decomposition, 101 ,  

714, 721 
Special causes (of variation) , 239 
Specific variance, 480 
Spectral decomposition, 61 -62, 100 
SStress, 701 
Standard deviation: 

population, 73 
sample, 7 

Standard deviation matrix: 
population, 73 
sample, 140 

Standardized observations, 8 ,  445 
Standardized variables, 432 
Stars, 25 
Strategy for multivariate comparisons, 

332 
Stress, 701 
Structural equation models, 524-29 
Studentized residuals, 377 
Sufficient statistics, 173 
Sums of squares and cross products 

matrices: 
between, 298 
total, 298 
within, 298, 299 

Time dependence (in multivariate 
observations), 256-57, 410-14 

T2-sta tis tic: 
definition of, 211-12 



distribution of, 212 
invariance property of, 215-16 
in quality control, 243 , 248, 250, 251 ,  

459 
in profile analysis, 319 
for repeated measures designs, 279 
single-sample, 212 
two-sample, 285 

Trace of a matrix, 98 
Transformations of data, 194-202 

Variables: 
canonical, 545-46, 556-57 
dummy, 357 
endogenous, 525 
exogenous, 525 
latent, 525 
predictor, 354 
response, 354 
standardized, 432 

Variance: 
definition, 69 
generalized, 124, 136 
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geometrical interpretation of, 119  
total sample, 138, 438, 447, 567 

Varimax rotation criterion, 504 
Vectors: 

addition, 52, 84 
angle between, 53 , 86 
basis, 86 
definition of, 50, 84 
inner product, 53,  87 
length of, 52, 86 
linearly dependent, 54, 85 
linearly independent, 54, 85 
linear span, 85 
perpendicular (orthogonal), 54, 

87 
projection of, 55, 88 
random, 67 
scalar multiplication, 84 
unit, 52 
vector space, 85 

Wilks's lambda, 217, 299, 395 
Wishart distribution, 174 


